JPH0351037Y2 - - Google Patents

Info

Publication number
JPH0351037Y2
JPH0351037Y2 JP436085U JP436085U JPH0351037Y2 JP H0351037 Y2 JPH0351037 Y2 JP H0351037Y2 JP 436085 U JP436085 U JP 436085U JP 436085 U JP436085 U JP 436085U JP H0351037 Y2 JPH0351037 Y2 JP H0351037Y2
Authority
JP
Japan
Prior art keywords
raw material
cylinder
perforated cylinder
fixed perforated
discharge port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP436085U
Other languages
Japanese (ja)
Other versions
JPS6217399U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP436085U priority Critical patent/JPH0351037Y2/ja
Publication of JPS6217399U publication Critical patent/JPS6217399U/ja
Application granted granted Critical
Publication of JPH0351037Y2 publication Critical patent/JPH0351037Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Apparatuses For Bulk Treatment Of Fruits And Vegetables And Apparatuses For Preparing Feeds (AREA)
  • Treatment Of Sludge (AREA)

Description

【考案の詳細な説明】 (イ) 産業上の利用分野 本考案は、熱凝固性固型分を含む高含水率原料
の処理装置に関する。 (ロ) 従来の技術 従来、血液、食品汚泥等、熱凝固性固型物を含
む高含水率原料は、通常水分が80%以上含まれ、
またそのままでは消化率が悪いので、飼料等に利
用する場合には、熱凝固処理、濃縮処理、加水分
解処理、脱水処理等を順次行わねばならず、前三
者の処理は主としてクツカーで、また後の脱水処
理についてはクリユープレスによつて行われてい
た。 (ハ) 考案が解決しようとする問題点 しかしながら、クツカーとスクリユープレスは
一体に連続形成することができず、したがつて、
熱凝固性固型物を含む高含水率原料の処理たる熱
凝固処理、濃縮処理、加水分解処理、脱水処理等
各種処理は連続的に行い難く、処理の効率が悪か
つた。 (ニ) 問題点を解決するための手段 本考案では、横置型の固定孔明円筒内に、同円
筒基端の原料供給口から、前記円筒先端の処理物
排出口に向けて漸次直径を拡径する中空回転軸を
回転自在に軸架し、同回転軸の周面に、同軸の回
転に伴つて原料を処理物排出口に向けて圧送すべ
き螺旋羽根を周設し、かつ前記固定孔明円筒に、
圧送される原料の液体分を漏出すべき液体漏出孔
を穿設し、かつ固定孔明円筒周壁中途部に補助加
熱環を固設し、同補助加熱環と前記中空軸の内部
に、圧送される原料を加熱すべき蒸気を送通しう
るよう構成してなる熱凝固性固型物を含む高含水
率原料の処理装置を提供せんとするものである。 (ホ) 作用 本考案によれば、別途設けた貯溜槽内の血液、
食品汚泥等、熱凝固性固型物を含む高含水率原料
は、原料供給パイプ内を圧送ポンプによつて、固
定孔明円筒内に圧送供給されるものであるが、こ
の際、同原料は加熱装置によつて加熱され、原料
中の熱凝固性固型物は熱凝固状態で固定孔明円筒
内に圧送供給されることになる。またこのように
供給された原料は、固定孔明円筒を、中空回転軸
の回転に伴う螺旋羽根の回転によつて、処理物排
出口に向けて移送されるものであるが、この際、
中空回転軸が処理物排出口に向けて漸次直径を拡
径しているので、中空回転軸と固定孔明円筒との
間の空間が漸次狭まり、原料は処理物排出口に向
けて漸次加圧されながら移行され、原料中の水分
等液体分は加圧状態で流動しながら固定孔明円筒
の液体漏出孔から漏出することとなる。また、こ
のように加圧状態で流動する水分等液体分は、中
空回転軸に送通される蒸気によつて加熱され、加
熱加圧状態の熱媒体として、原料中の固型物の組
織内を貫流して固定孔明円筒を移行する原料中の
固型物を組織内外から均一に加熱加圧することと
なる。尚、この際、原料は、圧送ポンプを介して
固定孔明円筒に圧送されているので原料が原料供
給口に向けて押しもどされることはない。 また、固定孔明円筒の中途部には、補助加熱環
を周設し、同加熱環中に蒸気を送通しうるように
しているので、原料中の水分等液体分は液体漏出
孔からの漏出を阻止されて、加圧状態が急増さ
れ、かつ蒸気によつて加熱状態が急増される。 したがつて、原料は次のように処理されること
となる。すなわち、原料供給パイプ内で原料中の
熱凝固性固型物は熱凝固され、また固定孔明円筒
の原料供給口付近で、原料中の固型物が組織内外
から均一に加熱加圧されて同固型物の品温が均一
化し、また固定孔明円筒の中途部で、原料が急速
に加熱加圧されて加水分解処理され、また固定孔
明円筒の処理物排出口付近で原料が脱水処理され
るものである。このように、一連の処理装置によ
つて熱凝固処理、濃縮処理、加水分解処理、脱水
処理が連続的に行われ、処理効率が向上するもの
である。尚、圧送ポンプの回転速度調整によつ
て、処理速度を調整することが可能となる。 (ト) 実施例 本考案の実施例を図面にもとづき詳説すれば、
Mは処理装置を示しており、この処理装置Mは、
血液、食品汚泥等、熱凝固性固型分を含む高含水
率原料を貯溜すべき貯溜槽1を、中途部にいわゆ
るスネークポンプ等の圧送ポンプ2及び加熱装置
3を有する原料供給パイプ4を介して、横置型の
固定孔明円筒5基端の原料供給口6に連通連設せ
しめている。 また、固定孔明円筒5は始端近傍の周側に0.5
〜3mm程度の多数の液体漏出孔7を設け、同固定
孔明円筒5内には、同円筒5基端の原料供給口6
から、同円筒5先端の処理物排出口8に向けて漸
次直径を拡径する中空回転軸9を回転自在に軸架
し、同回転軸9の周面に、同軸9の回転に伴つて
原料を処理物排出口8に向けて圧送すべき螺旋羽
根10を周設している。また中空回転軸9内には
蒸気を送通しうるよう構成している。 また、固定孔明円筒5の略中央位置には、補助
加熱環11を周設し、同補助加熱環11中に蒸気
を送通しうるよう構成している。 また、同円筒5の終端近傍周壁には、液体漏出
孔7′を設けている。 尚、図中12はスプリング13により付勢した
環状の圧力調整装置、14は液体漏出孔7より漏
出する液体を受けるためのパンである。なお、本
考案実施例では、中空回転軸9は、一本の単独軸
として説明したが、多数本の複数軸に構成して、
各軸を並設することも可能であり、この多軸構造
においても本考案の実施例の螺旋羽根10を各軸
周面に形成しておく。 本考案の実施例は上記のように構成されている
ものであり、かかる処理装置Mにより血液、食品
汚泥等熱凝固性固型物を含む高含水率原料を処理
するには次のように行う。すなわち、貯溜槽1か
ら圧送ポンプ2で、原料供給パイプ4内を時間当
り500Kgの割合で、固定孔明円筒5内に含水分70
〜90%程度の血液Pを送給するが、この際、加熱
装置3によつて、血液Pは固定孔明円筒5内に至
るまで80〜100℃程度の温度まで加熱され、血液
中の固形分Qはある程度熱凝固せしめられる。 また、中空回転軸9を0.5〜5.0回転/分程度で
回転せしめることによつて、血液Pは、螺旋羽根
10の回転にて、処理物排出口8に向けて漸次増
加する圧力を受けながら圧送されるものである。
この際、血液P中の液体分Rが液体漏出孔7より
排出されることになるので血液の固形物中を流動
する液体分Rが貫流するものである。また血液P
は中空回転軸9内の蒸気にて加熱されるので品温
が低下することなく圧送されるものである。した
がつて、血液Pは、圧送初期においては、加熱加
圧状態の液体分Rが固形分Q組織内を貫流するの
で固形分Qの組織内外共に温度が均一化され、か
つ、液体漏出孔7からの液体分Rの漏出により、
濃縮処理が行われる。また、圧送終期において
は、加熱加圧状態の急増によつて加水分解処理が
行われる。 また、圧送終期においては、液体漏出孔7′か
らの液体分Rの漏出により脱水処理が行われる。 第3図に、原料供給口から軸線9′方向に沿つ
て一定距離の離隔位置A,B,C,D,Eにおけ
る平均温度と平均圧力とをグラフで示す。かかる
グラフで明らかなように、温度、圧力は処理物排
出口8に近づくにつれ大きくなる。 第4図に、前記離隔位置A,B,C,D,Eに
おける軸線9′からの垂直距離に対する温度のグ
ラフを示す。同グラフより明らかなように、各離
隔位置における軸線9′からの垂直距離に対する
温度はほぼ一定であり、血液Pが均一に加熱され
ていることを示している。 また第5図に、各離隔位置A〜Eにおける軸線
6′からの垂直距離に対する圧力のグラフを示す。
同グラフより明らかなように、各離隔位置での軸
線9′との垂直距離に対する圧力はほぼ一定であ
り、血液Pが均一に加圧されていることを示して
いる。 以上のような条件下においては、C部に迄進行
した血液Pは圧力約4Kg/cm、温度140℃となり
加水分解反応は始まつている。次にC部を越えた
血液Pは固定加熱円筒により密閉され中空回転軸
の加熱面及び補助加熱環により加熱されながらD
部への進行し分解反応はほとんど完了する。D部
に達した血液Pは圧力約6Kg/cm、温度160℃と
なつている。更に、分解された血液PはE部へと
進行し分解時に生じた不純物、水分等液状分は圧
力増加に伴い、固定孔明円筒5より排出され、更
に脱水乾燥され圧力調整装置12を押し出して固
定孔明円筒5より排出され処理物排出口8より取
り出される。 この際の処理物は水分約8%、蛋白質90%以上
である。 この様に分解処理された血液Pは冷却後粉砕機
に依り微粉とし、可消化の高い均一で良質な飼料
を得る事が出来る。その分析値は表1に示す通り
であつた。比較として耐圧釜内で撹拌しながら蒸
気で加圧加熱処理し乾燥されたレンダリング法に
よる血液の分析値を表1に示す。 【表】
[Detailed description of the invention] (a) Industrial application field The present invention relates to a processing apparatus for high moisture content raw materials containing heat-coagulable solids. (b) Conventional technology Conventionally, high moisture content raw materials containing thermocoagulable solids, such as blood and food sludge, usually contain 80% or more water.
In addition, it has poor digestibility as it is, so if it is to be used as feed, etc., it must be sequentially subjected to heat coagulation, concentration, hydrolysis, dehydration, etc. The subsequent dehydration process was carried out using a creu press. (c) Problems to be solved by the invention However, the screw press and the screw press cannot be continuously formed as one unit, and therefore,
Various treatments such as thermal coagulation treatment, concentration treatment, hydrolysis treatment, dehydration treatment, etc. for high moisture content raw materials containing heat-coagulable solids are difficult to perform continuously, resulting in poor processing efficiency. (d) Means for solving the problem In the present invention, the diameter is gradually increased in a horizontal fixed perforated cylinder from the raw material supply port at the base end of the cylinder toward the processed material discharge port at the tip of the cylinder. A hollow rotary shaft is rotatably mounted thereon, and a spiral blade is provided around the circumferential surface of the rotary shaft to force feed the raw material toward the processing material discharge port as the coaxial rotates, and the fixed perforated cylinder To,
A liquid leakage hole is bored through which the liquid part of the raw material to be pumped is leaked, and an auxiliary heating ring is fixedly installed in the middle of the peripheral wall of the cylinder with a fixed hole, and the liquid is fed under pressure into the inside of the auxiliary heating ring and the hollow shaft. It is an object of the present invention to provide a processing apparatus for a high moisture content raw material containing a heat-coagulable solid material, which is constructed so that steam to be heated can be passed through the raw material. (E) Effect According to the present invention, blood in a separately provided storage tank,
High moisture content raw materials containing heat-coagulable solids, such as food sludge, are fed under pressure into a fixed perforated cylinder by a pressure pump inside a raw material supply pipe, but at this time, the raw materials are heated. The device heats the thermosetting solid material in the raw material, and the thermosetting solid material in the raw material is pumped into a fixed perforated cylinder in a thermally solidified state. In addition, the raw material supplied in this manner is transferred through the fixed perforated cylinder toward the processed material discharge port by the rotation of the spiral blades accompanying the rotation of the hollow rotating shaft.
Since the diameter of the hollow rotating shaft gradually increases toward the discharge port of the processed material, the space between the hollow rotating shaft and the fixed perforated cylinder gradually narrows, and the raw material is gradually pressurized toward the discharge port of the processed material. The liquid components such as moisture in the raw material flow under pressure and leak out from the liquid leakage hole of the fixed perforated cylinder. In addition, liquid components such as moisture flowing under pressure are heated by the steam passed through the hollow rotating shaft, and as a heating medium in the heated and pressurized state, they are absorbed into the structure of the solids in the raw materials. The solid matter in the raw material flowing through the fixed perforated cylinder is uniformly heated and pressurized from inside and outside the tissue. At this time, since the raw material is being fed under pressure to the fixed perforated cylinder via the pressure pump, the raw material will not be pushed back toward the raw material supply port. In addition, an auxiliary heating ring is installed around the middle of the fixed perforated cylinder to allow steam to pass through the heating ring, so liquids such as moisture in the raw materials are prevented from leaking from the liquid leakage hole. It is blocked, the pressurization is ramped up and the heating is ramped up by the steam. Therefore, the raw material will be processed as follows. That is, the thermosetting solids in the raw material are thermally solidified in the raw material supply pipe, and the solids in the raw material are uniformly heated and pressurized from inside and outside the tissue near the raw material supply port of the fixed perforated cylinder. The temperature of the solid material becomes uniform, and the raw material is rapidly heated and pressurized for hydrolysis treatment in the middle of the fixed perforated cylinder, and the raw material is dehydrated near the treated material outlet of the fixed perforated cylinder. It is something. In this way, the thermal coagulation treatment, concentration treatment, hydrolysis treatment, and dehydration treatment are performed continuously by a series of processing devices, and the treatment efficiency is improved. Note that the processing speed can be adjusted by adjusting the rotational speed of the pressure pump. (G) Example The example of the present invention will be explained in detail based on the drawings.
M indicates a processing device, and this processing device M is
A storage tank 1 in which high moisture content raw materials containing heat-coagulable solids such as blood and food sludge is stored is connected via a raw material supply pipe 4 having a pressure pump 2 such as a so-called snake pump and a heating device 3 in the middle. It is connected to a raw material supply port 6 at the base end of a horizontal fixed perforated cylinder 5. In addition, the fixed hole cylinder 5 has a diameter of 0.5 mm on the circumferential side near the starting end.
A large number of liquid leakage holes 7 of approximately 3 mm in diameter are provided, and a raw material supply port 6 at the base end of the fixed hole cylinder 5 is provided.
A hollow rotary shaft 9 whose diameter gradually increases toward the processed material discharge port 8 at the tip of the cylinder 5 is rotatably mounted on the circumferential surface of the rotary shaft 9, and as the coaxial shaft 9 rotates, the raw material is A spiral blade 10 is provided around the periphery to forcefully feed the processed material toward the discharge port 8. Further, the hollow rotary shaft 9 is configured so that steam can be passed therethrough. Further, an auxiliary heating ring 11 is provided around the substantially central position of the fixed perforated cylinder 5, and is configured to allow steam to pass through the auxiliary heating ring 11. Further, a liquid leak hole 7' is provided in the peripheral wall near the end of the cylinder 5. In the figure, 12 is an annular pressure regulating device biased by a spring 13, and 14 is a pan for receiving liquid leaking from the liquid leak hole 7. In addition, in the embodiment of the present invention, the hollow rotating shaft 9 is explained as one single shaft, but it can be configured as a plurality of shafts,
It is also possible to arrange the shafts in parallel, and even in this multi-shaft structure, the spiral blade 10 of the embodiment of the present invention is formed on the peripheral surface of each shaft. The embodiment of the present invention is constructed as described above, and in order to process high moisture content raw materials containing thermally coagulable solids such as blood and food sludge using the processing apparatus M, the following steps are performed. . That is, from the storage tank 1, the pressure pump 2 moves the inside of the raw material supply pipe 4 at a rate of 500 kg per hour, and the water content in the fixed perforated cylinder 5 is 70 kg.
About ~90% of the blood P is fed, and at this time, the blood P is heated by the heating device 3 to a temperature of about 80 to 100°C until it reaches the fixed perforated cylinder 5, and the solid content in the blood is Q is thermally solidified to some extent. Further, by rotating the hollow rotary shaft 9 at a rate of about 0.5 to 5.0 revolutions/minute, the blood P is pumped toward the waste discharge port 8 while being subjected to gradually increasing pressure by the rotation of the spiral blades 10. It is something that will be done.
At this time, since the liquid portion R in the blood P is discharged from the liquid leakage hole 7, the liquid portion R flowing in the solids of the blood flows through. Also blood P
Since it is heated by the steam inside the hollow rotating shaft 9, the product can be fed under pressure without lowering its temperature. Therefore, in the early stage of pumping blood P, the heated and pressurized liquid R flows through the tissue of the solid Q, so that the temperature of the solid Q inside and outside the tissue is equalized, and the liquid leakage hole 7 Due to leakage of liquid R from
A concentration process is performed. Further, in the final stage of pumping, hydrolysis treatment is performed by rapidly increasing the heating and pressurizing state. Further, at the final stage of pumping, dehydration processing is performed by leaking the liquid R from the liquid leakage hole 7'. FIG. 3 is a graph showing the average temperature and average pressure at positions A, B, C, D, and E at fixed distances from the raw material supply port along the axis 9' direction. As is clear from this graph, the temperature and pressure increase as the process material discharge port 8 is approached. FIG. 4 shows a graph of temperature versus vertical distance from axis 9' at the remote locations A, B, C, D, and E. As is clear from the graph, the temperature relative to the vertical distance from the axis 9' at each remote position is approximately constant, indicating that the blood P is uniformly heated. Also shown in FIG. 5 is a graph of pressure versus vertical distance from axis 6' at each of the remote locations A-E.
As is clear from the graph, the pressure relative to the vertical distance from the axis 9' at each separated position is approximately constant, indicating that the blood P is uniformly pressurized. Under the above conditions, the blood P that has progressed to part C has a pressure of about 4 kg/cm and a temperature of 140°C, and the hydrolysis reaction has begun. Next, the blood P that has passed through part C is sealed by a fixed heating cylinder and is heated by the heating surface of the hollow rotating shaft and the auxiliary heating ring.
The decomposition reaction is almost completed. The blood P that has reached part D has a pressure of about 6 kg/cm and a temperature of 160°C. Further, the decomposed blood P advances to section E, and liquid components such as impurities and moisture generated during decomposition are discharged from the fixed perforated cylinder 5 as the pressure increases, and is further dehydrated and dried by pushing out the pressure regulator 12 and fixed. It is discharged from the perforated cylinder 5 and taken out from the processed material discharge port 8. The processed material at this time has about 8% moisture and more than 90% protein. The blood P decomposed in this way is cooled and then pulverized by a pulverizer to obtain a highly digestible, uniform, and high-quality feed. The analytical values were as shown in Table 1. For comparison, Table 1 shows the analytical values of blood obtained by the rendering method, which was heated under pressure with steam while stirring in a pressure cooker and dried. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本考案の処理装置の全体断面側面
図。第2図は、同処理装置の要部拡大断面図。第
3図は、本考案の処理装置における原料供給口か
ら軸線方向に沿つて排出口までの平均温度と平均
圧力を表すグラフ。第4図は、本考案の処理装置
における軸線からの垂直距離に対する温度を表す
グラフ。第5図は、本考案の処理装置における軸
線からの垂直距離に対する圧力を表すグラフ。
FIG. 1 is an overall cross-sectional side view of the processing apparatus of the present invention. FIG. 2 is an enlarged cross-sectional view of the main parts of the processing device. FIG. 3 is a graph showing the average temperature and average pressure from the raw material supply port to the discharge port along the axial direction in the processing apparatus of the present invention. FIG. 4 is a graph showing temperature versus vertical distance from the axis in the processing apparatus of the present invention. FIG. 5 is a graph showing pressure versus vertical distance from the axis in the processing apparatus of the present invention.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 横置型の固定孔明円筒5内に、同円筒5基端の
原料供給口6から、同円筒5先端の処理物排出口
8に向けて漸次直径を拡径する中空回転軸9を回
転自在に軸架し、同回転軸9の周面に、同軸9の
回転に伴つて原料を処理物排出口8に向けて圧送
すべき螺旋羽根10を周設し、かつ前記固定孔明
円筒5に、圧送される原料の液体分を漏出すべき
液体漏出孔7を穿設し、かつ固定孔明円筒5周壁
中途部に補助加熱環11を周設し、同補助加熱環
11と前記中空軸9の内部に、圧送される原料を
加熱すべき蒸気を送通しうるよう構成してなる熱
凝固性固型物を含む高含水率原料の処理装置。
A hollow rotary shaft 9 whose diameter gradually increases from a raw material supply port 6 at the base end of the cylinder 5 to a processed material discharge port 8 at the tip end of the cylinder 5 is rotatably mounted in a horizontally placed fixed perforated cylinder 5. A spiral blade 10 is provided around the circumferential surface of the rotary shaft 9 to force the raw material toward the processed material discharge port 8 as the coaxial shaft 9 rotates, and the material is forcedly fed to the fixed perforated cylinder 5. A liquid leakage hole 7 from which the liquid part of the raw material to be prepared is leaked is bored, and an auxiliary heating ring 11 is provided around the middle part of the peripheral wall of the fixed perforated cylinder 5, and inside the auxiliary heating ring 11 and the hollow shaft 9, A processing apparatus for a high moisture content raw material containing a heat-coagulable solid material, which is configured so that steam to be heated can be passed through the raw material to be pressure-fed.
JP436085U 1985-01-16 1985-01-16 Expired JPH0351037Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP436085U JPH0351037Y2 (en) 1985-01-16 1985-01-16

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP436085U JPH0351037Y2 (en) 1985-01-16 1985-01-16

Publications (2)

Publication Number Publication Date
JPS6217399U JPS6217399U (en) 1987-02-02
JPH0351037Y2 true JPH0351037Y2 (en) 1991-10-31

Family

ID=30784955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP436085U Expired JPH0351037Y2 (en) 1985-01-16 1985-01-16

Country Status (1)

Country Link
JP (1) JPH0351037Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6216763B2 (en) * 2014-12-04 2017-10-18 水ing株式会社 Dehydration system and method

Also Published As

Publication number Publication date
JPS6217399U (en) 1987-02-02

Similar Documents

Publication Publication Date Title
US3182975A (en) Steam injection heater
JPH09169853A (en) Production of cellulose solution
CN208906072U (en) A kind of reaction kettle of homogeneous heating
CN108261999B (en) Petrochemical reation kettle
JPH0351037Y2 (en)
JP2635979B2 (en) Continuous high-temperature high-pressure reactor
SU1738717A1 (en) Device for heating liquids
CN219441669U (en) Polymerization kettle with feeding device
CN205492447U (en) Adjustable inclination's meat products heating cauldron inclines
CN205547239U (en) Large -scale cube meat firing equipment
CN109369415A (en) A kind of production line of p-phenylenediamine
CN219479189U (en) Pulp boiling tank
JPS61125378A (en) Feather treatment apparatus
RU2261621C2 (en) Method for preparing of feeds and apparatus for performing the same
RU47358U1 (en) INSTALLATION FOR DRAINING THE SOLVENT FROM SHLOT
CN219836495U (en) Adjustable reaction kettle
KR101982413B1 (en) slaughter blood soft-boiled machine
JP3643845B2 (en) Organic sludge liquefaction reactor
CN218250223U (en) Accurate accuse temperature reation kettle of abundant mixture
RU2808105C1 (en) Device for producing calcined coagulated melange
SU682211A1 (en) Apparatus for sterilizing liquids
CN208087616U (en) Pre-processing device before a kind of proteolysis
JPH0710921B2 (en) Lignocellulosic material liquefaction equipment
SU578046A1 (en) Liquid foodstuff sterilizing apparatus
CN205410820U (en) Multi -functional food firing equipment