JPH0350881B2 - - Google Patents

Info

Publication number
JPH0350881B2
JPH0350881B2 JP1970084A JP1970084A JPH0350881B2 JP H0350881 B2 JPH0350881 B2 JP H0350881B2 JP 1970084 A JP1970084 A JP 1970084A JP 1970084 A JP1970084 A JP 1970084A JP H0350881 B2 JPH0350881 B2 JP H0350881B2
Authority
JP
Japan
Prior art keywords
main steam
valve
steam pipe
bypass valve
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1970084A
Other languages
Japanese (ja)
Other versions
JPS60164606A (en
Inventor
Koichiro Fukushima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1970084A priority Critical patent/JPS60164606A/en
Publication of JPS60164606A publication Critical patent/JPS60164606A/en
Publication of JPH0350881B2 publication Critical patent/JPH0350881B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D15/00Component parts of recorders for measuring arrangements not specially adapted for a specific variable
    • G01D15/16Recording elements transferring recording material, e.g. ink, to the recording surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G3/00Steam superheaters characterised by constructional features; Details of component parts thereof
    • F22G3/008Protection of superheater elements, e.g. cooling superheater tubes during starting-up periods, water tube screens

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Control Of Turbines (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は蒸気配管暖機制御装置に係り、特にボ
イラ主蒸気配管等の肉厚配管を起動操作する際
に、無理な熱応力等を加えることなく暖機するた
めの暖機制御装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a steam piping warm-up control device, and particularly to a steam piping warm-up control device that prevents the application of excessive thermal stress, etc., when starting up thick-walled piping such as boiler main steam piping. The present invention relates to a warm-up control device for warming up without any problem.

〔発明の背景〕[Background of the invention]

従来の火力発電所は連続運転をするのが普通で
あつたから、起動操作に充分な時間をかけ、機械
に無理な熱応力等を加えることがないように運転
制御していた。
Conventional thermal power plants typically operated continuously, so they took sufficient time for startup operations and controlled operations to avoid applying excessive thermal stress to the machinery.

ところが、原子力発電がベース需要電力を給電
し、火力発電が需要変動分を供給するようになつ
てからは、火力発電機は毎日起動停止を繰返すこ
とになり、しかもきめ細かい対応のために短時間
で頻繁な起動停止が要求されることとなつた。そ
こで、タービンバイパス系統を設けてボイラを先
行起動しておき、圧力等が充分になつた状態でタ
ービンに通気起動するプラントが増えてきてい
る。この種プラントにおいてボイラからタービン
に蒸気を導く主蒸気管は肉厚である。この冷たい
配管に急激に熱い蒸気を通した場合、過大な熱応
力が加わり、配管割れを生ずる恐れがある。
However, since nuclear power generation has come to supply the base demand electricity and thermal power generation has come to supply demand fluctuations, the thermal power generators have had to start and stop repeatedly every day, and in order to respond to detailed demands, they have to be started and stopped in a short period of time. Frequent startup and shutdown became necessary. Therefore, an increasing number of plants are installing a turbine bypass system to start up the boiler in advance, and start the turbine by ventilating it when the pressure etc. are sufficient. In this type of plant, the main steam pipe that guides steam from the boiler to the turbine is thick. If hot steam is suddenly passed through this cold pipe, excessive thermal stress will be applied, which may cause the pipe to crack.

この危険を避けるために、タービンバイパス付
の発電所において、主蒸気管の熱応力を監視しな
がら徐々に暖機する制御装置が提案されている。
この装置は主蒸気管および再熱蒸気管の数個所の
内外壁に温度計を取付け、各部の熱応力が過大に
ならないように蒸気供給弁および配管ドレン弁を
操作する制御装置である。この制御装置により暖
機する場合、暖機初期の飽和領域を熱応力に対す
る制御のみで操作すると、配管ドレン弁を閉じた
ときに熱応力が一時的に増大する不具合がある。
In order to avoid this danger, a control device has been proposed for a power plant with a turbine bypass that gradually warms up the main steam pipe while monitoring thermal stress.
This device is a control device that installs thermometers on the inner and outer walls of several locations of the main steam pipe and reheat steam pipe, and operates the steam supply valve and piping drain valve to prevent excessive thermal stress in each part. When warming up using this control device, if the saturated region at the initial stage of warming up is operated only by controlling thermal stress, there is a problem in that thermal stress temporarily increases when the piping drain valve is closed.

これは飽和領域において配管ドレン弁を閉じる
と、配管内の蒸気圧力が高まり蒸気の飽和温度も
上昇し、ドレン化する温度も上がることにより配
管が急速に加熱されるのが原因である。
This is because when the pipe drain valve is closed in the saturated region, the steam pressure within the pipe increases, the saturation temperature of the steam also rises, and the temperature at which it turns into drain also rises, causing the pipe to heat up rapidly.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、熱応力を規定値以内に抑えな
がら暖機初期の飽和領域を通過させ、通常のドレ
ン弁制御が可能な加熱領域に主蒸気配管を迅速に
到らしめる配管暖機制御装置を提供することであ
る。
An object of the present invention is to provide a piping warm-up control device that allows main steam piping to pass through the saturated region at the initial stage of warm-up while suppressing thermal stress within a specified value, and quickly brings the main steam piping to a heating region where normal drain valve control is possible. The goal is to provide the following.

〔発明の概要〕[Summary of the invention]

本発明は、上記目的を達成するために、主蒸気
配管のボイラ側にボイラ出口止弁とボイラ出口止
弁バイパス弁とを有し主蒸気配管のタービン側に
主蒸気管ドレン弁を有しボイラ出口蒸気温度計と
タービン入口主蒸気管メタル内壁温度計とを備え
た火力発電プラントの前記ふたつの温度計の温度
に基づき前記バイパス弁およびドレン弁の開度を
調節し前記主蒸気配管を暖機させる配管暖機制御
装置において、前記ふたつの温度計の温度差を求
める手段と、その温度差に基づいて少なくとも前
記バイパス弁の開度を設定する手段と、前記温度
差に基づいて少なくとも前記バイパス弁の開弁時
間を設定する手段と、少なくとも前記バイパス弁
の制御開始からほぼ設定された開弁時間経過毎に
上気各手段を再作動させる手段とを備えた配管暖
機制御装置を提案するものである。
In order to achieve the above object, the present invention has a boiler outlet stop valve and a boiler outlet stop valve bypass valve on the boiler side of a main steam pipe, a main steam pipe drain valve on the turbine side of the main steam pipe, and a boiler. The opening degree of the bypass valve and the drain valve is adjusted based on the temperature of the two thermometers of a thermal power plant equipped with an outlet steam thermometer and a turbine inlet main steam pipe metal inner wall thermometer to warm up the main steam pipe. a means for determining the temperature difference between the two thermometers; a means for setting the opening degree of at least the bypass valve based on the temperature difference; and a means for determining the opening degree of at least the bypass valve based on the temperature difference. The present invention proposes a piping warm-up control device comprising means for setting a valve opening time, and means for reactivating each upper air means at least every time the set valve opening time has elapsed from the start of control of the bypass valve. It is.

〔発明の実施例〕[Embodiments of the invention]

第1図は、火力発電プラントにおいて本発明に
関係する部分の系統を示す概略図である。
FIG. 1 is a schematic diagram showing a system of parts related to the present invention in a thermal power plant.

ボイラ1の過熱器2で過熱された蒸気は、ター
ビン4を起動する前は、高圧タービンバイパス弁
5を通してボイラに戻され、ボイラ再熱器3で再
熱後、低圧タービンバイパス弁9を通り、図示し
ない復水器に回収される。ボイラ出口からタービ
ンに蒸気を導く主蒸気管13すなわち主蒸気配管
の入口には、ボイラ出口止弁6および出口止弁バ
イパス弁7が設けられている。これらの弁は、周
知の如く、タービン側の切離しや主蒸気管の冷却
防止のために用いられる。また、ボイラ出口止弁
バイパス弁7は、主蒸気管の暖機時等のように、
少量の蒸気を主蒸気管13に供給するのに使用さ
れる。主蒸気管13のタービン入口近くには、主
蒸気管ドレン弁8があり、主蒸気管13の暖機蒸
気やドレンの排出に使われる。10はボイラ出口
蒸気温度計、11はタービン入口主蒸気管メタル
内壁温度計であり、それらの計測値は本発明対象
である配管暖機制御装置12に取込まれる。
Before starting the turbine 4, the steam superheated in the superheater 2 of the boiler 1 is returned to the boiler through the high-pressure turbine bypass valve 5, and after being reheated in the boiler reheater 3, it passes through the low-pressure turbine bypass valve 9. It is collected in a condenser (not shown). A boiler outlet stop valve 6 and an outlet stop valve bypass valve 7 are provided at the main steam pipe 13 that guides steam from the boiler outlet to the turbine, that is, at the inlet of the main steam pipe. As is well known, these valves are used to disconnect the turbine side and prevent cooling of the main steam pipe. In addition, the boiler outlet stop valve bypass valve 7 is used when the main steam pipe is warmed up, etc.
It is used to supply a small amount of steam to the main steam pipe 13. A main steam pipe drain valve 8 is located near the turbine inlet of the main steam pipe 13 and is used to discharge warm-up steam and drain from the main steam pipe 13. 10 is a boiler outlet steam thermometer, 11 is a turbine inlet main steam pipe metal inner wall thermometer, and their measured values are taken into a piping warm-up control device 12, which is the object of the present invention.

第2図は本発明による配管暖機制御装置の概略
構成を示すブロツク図である。図において第1図
と同一符号は同等の部分を表わしている。
FIG. 2 is a block diagram showing a schematic configuration of a pipe warm-up control device according to the present invention. In the figure, the same reference numerals as in FIG. 1 represent the same parts.

ボイラ出口蒸気温度計10とタービン入口主蒸
気管内壁メタル温度計11からの計測値は、配管
暖機制御装置12の入出力インターフエイスI/
O17を介してランダムアクセスメモリRAM1
9に送られ記憶される。中央処理装置CPU18
は、このデータを用い、リードオンリーメモリ
ROM20に予め記憶されたプログラムに基づ
き、各弁の開度と時間とを制御するようになつて
いる。
Measured values from the boiler outlet steam thermometer 10 and the turbine inlet main steam pipe inner wall metal thermometer 11 are sent to the input/output interface I/O of the piping warm-up control device 12.
Random access memory RAM1 via O17
9 and stored. Central processing unit CPU18
uses this data to create a read-only memory
Based on a program stored in advance in the ROM 20, the opening degree and time of each valve are controlled.

71,81は開度制御装置である。 71 and 81 are opening control devices.

本発明はボイラ出口止弁バイパス弁7を主蒸気
管暖機に使用する際のこの弁の制御に関するもの
である。
The present invention relates to the control of the boiler outlet stop valve bypass valve 7 when this valve is used for warming up the main steam pipe.

本実施例においては、まず、ボイラ出口蒸気温
度TSとタービン入口の主蒸気管メタル温度TM
の温度差ΔTを求める。
In this embodiment, first, the temperature difference ΔT between the boiler outlet steam temperature T S and the main steam pipe metal temperature T M at the turbine inlet is determined.

なお、ボイラ出口止弁バイパス弁7を開いて主
蒸気管13に通気を開始するボイラ出口蒸気温度
TSを、主蒸気管メタル温度TMに対して、第3図
のように条件付ける方式を採用することが望まし
い。すなわち、メタル温度TMが低いときは、ボ
イラ出口蒸気温度TSをメタル温度TMよりも大幅
に高く設定し、前記温度差ΔTを積極的に大きく
する。第3図において、点線は両温度TS,TM
等しい場合を示しており、実線がこの方式の設定
条件を示している。このようにメタル温度TM
低いほど温度差ΔTを大きくするのは、主蒸気管
が冷ている場合、飽和温度まで上昇するのに大き
な熱量を奪い、蒸気温度が低下するためである。
In addition, the boiler outlet steam temperature at which the boiler outlet stop valve bypass valve 7 is opened and ventilation to the main steam pipe 13 is started.
It is desirable to adopt a method of conditioning T S with respect to the main steam pipe metal temperature T M as shown in Figure 3. That is, when the metal temperature T M is low, the boiler outlet steam temperature T S is set significantly higher than the metal temperature T M to actively increase the temperature difference ΔT. In FIG. 3, the dotted line shows the case where both temperatures T S and T M are equal, and the solid line shows the setting conditions of this method. The reason why the temperature difference ΔT is increased as the metal temperature T M is lower is that when the main steam pipe is cold, a large amount of heat is taken to raise the temperature to the saturation temperature, and the steam temperature decreases.

さらに、通気条件として、上記の他に、ボイラ
出口蒸気温度TSが上昇方向にあるか否か等の事
項を付加することもある。
Furthermore, in addition to the above-mentioned ventilation conditions, matters such as whether or not the boiler outlet steam temperature T S is in an increasing direction may be added.

次に主蒸気管に蒸気を流す時の初期開度は、ボ
イラ出口止弁バイパス弁7を開く直前のボイラ出
口蒸気温度TSと主蒸気管メタル温度TMとの差
ΔTをパラメータとして第4図のように決定す
る。この温度差ΔTが大きいときには、通気時の
熱応力発生量が大きいために、初期開度Oを小さ
な値とする。初期開度Oは、ボイラ出口止弁バイ
パス弁7と主蒸気管ドレン弁8について決定す
る。
Next, the initial opening degree when steam flows through the main steam pipe is determined by using the difference ΔT between the boiler outlet steam temperature T S and the main steam pipe metal temperature T M immediately before opening the boiler outlet stop valve bypass valve 7 as a parameter. Decide as shown. When this temperature difference ΔT is large, the amount of thermal stress generated during ventilation is large, so the initial opening degree O is set to a small value. The initial opening degree O is determined for the boiler outlet stop valve bypass valve 7 and the main steam pipe drain valve 8.

冷たい主蒸気管に熱い蒸気を通気すると、冷た
いメタルに触れた蒸気はドレン化し、内部蒸気は
飽和蒸気温度まで冷却される。この時ドレンから
メタルへの熱伝達が大きく、メタルはこの飽和温
度まで急速に加熱され、熱応力も急速に生ずる。
When hot steam is vented into the cold main steam pipe, the steam that comes into contact with the cold metal turns into condensate, and the internal steam is cooled to the saturated steam temperature. At this time, heat transfer from the drain to the metal is large, the metal is rapidly heated to this saturation temperature, and thermal stress is also rapidly generated.

この飽和領域では、ドレン弁の開閉繰作による
熱応力の増減方向が過熱領域とは逆になるため、
制御が困難である。そこでこの領域では、弁開度
を一定にしたまま一定時間保持し、飽和領域から
過熱領域に移行するのを待つ。この保持時間も温
度差ΔTをパラメータとして決定する。温度差
ΔTが大きい場合は長時間保持し、メタル温度TM
が蒸気温度TSに近づくのを待つ。この関係を第
5図に示す。
In this saturated region, the direction of increase/decrease in thermal stress due to repeated opening and closing of the drain valve is opposite to that in the overheating region.
Difficult to control. Therefore, in this region, the valve opening degree is kept constant for a certain period of time and waits for the transition from the saturated region to the superheat region. This holding time is also determined using the temperature difference ΔT as a parameter. If the temperature difference ΔT is large, hold it for a long time to reduce the metal temperature T M
Wait until the temperature approaches the steam temperature T S. This relationship is shown in FIG.

これらの操作を行なつた後、通常の配管熱応力
によるドレン弁開度制御に入れば、制御開始時に
ドレン弁を全閉又は全開まで至らせる異常操作を
することがなくなり、種々の起動条件から過大な
熱応力を生ずることなく飽和蒸気領域を迅速に通
過できる。
After performing these operations, if you enter drain valve opening control using normal piping thermal stress, you will not have to perform abnormal operations that cause the drain valve to fully close or fully open at the start of control, and it will be possible to control the drain valve from various startup conditions. It can quickly pass through the saturated steam region without causing excessive thermal stress.

次に、ボイラ出口止弁バイパス弁7の弁開度制
御について第6図のフローチヤートにより述べ
る。ボイラ1から主蒸気管13を通り蒸気タービ
ン4に行くべき蒸気は当初、ボイラ出口止弁6お
よびボイラ出口止弁バイパス弁7により遮断され
ている。
Next, the valve opening control of the boiler outlet stop valve bypass valve 7 will be described with reference to the flowchart of FIG. Steam that is to go from the boiler 1 to the steam turbine 4 through the main steam pipe 13 is initially blocked by the boiler outlet stop valve 6 and the boiler outlet stop valve bypass valve 7.

この状態で制御を開始し、まず第1ステツプで
ボイラ出口温度計10とタービン入口主蒸気管内
壁温度計11との計測値をI/O17を介して
RAM19に読み込む。
Control is started in this state, and in the first step, the measured values of the boiler outlet thermometer 10 and the turbine inlet main steam pipe inner wall thermometer 11 are measured via the I/O 17.
Load into RAM19.

第2ステツプで両温度計の温度差ΔTを求め
る。その結果第3図上のどの位置かが求められ
る。
In the second step, the temperature difference ΔT between both thermometers is determined. As a result, the position on FIG. 3 can be determined.

第3ステツプでは温度差ΔTに基づいて、第4
図で示した関数に従い、ボイラ出口止弁バイパス
弁7の初期開度目標値を設定する。
In the third step, based on the temperature difference ΔT, the fourth
The initial opening target value of the boiler outlet stop valve bypass valve 7 is set according to the function shown in the figure.

第4ステツプでは前述の温度差ΔTに基づいて
弁を開いておく初期時間を第5図の如く設定す
る。
In the fourth step, the initial time for keeping the valve open is set as shown in FIG. 5 based on the temperature difference ΔT mentioned above.

第5ステツプでは得られた弁開度と時間に従い
ボイラ出口止弁バイパス弁7の制御を行なう。
In the fifth step, the boiler outlet stop valve bypass valve 7 is controlled according to the obtained valve opening degree and time.

予定時間経過後に上気ステツプを繰り返してい
けば、過大な熱応力を加えることなく、細かい制
御ができるので、迅速に飽和領域を通過させ、過
熱領域に入らせることが可能である。
By repeating the upper air step after the scheduled time has elapsed, fine control can be achieved without applying excessive thermal stress, so it is possible to quickly pass through the saturation region and enter the overheating region.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、熱応力を規定値以内に抑えな
がら暖機初期の飽和領域を通過させ、通常のドレ
ン弁制御が可能な過熱領域に主蒸気配管を迅速に
到らしめる配管暖機制御装置が得られる。
According to the present invention, the piping warm-up control device allows the main steam piping to pass through the saturated region at the initial stage of warm-up while suppressing thermal stress within a specified value, and quickly brings the main steam piping to the overheating region where normal drain valve control is possible. is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を適用する火力発電プラントの
系統を示す概略図、第2図は本発明の配管暖機制
御装置の概略構成を示すブロツク図、第3図は主
蒸気管暖機開始温度条件を決めるための特性曲線
図、第4図は暖機開始時の初期開度を決めるため
の特性曲線図、第5図は暖機開始初期開度保持時
間を決めるための特性曲線図、第6図はフローチ
ヤートである。 1……ボイラ、2……過熱器、3……再熱器、
4……蒸気タービン、5……高圧タービンバイパ
ス弁、6……ボイラ出口止弁、7……ボイラ出口
止弁バイパス弁、8……主蒸気管ドレン弁、9…
…低圧タービンバイパス弁、10……ボイラ出口
蒸気温度計、11……タービン入口主蒸気管メタ
ル内壁温度計、12……配管暖機制御装置、13
……主蒸気管、17……入出力インターフエイス
I/O、18……中央処理装置CPU、19……
ランダムアクセスメモリRAM、20……リード
オンリーメモリROM、71,81……開度制御
装置。
Fig. 1 is a schematic diagram showing the system of a thermal power plant to which the present invention is applied, Fig. 2 is a block diagram showing the schematic configuration of the pipe warm-up control device of the present invention, and Fig. 3 is a main steam pipe warm-up start temperature. Figure 4 is a characteristic curve diagram for determining conditions; Figure 4 is a characteristic curve diagram for determining the initial opening degree at the start of warm-up; Figure 5 is a characteristic curve diagram for determining the initial opening degree holding time at the start of warm-up; Figure 6 is a flowchart. 1...Boiler, 2...Superheater, 3...Reheater,
4...Steam turbine, 5...High pressure turbine bypass valve, 6...Boiler outlet stop valve, 7...Boiler outlet stop valve bypass valve, 8...Main steam pipe drain valve, 9...
...Low pressure turbine bypass valve, 10...Boiler outlet steam temperature gauge, 11...Turbine inlet main steam pipe metal inner wall temperature gauge, 12...Piping warm-up control device, 13
... Main steam pipe, 17 ... Input/output interface I/O, 18 ... Central processing unit CPU, 19 ...
Random access memory RAM, 20... Read only memory ROM, 71, 81... Opening degree control device.

Claims (1)

【特許請求の範囲】 1 主蒸気配管のボイラ側にボイラ出口止弁とボ
イラ出口止弁バイパス弁とを有し前記主蒸気配管
のタービン側に主蒸気管ドレン弁を有しボイラ出
口蒸気温度計とタービン入口主蒸気管メタル内壁
温度計とを備えた火力発電プラントの前記ふたつ
の温度計の温度に基づき前記バイパス弁およびド
レン弁の開度を調節し前記主蒸気配管を暖機させ
る配管暖機制御装置において、 前記ふたつの温度計の温度差を求める手段と、 前記温度差に基づいて少なくとも前記バイパス
弁の開度を設定する手段と、 前記温度差に基づいて少なくとも前記バイパス
弁の開弁時間を設定する手段と、 少なくとも前記バイパス弁の制御開始からほぼ
前記開弁時間経過毎に上記各手段を再作動させる
手段とを備えたことを特徴とする配管暖機制御装
置。
[Scope of Claims] 1. A boiler outlet stop valve and a boiler outlet stop valve bypass valve on the boiler side of the main steam piping, a main steam pipe drain valve on the turbine side of the main steam piping, and a boiler outlet steam thermometer. and a turbine inlet main steam pipe metal inner wall thermometer of a thermal power plant, the opening degree of the bypass valve and the drain valve is adjusted based on the temperature of the two thermometers, and the main steam pipe is warmed up. In the control device, means for determining the temperature difference between the two thermometers; means for setting at least the opening degree of the bypass valve based on the temperature difference; and means for determining at least the opening time of the bypass valve based on the temperature difference. and means for reactivating each of the means at least approximately every time the valve opening time elapses from the start of control of the bypass valve.
JP1970084A 1984-02-06 1984-02-06 Piping warming up control device Granted JPS60164606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1970084A JPS60164606A (en) 1984-02-06 1984-02-06 Piping warming up control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1970084A JPS60164606A (en) 1984-02-06 1984-02-06 Piping warming up control device

Publications (2)

Publication Number Publication Date
JPS60164606A JPS60164606A (en) 1985-08-27
JPH0350881B2 true JPH0350881B2 (en) 1991-08-05

Family

ID=12006539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1970084A Granted JPS60164606A (en) 1984-02-06 1984-02-06 Piping warming up control device

Country Status (1)

Country Link
JP (1) JPS60164606A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8276382B2 (en) * 2009-03-17 2012-10-02 General Electric Company Systems and methods for pre-warming a heat recovery steam generator and associated steam lines
EP2952702A1 (en) 2014-06-04 2015-12-09 Siemens Aktiengesellschaft Method for heating or maintaining the temperature of a steam turbine

Also Published As

Publication number Publication date
JPS60164606A (en) 1985-08-27

Similar Documents

Publication Publication Date Title
US4425762A (en) Method and system for controlling boiler superheated steam temperature
JPH0350881B2 (en)
JPH031600B2 (en)
US4343682A (en) Plant having feed water heating means for nuclear units during plant start up and method of operating the same
JPS58197408A (en) Starting device for combined plant
JPS6239646B2 (en)
JP3690842B2 (en) Waste heat recovery system
SU1183694A1 (en) Method of load regulation of power-and-heat generating steam turbine plant with reduction-cooling device
JP2953794B2 (en) Steam control valve chest warming method
JPS62237009A (en) Steam valve for steam turbine
JPH0330687B2 (en)
JPH0140241B2 (en)
JPH11210407A (en) Method and device for warming up bypass valve in steam plant
JPS61187503A (en) Temperature decreasing controller of turbine gland sealing steam
JPS60248945A (en) Hot water supplying device
JPS63255507A (en) Exhaust air temperature control device for internal combustion engine
JPH0633705A (en) Steam turbine control device
JPH06341301A (en) Method for controlling thermal stress of steam turbine
JPS6011282B2 (en) Method and device for controlling the amount of ventilation in the superheater of a sodium-heated steam generator
JP4294564B2 (en) Soot blower control device
JPS6091109A (en) Warming controller for steam regulating valve chamber of turbine driving feed pump
JPS6333043B2 (en)
JPS6183802A (en) Boiler boosting controller
JPH05222903A (en) Steam governing valve chest warming device
JPS63179102A (en) Warming method for steam turbine