JPS6239646B2 - - Google Patents

Info

Publication number
JPS6239646B2
JPS6239646B2 JP10702881A JP10702881A JPS6239646B2 JP S6239646 B2 JPS6239646 B2 JP S6239646B2 JP 10702881 A JP10702881 A JP 10702881A JP 10702881 A JP10702881 A JP 10702881A JP S6239646 B2 JPS6239646 B2 JP S6239646B2
Authority
JP
Japan
Prior art keywords
pressure turbine
steam pipe
boiler
pipe
main steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10702881A
Other languages
Japanese (ja)
Other versions
JPS5810104A (en
Inventor
Koichiro Fukushima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10702881A priority Critical patent/JPS5810104A/en
Publication of JPS5810104A publication Critical patent/JPS5810104A/en
Publication of JPS6239646B2 publication Critical patent/JPS6239646B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • F01K7/24Control or safety means specially adapted therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

【発明の詳細な説明】 本発明はタービンプラントおよびその制御方法
に関し、特に、タービン・バイパス系統を有する
火力発電所用タービンプラントおよびその制御方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a turbine plant and a control method thereof, and more particularly to a turbine plant for a thermal power plant having a turbine bypass system and a control method thereof.

まず、第1図を参照して、従来の火力発電所用
タービンプラントおよびその制御方法を説明す
る。
First, a conventional turbine plant for a thermal power plant and its control method will be described with reference to FIG.

第1図は、従来のタービンバイパス系統を有す
る火力発電所用タービンプラントの構成を示す概
略図である。
FIG. 1 is a schematic diagram showing the configuration of a turbine plant for a thermal power plant having a conventional turbine bypass system.

図において、1はボイラ、2は過熱器、3は再
熱器、4は高圧タービン、5は低圧タービン、6
は復水器、7は主蒸気管、8は再熱蒸気管、9は
高圧タービン・バイパス配管、9Aは主蒸気止
弁、9Bは加減弁、10は低圧タービン・バイパ
ス配管、10Aは再熱蒸気止弁、10Bは中間止
弁、11は高圧タービン・バイパス弁、12は高
圧タービン・バイパス・スプレー調節弁、13は
低圧タービン・バイパス弁、14は低圧タービ
ン・バイパス・スプレー調節弁、14Aは低圧タ
ービン・バイパス・スプレー弁、15は主蒸気圧
力検出器、16は主蒸気圧力調節器、17は再熱
蒸気圧力検出器、18は再熱蒸気圧力調節器、1
9は高圧タービン・バイパス出口温度検出器、2
0は高圧タービン・バイパス出口温度調節器であ
る。
In the figure, 1 is a boiler, 2 is a superheater, 3 is a reheater, 4 is a high pressure turbine, 5 is a low pressure turbine, 6 is a
is a condenser, 7 is a main steam pipe, 8 is a reheat steam pipe, 9 is a high pressure turbine bypass pipe, 9A is a main steam stop valve, 9B is a control valve, 10 is a low pressure turbine bypass pipe, 10A is a reheat pipe Steam stop valve, 10B is intermediate stop valve, 11 is high pressure turbine bypass valve, 12 is high pressure turbine bypass spray control valve, 13 is low pressure turbine bypass valve, 14 is low pressure turbine bypass spray control valve, 14A is Low pressure turbine bypass spray valve, 15 is a main steam pressure detector, 16 is a main steam pressure regulator, 17 is a reheat steam pressure detector, 18 is a reheat steam pressure regulator, 1
9 is a high pressure turbine bypass outlet temperature detector; 2
0 is the high pressure turbine bypass outlet temperature regulator.

従来の、タービン・バイパス系統を有するター
ビンプラントにおいては、第1図に示すように、
高圧タービン・バイパス配管9は、高圧タービン
4の入口の近くの主蒸気管7に設けられている。
In a conventional turbine plant having a turbine bypass system, as shown in Fig. 1,
A high-pressure turbine bypass pipe 9 is provided in the main steam pipe 7 near the inlet of the high-pressure turbine 4.

そして、タービンで蒸気を使用するまでは、ボ
イラ1で発生した蒸気は、過熱器2から主蒸気管
7、高圧タービン・バイパス配管9、再熱器3お
よび再熱蒸気管8、低圧タービン・バイパス配管
10を通して、復水器6へ放出されている。
Until the steam is used in the turbine, the steam generated in the boiler 1 is transferred from the superheater 2 to the main steam pipe 7, to the high pressure turbine bypass pipe 9, to the reheater 3 and reheat steam pipe 8, to the low pressure turbine bypass It is discharged to the condenser 6 through the pipe 10.

一方、高圧タービン・バイパス弁11の開度
は、ボイラ出口主蒸気圧力を検出器15で検出
し、これが規定の値になるように、主蒸気圧力調
節器16で制御されている。また、高圧タービ
ン・バイパス・スプレー調節弁12の開度は、高
圧タービン・バイパス弁11の出口温度を検出器
19で検出し、これが規定の値になるように、高
圧タービン・バイパス出口温度調節器20により
制御される。
On the other hand, the opening degree of the high-pressure turbine bypass valve 11 is controlled by a main steam pressure regulator 16 such that the boiler outlet main steam pressure is detected by a detector 15 and becomes a specified value. The opening degree of the high-pressure turbine bypass spray control valve 12 is determined by detecting the outlet temperature of the high-pressure turbine bypass valve 11 with a detector 19, and controlling the high-pressure turbine bypass outlet temperature controller so that the temperature becomes a specified value. 20.

低圧タービン・バイパス弁13の開度は、再熱
蒸気圧力を検出器17で検出し、これが規定の圧
力になるように、再熱蒸気圧力調節器18によつ
て制御される。また、低圧タービン・バイパス・
スプレー調節弁14および低圧タービン・バイパ
ス・スプレー弁14Aの開度は、前記低圧タービ
ン・バイパス弁13の開度又はバイパス蒸気量に
比例して制御されている。
The opening degree of the low-pressure turbine bypass valve 13 is controlled by a reheat steam pressure regulator 18 such that the reheat steam pressure is detected by a detector 17 and reaches a specified pressure. In addition, low pressure turbine bypass
The opening degrees of the spray control valve 14 and the low pressure turbine bypass spray valve 14A are controlled in proportion to the opening degree of the low pressure turbine bypass valve 13 or the amount of bypass steam.

また、これらの圧力調節器の圧力設定値は、第
3図のようになつている。図において、横軸はボ
イラ発生蒸気量、縦軸は圧力であり、折線39〜
42はそれぞれ主蒸気圧力、高圧タービン・バイ
パス圧力、再熱蒸気圧力および低圧タービン・バ
イパス圧力の設定値をあらわしている。
Further, the pressure setting values of these pressure regulators are as shown in FIG. In the figure, the horizontal axis is the amount of steam generated by the boiler, the vertical axis is the pressure, and the broken line 39 to
42 represent set values for the main steam pressure, high pressure turbine bypass pressure, reheat steam pressure, and low pressure turbine bypass pressure, respectively.

起動時等の低負荷状態においては、高圧および
低圧タービン・バイパス弁11,13により、そ
れぞれの蒸気圧力が一定の設定圧力になるように
制御されている。そして、タービンが十分な蒸気
量を流すようになつた時点で、高圧および低圧タ
ービン・バイパス弁11,13は全閉になる。
In a low load state such as during start-up, the high pressure and low pressure turbine bypass valves 11 and 13 control the respective steam pressures to a constant set pressure. Then, when the turbine begins to flow a sufficient amount of steam, the high pressure and low pressure turbine bypass valves 11, 13 are fully closed.

同時に、第3図に示すように、各タービン・バ
イパス圧力調節器の設定値は、タービンの運転圧
力よりも一定値だけ高い設定となる。これによ
り、前記各バイパス弁11,13は、何らかの原
因でタービン入口圧力が上昇した場合の、圧力逃
し弁として機能するようになる。
At the same time, as shown in FIG. 3, the setting value of each turbine bypass pressure regulator is set to be a certain value higher than the operating pressure of the turbine. Thereby, each of the bypass valves 11 and 13 functions as a pressure relief valve when the turbine inlet pressure increases for some reason.

上述のように、従来のタービン・バイパス系統
付きタービンプラントにおいては、バイパス蒸気
は主蒸気管7および再熱蒸気管8を直列に流れて
いる。このため、流し得る蒸気の温度や流量は、
両方の配管の制限条件の厳しい方を基準として制
御せざるを得なかつた。
As mentioned above, in a conventional turbine plant with a turbine bypass system, bypass steam flows through the main steam pipe 7 and the reheat steam pipe 8 in series. Therefore, the temperature and flow rate of steam that can flow are
We had no choice but to control based on the stricter of the restrictive conditions for both pipings.

また主蒸気管7および再熱蒸気管8を直列に流
れる蒸気のため、高圧タービン4へ通気する時の
蒸気条件と、低圧タービン5に通気する時の蒸気
条件との、両方を満足させることは不可能であつ
た。
Furthermore, since the steam flows in series through the main steam pipe 7 and the reheat steam pipe 8, it is difficult to satisfy both the steam conditions when venting to the high-pressure turbine 4 and the steam conditions when venting to the low-pressure turbine 5. It was impossible.

すなわち、配管のウオーミングは、最も肉厚の
厚い主蒸気管7を基準にして行なわれるため時間
がかかるという欠点があつた。
That is, since the warming of the piping is performed based on the main steam pipe 7, which has the thickest wall, there is a drawback that it takes time.

さらに、明らかなように、前記従来のタービン
プラントでは、高圧タービンをバイパスする蒸気
量の全てが主蒸気管7を流れるため、主蒸気管7
のウオーミング速度を調節するためには、タービ
ン・バイパス量を操作する必要があつた。そし
て、タービン・バイパス量は、ボイラ再熱器3の
冷却を行うために下限値があり、この下限値を下
げるにはボイラ燃料を制限する必要がある。しか
し、石炭焚きボイラでは、この下限値が20〜30%
と相当高くなり、ウオーミングのための調節が非
常に難しいという欠点があつた。
Furthermore, as is clear, in the conventional turbine plant, all of the steam that bypasses the high-pressure turbine flows through the main steam pipe 7.
In order to adjust the warming speed of the turbine, it was necessary to manipulate the amount of turbine bypass. The turbine bypass amount has a lower limit value in order to cool the boiler reheater 3, and in order to lower this lower limit value, it is necessary to limit the boiler fuel. However, for coal-fired boilers, this lower limit is 20 to 30%.
The disadvantage was that it was quite high and it was very difficult to adjust for warming.

また、タービン停止後短時間で再起動する場合
(いわゆるホツトスタートの場合)には、タービ
ンのメタル温度や主蒸気管のメタル温度は保温壁
により高く保たれ、高い温度の蒸気を必要とす
る。
Furthermore, when the turbine is restarted within a short period of time after being stopped (so-called hot start), the metal temperature of the turbine and the main steam pipe are kept high by the heat insulation wall, and high temperature steam is required.

しかし、一方、ボイラ側は、メタル厚みが薄い
ことや、炉内パージ等により冷却が早いため、再
起動時の発生蒸気温度は、主蒸気管等のメタル温
度より低いものとなつている。
On the other hand, however, on the boiler side, the metal thickness is thin and cooling is quick due to furnace purge, etc., so the temperature of the generated steam at the time of restart is lower than the metal temperature of the main steam pipe and the like.

したがつて、再起動時(ホツトスタート時)
に、低い温度の蒸気を主蒸気管7に流すと、ター
ビン入口の主蒸気温度は、第4図に示すように、
一旦低下することになる。このため、タービンの
メタルが冷却されてしまい、メタル温度が回復す
るまでに相当長い時間t(普通20〜40分程度)を
要し、タービンへの通気時点が遅れ、再起動時間
が長くなるという欠点があつた。
Therefore, when restarting (hot start)
When low-temperature steam is passed through the main steam pipe 7, the main steam temperature at the turbine inlet becomes as shown in Fig. 4.
It will decline once. As a result, the metal of the turbine cools down, and it takes a considerable amount of time (usually around 20 to 40 minutes) for the metal temperature to recover, which delays the time for ventilation to the turbine and lengthens the restart time. There were flaws.

さらに、タービン通気時の温度マツチングにし
ても、高圧又は低圧タービンのいずれか一方のタ
ービンが主体とならざるを得ない。このため、他
のタービンは従となり、最適な蒸気条件を無視し
て通気されるため、タービンの寿命消費量を高圧
タービンと低圧タービンとで均一にすることが出
来ないという欠点があつた。
Furthermore, in temperature matching during turbine ventilation, either the high-pressure turbine or the low-pressure turbine must be the main turbine. For this reason, the other turbines become subordinate and are ventilated ignoring the optimum steam conditions, resulting in the drawback that the lifetime consumption of the turbines cannot be equalized between the high-pressure turbine and the low-pressure turbine.

本発明の目的は、主蒸気管と再熱蒸気管を並列
に通気可能とすることにより、上記のような欠点
を改善することのできるタービン、バイパス系統
付きタービンプラントを提供することにある。
An object of the present invention is to provide a turbine and a turbine plant with a bypass system that can improve the above-mentioned drawbacks by allowing the main steam pipe and the reheat steam pipe to be ventilated in parallel.

また、本発明の他の目的は、主蒸気管および再
熱蒸気管を並列に通気するための、タービン・バ
イパス系統付きタービンプラントの制御方法を提
供するにある。
Another object of the present invention is to provide a method for controlling a turbine plant with a turbine bypass system for ventilating a main steam pipe and a reheat steam pipe in parallel.

本発明のタービン・バイパス系統付きタービン
プラントの特徴は、ボイラ出口に止弁および止弁
バイパス弁を取り付け、ボイラ出口止弁前から高
圧タービン・バイパス配管を分岐することによ
り、主蒸気管と再熱蒸気管を別々に通気できるよ
うにした点にある。
The feature of the turbine plant with a turbine bypass system of the present invention is that a stop valve and a stop valve bypass valve are installed at the boiler outlet, and the high-pressure turbine bypass piping is branched from before the boiler outlet stop valve, thereby connecting the main steam pipe and the reheating The main feature is that the steam pipes can be ventilated separately.

また、本発明のタービン・バイパス系統付きタ
ービンプラント制御方法の特徴は、主蒸気管ウオ
ーミング用と再熱蒸気管ウオーミング用のそれぞ
れ別個の制御装置を備え、それぞれの制御装置
が、各蒸気管の出口、入口等、いくつかの点の内
壁温度、外壁温度及びタービン・メタル温度を入
力され、それぞれのウオーミング蒸気量又は温度
を制御する操作端に制御出力を出力するように機
能して、主蒸気管及び再熱蒸気管を並列に、最小
時間で、かつ最適な状態までウオーミング、また
は温度マツチング可能とする点にある。
Further, the feature of the method for controlling a turbine plant with a turbine bypass system of the present invention is that it is provided with separate control devices for main steam pipe warming and reheat steam pipe warming, and each control device is connected to the outlet of each steam pipe. The main steam pipe functions to input the inner wall temperature, outer wall temperature, and turbine metal temperature at several points such as the inlet, and output a control output to the operating end that controls the respective warming steam amount or temperature. It is possible to warm or temperature match the reheat steam pipes and reheat steam pipes in parallel to the optimum state in the minimum time.

以下に、図面を参照して、本発明を詳細に説明
する。
The present invention will be described in detail below with reference to the drawings.

第2図は本発明の一実施例の構成を示す概略図
である。図において、第1図と同一の符号は、同
一または同等部分をあらわしている。
FIG. 2 is a schematic diagram showing the configuration of an embodiment of the present invention. In the figure, the same reference numerals as in FIG. 1 represent the same or equivalent parts.

第2図において、21は主蒸気管ドレン弁、2
2は再熱蒸気管ドレン弁、23は主蒸気管ボイラ
出口内壁温度検出器、24は主蒸気管ボイラ出口
外壁温度検出器、25は主蒸気管タービン入口内
壁温度検出器、26は主蒸気管タービン入口外壁
温度検出器である。
In Fig. 2, 21 is a main steam pipe drain valve;
2 is a reheat steam pipe drain valve, 23 is a main steam pipe boiler outlet inner wall temperature detector, 24 is a main steam pipe boiler outlet outer wall temperature detector, 25 is a main steam pipe turbine inlet inner wall temperature detector, 26 is a main steam pipe This is a turbine inlet outer wall temperature sensor.

27は再熱蒸気管ボイラ出口内壁温度検出器、
28は再熱蒸気管ボイラ出口外壁温度検出器、2
9は再熱蒸気管タービン入口内壁温度検出器、3
0は再熱蒸気管タービン入口外壁温度検出器、3
1は高圧タービン・メタル温度検出器、32は低
圧タービン・メタル温度検出器である。
27 is a reheat steam tube boiler outlet inner wall temperature detector;
28 is a reheat steam tube boiler outlet outer wall temperature sensor, 2
9 is a reheat steam pipe turbine inlet inner wall temperature detector; 3
0 is reheat steam pipe turbine inlet outer wall temperature sensor, 3
1 is a high-pressure turbine metal temperature detector, and 32 is a low-pressure turbine metal temperature detector.

また、33は主蒸気管ウオーミング制御装置、
34は再熱蒸気管ウオーミング制御装置、35は
ボイラ出口主蒸気温度検出器、44はボイラ出口
止弁、45はボイラ出口止弁バイパス弁であり、
上記21〜35および44,45の部分が、第1
図の従来例装置に付加されている。
In addition, 33 is a main steam pipe warming control device,
34 is a reheat steam pipe warming control device, 35 is a boiler outlet main steam temperature detector, 44 is a boiler outlet stop valve, 45 is a boiler outlet stop valve bypass valve,
The above portions 21 to 35 and 44, 45 are the first
This is added to the conventional device shown in the figure.

なお、高圧タービン・バイパス配管9の分岐
は、従来例では高圧タービン4の入口近くにあつ
たが、本発明においては、ボイラ出口止弁44の
上流側―すなわち、ボイラ過熱器2とボイラ出口
止弁44の間より分岐され、ボイラ再熱器3の入
口へ接続される。
In addition, in the conventional example, the branch of the high-pressure turbine bypass piping 9 was located near the inlet of the high-pressure turbine 4, but in the present invention, the branch of the high-pressure turbine bypass pipe 9 was located near the inlet of the high-pressure turbine 4, but in the present invention, the branch is located upstream of the boiler outlet stop valve 44, that is, the branch of the boiler superheater 2 and the boiler outlet stop valve 44. It is branched between the valves 44 and connected to the inlet of the boiler reheater 3.

つぎに、本実施例装置の動作および制御方法に
ついて説明する。
Next, the operation and control method of the apparatus of this embodiment will be explained.

まず、全てのメタルが冷えてしまつている状態
からの起動―いわゆるコールド・スタートの場合
には、ボイラ出口止弁44を全閉としてボイラの
点火昇温を行う。主蒸気管7のウオーミングは、
ボイラ出口止弁バイパス弁45を全開とし、かつ
ボイラ出口止弁44を全閉として、主蒸気管ドレ
ン弁21の開度操作により流量調整を行い、徐々
に暖める。
First, in the case of starting from a state in which all metals have cooled down, that is, a so-called cold start, the boiler outlet stop valve 44 is fully closed to raise the ignition temperature of the boiler. Warming of the main steam pipe 7 is
With the boiler outlet stop valve bypass valve 45 fully open and the boiler outlet stop valve 44 fully closed, the flow rate is adjusted by operating the opening of the main steam pipe drain valve 21 to gradually warm up.

コールド・スタート時には、タービンのメタル
も冷えているので、ウオーミング用蒸気の温度
は、メタルの遷移温度を越える程度以下とし、タ
ービン通気時の高いボイラ蒸気温度を多少冷却さ
せるぐらいが望ましい。
At the time of a cold start, the metal of the turbine is also cold, so it is desirable that the temperature of the warming steam be kept below the transition temperature of the metal, so as to somewhat cool the high boiler steam temperature during turbine ventilation.

以上のように、本発明では、ボイラ出口止弁4
4で蒸気の流れを止め、主蒸気管7のウオーミン
グのみを単独に行えるようにしたので、主蒸気管
ドレン弁21の開度操作で、主蒸気管7のウオー
ミングの程度をいくらでも調節することが可能で
ある。
As described above, in the present invention, the boiler outlet stop valve 4
Since the flow of steam is stopped at step 4 and only the warming of the main steam pipe 7 can be performed independently, the degree of warming of the main steam pipe 7 can be adjusted as desired by operating the opening degree of the main steam pipe drain valve 21. It is possible.

このようにして、主蒸気管温度、ボイラ出口温
度、タービン・メタル温度のマツチング(この点
については、後で本発明の制御方法を詳述すると
きに説明する)が取れた時点で、ボイラ出口止弁
44を全開として高圧タービン4への通気を行
う。
In this way, when the main steam pipe temperature, boiler outlet temperature, and turbine metal temperature are matched (this point will be explained in detail later when the control method of the present invention is explained in detail), the boiler outlet The stop valve 44 is fully opened to ventilate the high pressure turbine 4.

明らかなように、このマツチングは、タービン
バイパスの状態に直接関係ずけないで行うことが
可能である。
As is clear, this matching can be done without direct reference to the condition of the turbine bypass.

また本発明の場合、高圧タービン・バイパス弁
11も、主蒸気管7のことは考慮せず、ボイラ再
熱器3のクリーニングおよび再熱蒸気管8のウオ
ーミングだけを考えて操作すればよいので、操作
の自由度が非常に大きくなつている。
In addition, in the case of the present invention, the high-pressure turbine bypass valve 11 can be operated without considering the main steam pipe 7, but only with cleaning of the boiler reheater 3 and warming of the reheat steam pipe 8. The degree of freedom of operation has increased significantly.

高圧タービン・バイパス弁11は、通常は、ボ
イラ過熱器出口圧力が一定になるように制御され
ている。すなわち、燃料が増えてボイラ発生蒸気
量が増えると、過熱器出口圧力が上昇しないよう
に、タービン・バイパス弁11の開度を大とし、
再熱器3のクリーニング蒸気量も増加するように
制御されるのが普通である。
The high pressure turbine bypass valve 11 is normally controlled so that the boiler superheater outlet pressure is constant. That is, when the amount of fuel increases and the amount of steam generated by the boiler increases, the opening degree of the turbine bypass valve 11 is increased to prevent the superheater outlet pressure from increasing.
Normally, the amount of cleaning steam in the reheater 3 is also controlled to increase.

再熱蒸気管8のウオーミングは、主蒸気管7の
場合と同様に、再熱蒸気管ドレン弁22及び低圧
タービン・バイパス弁13により行なわれる。
Warming of the reheat steam pipe 8 is performed by the reheat steam pipe drain valve 22 and the low pressure turbine bypass valve 13, as in the case of the main steam pipe 7.

以上のように、本発明では、再熱タービン側の
温度マツチングが高圧タービン側と独立に操作可
能になつている。
As described above, in the present invention, temperature matching on the reheat turbine side can be operated independently from the high pressure turbine side.

次に、主蒸気管7やタービンのメタルがまだ熱
い状態からの起動―いわゆるホツト・スタートの
場合について説明する。
Next, the case of starting while the main steam pipe 7 and the turbine metal are still hot, that is, a so-called hot start, will be explained.

第1図に関して前述し、また良く知られている
ように、消火後の冷却は、ボイラの方が早いた
め、ホツトスタート時に、そのままボイラ発生蒸
気を主蒸気管7に通すと、第4図から分るよう
に、せつかく熱いままに保たれていたメタルが一
度冷却され、その後ボイラの昇温にともない再度
暖められることになるため、燃料の面で無駄があ
り、また起動時間も長くかかつた。
As mentioned above in connection with Fig. 1, and as is well known, cooling after extinguishing a boiler is faster in a boiler. As you can see, the metal that has been kept hot for a long time is cooled and then heated again as the boiler temperature rises, which wastes fuel and takes a long time to start up. Ta.

本発明の実施例の場合は、ボイラ出口止弁44
があるため、これを閉めておくことにより、ボイ
ラ起動時の低温蒸気を主蒸気管7に通すことなし
に、起動が可能である。そして、ボイラ出口蒸気
温度が主蒸気メタル温度以上に上昇し終つてか
ら、ボイラ出口止弁44を開いてタービン起動を
行えばよい。
In the case of the embodiment of the present invention, the boiler outlet stop valve 44
Therefore, by keeping this closed, the boiler can be started without passing the low-temperature steam through the main steam pipe 7 at the time of starting the boiler. After the boiler outlet steam temperature has finished rising above the main steam metal temperature, the boiler outlet stop valve 44 may be opened to start the turbine.

このような起動制御を実施することにより、第
4図に示すような、主蒸気温度の一時的な落ち込
みを無くして、燃料の無駄を無くすることができ
ると共に、起動時間を短縮することが出来る。
By implementing this kind of startup control, it is possible to eliminate the temporary drop in main steam temperature as shown in Figure 4, eliminate fuel waste, and shorten the startup time. .

以上のように、本発明の構成によれば、主蒸気
管と再熱蒸気管が並列に通気可能であり、それぞ
れの必要性に応じて通気やウオーミングが可能と
なる。それによつて、運転操作の融通性を増し、
しかも機器の安全性とエネルギ効率を高めること
が出来る。
As described above, according to the configuration of the present invention, the main steam pipe and the reheat steam pipe can be ventilated in parallel, and ventilation and warming can be performed according to the necessity of each. This increases the flexibility of driving operations,
Moreover, the safety and energy efficiency of equipment can be improved.

つぎに、主蒸気管ウオーミング制御装置33に
おける制御概要を第5図のフローチヤートを参照
して説明する。
Next, an overview of the control in the main steam pipe warming control device 33 will be explained with reference to the flowchart of FIG.

第2図から明らかなように、前記制御装置33
は、主蒸気管ボイラ出口内壁温度検出器23、主
蒸気管ボイラ出口外壁温度検出器24、主蒸気管
タービン入口内壁温度検出器25、主蒸気管ター
ビン入口外壁温度検出器26、高圧タービンメタ
ル温度検出器31およびボイラ出口主蒸気温度検
出器35の各検出出力を入力され、これら入力に
基づいて、後述するような予定の演算を行ない、
主蒸気管ドレン弁21およびボイラ出口弁44に
対する制御信号を出力する。
As is clear from FIG. 2, the control device 33
Main steam pipe boiler outlet inner wall temperature detector 23, main steam pipe boiler outlet outer wall temperature detector 24, main steam pipe turbine inlet inner wall temperature detector 25, main steam pipe turbine inlet outer wall temperature detector 26, high pressure turbine metal temperature The detection outputs of the detector 31 and the boiler outlet main steam temperature detector 35 are input, and based on these inputs, scheduled calculations as described below are performed,
Control signals for the main steam pipe drain valve 21 and boiler outlet valve 44 are output.

ステツプS1において、ボイラ出口主蒸気温度
が主蒸気管各部の内壁温度より高いことの判定が
成立するまでは、ステツプS2において、ボイラ
出口止弁44及びボイラ出口止弁バイパス弁45
を全閉のままで、高圧タービン・バイパス配管9
へ蒸気を流しながら、ボイラの温度上昇を行う。
Until it is determined in step S1 that the boiler outlet main steam temperature is higher than the inner wall temperature of each part of the main steam pipe, the boiler outlet stop valve 44 and the boiler outlet stop valve bypass valve 45 are closed in step S2.
While fully closed, connect high pressure turbine bypass piping 9.
The temperature of the boiler is raised while flowing steam to the boiler.

この操作により、ホツトスタート時等におけ
る、低温蒸気による主蒸気管7の冷却を防止し、
起動所要時間を短縮することができる。
This operation prevents the main steam pipe 7 from being cooled by low-temperature steam during a hot start, etc.
The time required for startup can be shortened.

前記ステツプS1の判定において、ボイラ出口
主蒸気温度が主蒸気管各部の内壁温度を超える
と、ステツプS3に進み、ボイラ出口止弁バイパ
ス弁45を全開し、主蒸気管7のウオーミング
(ステツプS4)に入る。
In the determination in step S1, if the boiler outlet main steam temperature exceeds the inner wall temperature of each part of the main steam pipe, the process proceeds to step S3, where the boiler outlet stop valve bypass valve 45 is fully opened and the main steam pipe 7 is warmed (step S4). to go into.

ステツプS4における主蒸気管7のウオーミン
グは、主蒸気管各部の内外壁温度検出器23,2
4,25,26の検出出力の差が設定値を超えな
いように監視しながら、主蒸気管ドレン弁21の
開度を調節し、ウオーミング蒸気流量を制御する
ことにより行う。
During the warming of the main steam pipe 7 in step S4, the inner and outer wall temperature detectors 23 and 2 of each part of the main steam pipe are used.
This is done by adjusting the opening degree of the main steam pipe drain valve 21 and controlling the warming steam flow rate while monitoring so that the difference between the detection outputs of 4, 25, and 26 does not exceed a set value.

ウオーミング操作完了判定の手法として、つぎ
のステツプS5およびS6の判定を行なう。
As a method for determining whether the warming operation has been completed, the next steps S5 and S6 are performed.

ステツプS5では、主蒸気管7の各部の内外壁
温度差が規定値以上かどうかを判定する。すなわ
ち、主蒸気管ボイラ出口内壁温度検出器23の出
力と主蒸気管ボイラ出口外壁温度検出器24の出
力との差、および主蒸気管タービン入口内壁温度
検出器25の出力と主蒸気管タービン入口外壁温
度検出器26の出力との差が、ともに規定値以内
に納まつているかどうかを監視する。
In step S5, it is determined whether the temperature difference between the inner and outer walls of each part of the main steam pipe 7 is greater than or equal to a specified value. That is, the difference between the output of the main steam pipe boiler outlet inner wall temperature detector 23 and the output of the main steam pipe boiler outlet outer wall temperature detector 24, and the difference between the output of the main steam pipe turbine inlet inner wall temperature detector 25 and the main steam pipe turbine inlet inner wall temperature detector 24. It is monitored whether the difference with the output of the outer wall temperature detector 26 is within a specified value.

また、ステツプS6では、高圧タービン入口で
の蒸気温度と高圧タービン内壁温度との温度差が
規定値以内になつたかどうかを判定する。
Further, in step S6, it is determined whether the temperature difference between the steam temperature at the high pressure turbine inlet and the high pressure turbine inner wall temperature is within a specified value.

ステツプS5およびS6での判定が共に成立す
るまでは、ステツプS4に戻つて、主蒸気管のウ
オーミング操作を継続する。ステツプS5および
S6での判定が共に成立したら、主蒸気管7のウ
オーミングが完了したと判定する。
Until both the determinations in steps S5 and S6 are satisfied, the process returns to step S4 and continues the main steam pipe warming operation. If the determinations in steps S5 and S6 are both satisfied, it is determined that the warming of the main steam pipe 7 has been completed.

その後、ステツプS7に進み、ボイラ出口止弁
44を全開する。つづいて、ステツプS8におい
て、ボイラ出口止弁バイパス弁45を全閉し、ス
テツプS9において、高圧タービン4の通気操作
が行なわれる。
Thereafter, the process proceeds to step S7, and the boiler outlet stop valve 44 is fully opened. Subsequently, in step S8, the boiler outlet stop valve bypass valve 45 is fully closed, and in step S9, the high-pressure turbine 4 is ventilated.

以上の操作手順及び制御は、計算機のソフトウ
エアプログラム又はワイヤード・ロジツク回路で
組むことができ、全体として主蒸気管ウオーミン
グ制御装置33に収納する。
The above operating procedures and controls can be implemented using a computer software program or a wired logic circuit, and are housed in the main steam pipe warming control device 33 as a whole.

一方、再熱蒸気管8のウオーミング制御は、再
熱蒸気管ウオーミング制御装置34によつて行な
われ、その概要は、第6図フローチヤートに示す
ようになる。
On the other hand, the warming control of the reheat steam pipe 8 is performed by the reheat steam pipe warming control device 34, the outline of which is shown in the flowchart of FIG.

第2図から明らかなように、前記制御装置34
は、再熱蒸気管ボイラ出口内壁温度検出器27、
再熱蒸気管ボイラ出口外壁温度検出器28、再熱
蒸気管タービン入口内壁温度検出器29、再熱蒸
気管タービン入口外壁温度検出器30および低圧
タービンメタル温度検出器32の各検出出力を入
力され、これら入力に基づいて、後述するような
予定の演算を行ない、再熱蒸気圧力調節器18
(したがつて低圧タービン・バイパス弁13およ
び低圧タービン・バイパス・スプレー調節弁1
4)および高圧タービン・バイパス出口温度調節
器20に対する制御信号を出力する。
As is clear from FIG. 2, the control device 34
is a reheat steam tube boiler outlet inner wall temperature detector 27,
The detection outputs of the reheat steam pipe boiler outlet outer wall temperature detector 28, the reheat steam pipe turbine inlet inner wall temperature detector 29, the reheat steam pipe turbine inlet outer wall temperature detector 30, and the low pressure turbine metal temperature detector 32 are inputted. , based on these inputs, performs scheduled calculations as will be described later, and adjusts the reheat steam pressure regulator 18.
(Therefore, the low pressure turbine bypass valve 13 and the low pressure turbine bypass spray control valve 1
4) and output a control signal to the high pressure turbine bypass outlet temperature regulator 20.

再熱蒸気管8が冷えきつている場合のウオーミ
ング方法としては、まず、ステツプS11におい
て高圧タービン・バイパス弁11を規定開度と
し、引つゞきステツプS12において低圧タービ
ン・バイパス13は全閉とする。
As a warming method when the reheat steam pipe 8 is cold, first, in step S11, the high pressure turbine bypass valve 11 is set to the specified opening degree, and then in step S12, the low pressure turbine bypass valve 13 is fully closed. do.

ステツプS13においては、再熱蒸気管ドレン
弁22の開度調節をして再熱蒸気管8のウオーミ
ングを行なう。このウオーミングは、前述した主
蒸気管7のウオーミングの場合と同様に、再熱蒸
気管8の各部の内外壁温度差―すなわち、温度検
出器27,28の出力差および温度検出器29,
30の出力差―が設定値を超えないように監視し
ながら行なわれる。
In step S13, the reheat steam pipe 8 is warmed by adjusting the opening degree of the reheat steam pipe drain valve 22. Similar to the above-mentioned warming of the main steam pipe 7, this warming is performed based on the temperature difference between the inner and outer walls of each part of the reheat steam pipe 8, that is, the output difference between the temperature detectors 27 and 28, and the temperature difference between the temperature detectors 29 and 28.
This is done while monitoring to ensure that the output difference of 30 mm does not exceed the set value.

再熱蒸気管8のウオーミング完了の判断は、ス
テツプS14において、再熱蒸気管の内外壁温度
差が規定値以内になつたことを判定し、かつステ
ツプS15において、再熱蒸気管の内壁温度が規
定値以上に上つたことを判定することによつて行
なわれる。
Completion of warming of the reheat steam pipe 8 is determined by determining in step S14 that the temperature difference between the inner and outer walls of the reheat steam pipe is within a specified value, and in step S15, determining that the inner wall temperature of the reheat steam pipe is within a specified value. This is done by determining that the value has exceeded a specified value.

再熱蒸気管8の肉厚は、通常は、主蒸気管7に
比べて薄いので、短時間でそのウオーミングが完
了する。
Since the wall thickness of the reheat steam pipe 8 is usually thinner than that of the main steam pipe 7, its warming is completed in a short time.

この後、ステツプS16,S17において、高
圧タービン・バイパス系および低圧タービン・バ
イパス系の制御を自動に入れ、各部圧力が規定値
になるように、それぞれの弁開度を制御する。こ
れによつて、ボイラ発生蒸気量の増加と共に、弁
開度が増加する。
Thereafter, in steps S16 and S17, the high-pressure turbine bypass system and the low-pressure turbine bypass system are automatically controlled, and the opening degrees of the respective valves are controlled so that the pressures of the respective parts become the specified values. As a result, the valve opening degree increases as the amount of steam generated by the boiler increases.

この時の、ステツプS18における再熱蒸気温
度の制御は、高圧タービン・バイパス出口温度調
節器20の設定及び再熱器スプレーの温度設定に
より行なわれる。ただし、これらの制御は温度上
昇を押える方向のもののみであり、温度上昇を促
進する方向の制御は燃料量の増加により行なわれ
る。
At this time, the reheat steam temperature in step S18 is controlled by setting the high pressure turbine bypass outlet temperature controller 20 and reheater spray temperature. However, these controls are only for suppressing the temperature rise, and the control for promoting the temperature rise is performed by increasing the amount of fuel.

また、各温度制御設定には限度があり、その範
囲内で設定が行なわれるのは当然である。高圧タ
ービン・バイパス出口温度設定については、低温
再熱蒸気管圧力に対する飽和温度による下限値が
あり、再熱器スプレーについては、蒸気量が規定
値以上確立しないと使用できない。
Further, each temperature control setting has a limit, and it is natural that the setting is performed within that range. Regarding the high pressure turbine bypass outlet temperature setting, there is a lower limit value based on the saturation temperature with respect to the low temperature reheat steam pipe pressure, and the reheater spray cannot be used unless the steam amount is established at a specified value or higher.

蒸気温度制御には前述のような制約があるた
め、温度調節のベースは燃料量となる。
Since steam temperature control has the above-mentioned restrictions, the basis of temperature adjustment is the amount of fuel.

前述したようなステツプS18の操作により、
低圧タービンの内壁温度と再熱蒸気温度のマツチ
ングをとり、相互の温度差―すなわち、低圧ター
ビン入口蒸気温度とその内壁メタル温度との差が
規定値以内に入つたことを、ステツプS19の判
定によつて確認した後、ステツプS20へ進んで
低圧タービンへの通気を行なう。
By the operation in step S18 as described above,
The inner wall temperature of the low pressure turbine and the reheat steam temperature are matched, and it is determined in step S19 that the mutual temperature difference, that is, the difference between the low pressure turbine inlet steam temperature and the inner wall metal temperature is within a specified value. After confirming this, the process proceeds to step S20 to ventilate the low pressure turbine.

以上の制御を行なう装置としては、主蒸気管側
と同一のものを使用できる。
As a device for performing the above control, the same device as that on the main steam pipe side can be used.

以上の説明からも明らかなように、本発明によ
れば、主蒸気管のウオーミングと再熱蒸気管のウ
オーミングを独立に、かつ並行して行なうことが
可能である。このため、それぞれの蒸気管の許容
応力を超えることなく、安全に、かつ短時間でウ
オーミングを行ない、高圧タービンおよび低圧タ
ービン相互のマツチングをとることが可能になる
など従来にない機能を持たせ、従来装置の欠点を
除去することが出来る。
As is clear from the above description, according to the present invention, it is possible to perform warming of the main steam pipe and warming of the reheat steam pipe independently and in parallel. For this reason, we have provided unprecedented functions such as warming safely and in a short time without exceeding the allowable stress of each steam pipe, and making it possible to match the high-pressure turbine and low-pressure turbine with each other. The drawbacks of conventional devices can be eliminated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のタービン・バイパス系統を有す
る火力発電所用タービンプラントの構成を示す概
略図、第2図は本発明の一実施例の構成を示す概
略図、第3図はタービン・バイパス圧力設定値を
示す図、第4図は第1図のタービンプラントのホ
ツトスタート時における主蒸気温度の一時降下の
一例を示す図、第5図は主蒸気管ウオーミングの
処理内容を示すフローチヤート、第6図は再熱蒸
気管ウオーミングの処理内容を示すフローチヤー
トである。 1…ボイラ、2…過熱器、3…再熱器、4…高
圧タービン、5…低圧タービン、6…復水器、7
…主蒸気管、8…再熱蒸気管、9…高圧タービ
ン・バイパス配管、9A…主蒸気止弁、10…低
圧タービン・バイパス配管、10A…再熱蒸気止
弁、11…高圧タービン・バイパス弁、12…高
圧タービン・バイパス・スプレー調節弁、13…
低圧タービン・バイパス弁、15…主蒸気圧力検
出器、17…再熱蒸気圧力検出器、19…高圧タ
ービン・バイパス出口温度検出器、20…高圧タ
ービン・バイパス出口温度調節器、21…主蒸気
管ドレン弁、22…再熱蒸気管ドレン弁、23…
主蒸気管ボイラ出口内壁温度検出器、24…主蒸
気管ボイラ出口外壁温度検出器、25…主蒸気管
タービン入口内壁温度検出器、26…主蒸気管タ
ービン入口外壁温度検出器、27…再熱蒸気管ボ
イラ出口内壁温度検出器、28…再熱蒸気管ボイ
ラ出口外壁温度検出器、29…再熱蒸気管タービ
ン入口内壁温度検出器、30…再熱蒸気管タービ
ン入口外壁温度検出器、31…高圧タービン・メ
タル温度検出器、32…低圧タービン・メタル温
度検出器、33…主蒸気管ウオーミング制御装
置、35…ボイラ出口主蒸気温度検出器、44…
ボイラ出口止弁、45…ボイラ出口止弁バイパス
弁。
Fig. 1 is a schematic diagram showing the configuration of a turbine plant for a thermal power plant having a conventional turbine bypass system, Fig. 2 is a schematic diagram showing the configuration of an embodiment of the present invention, and Fig. 3 is a turbine bypass pressure setting. Figure 4 is a diagram showing an example of the temporary drop in main steam temperature during hot start of the turbine plant in Figure 1, Figure 5 is a flowchart showing the main steam pipe warming process, and Figure 6 The figure is a flowchart showing the processing details of reheat steam pipe warming. 1... Boiler, 2... Superheater, 3... Reheater, 4... High pressure turbine, 5... Low pressure turbine, 6... Condenser, 7
...Main steam pipe, 8...Reheat steam pipe, 9...High pressure turbine bypass piping, 9A...Main steam stop valve, 10...Low pressure turbine bypass piping, 10A...Reheat steam stop valve, 11...High pressure turbine bypass valve , 12... High pressure turbine bypass spray control valve, 13...
Low pressure turbine bypass valve, 15... Main steam pressure detector, 17... Reheat steam pressure detector, 19... High pressure turbine bypass outlet temperature detector, 20... High pressure turbine bypass outlet temperature controller, 21... Main steam pipe Drain valve, 22... Reheat steam pipe drain valve, 23...
Main steam pipe boiler outlet inner wall temperature detector, 24... Main steam pipe boiler outlet outer wall temperature detector, 25... Main steam pipe turbine inlet inner wall temperature detector, 26... Main steam pipe turbine inlet outer wall temperature detector, 27... Reheat Steam tube boiler outlet inner wall temperature detector, 28... Reheat steam tube boiler outlet outer wall temperature detector, 29... Reheat steam pipe turbine inlet inner wall temperature detector, 30... Reheat steam pipe turbine inlet outer wall temperature detector, 31... High pressure turbine metal temperature detector, 32...Low pressure turbine metal temperature detector, 33...Main steam pipe warming control device, 35...Boiler outlet main steam temperature detector, 44...
Boiler outlet stop valve, 45... Boiler outlet stop valve bypass valve.

Claims (1)

【特許請求の範囲】 1 ボイラ過熱器から発生された主蒸気を、主蒸
気管を介して供給される高圧タービンと、ボイラ
で発生された再熱蒸気を、再熱蒸気管を介して供
給される低圧タービンと、主蒸気管から分岐され
て再熱器入口へ至る高圧タービン・バイパス配管
と、高圧タービン・バイパス配管の途中に設けら
れた高圧タービン・バイパス弁とを具備したター
ビンプラントであつて、ボイラ過熱器出口近くの
主蒸気管途中に設けられたボイラ出口止弁と、前
記ボイラ出口止弁と並列に設けられたボイラ出口
止弁バイパス弁とを具備し、前記高圧タービン・
バイパス配管が前記ボイラ出口止弁より上流側で
主蒸気管から分岐されたことを特徴とするタービ
ンプラント。 2 ボイラ過熱器から発生された主蒸気を、主蒸
気管を介して供給される高圧タービンと、ボイラ
で発生された再熱蒸気を、再熱蒸気管を介して供
給される低圧タービンと、主蒸気管から分岐され
て再熱器入口へ至る高圧タービン・バイパス配管
と、高圧タービン・バイパス配管の途中に設けら
れた高圧タービン・バイパス弁とを具備したター
ビンプラントであつて、ボイラ過熱器出口近くの
主蒸気管途中に設けられたボイラ出口止弁と、前
記ボイラ出口止弁と並列に設けられたボイラ出口
止弁バイパス弁とを具備し、前記高圧タービン・
バイパス配管が前記ボイラ出口止弁より上流側で
主蒸気管から分岐されると共に、 主蒸気管の高圧タービン入口近くに設けられた
主蒸気止弁と、前記主蒸気管の主蒸気止弁より上
流側に設けられた主蒸気ドレン弁とを、さらに具
備したことを特徴とするタービンプラント。 3 ボイラ過熱器から発生された主蒸気を、主蒸
気管を介して供給される高圧タービンと、ボイラ
で発生された再熱蒸気を、再熱蒸気管を介して供
給される低圧タービンと、主蒸気管から分岐され
て再熱器入口へ至る高圧タービン・バイパス配管
と、高圧タービン・バイパス配管の途中に設けら
れた高圧タービン・バイパス弁とを具備したター
ビンプラントであつて、ボイラ過熱器出口近くの
主蒸気管途中に設けられたボイラ出口止弁と、前
記ボイラ出口止弁と並列に設けられたボイラ出口
止弁バイパス弁とを具備し、前記高圧タービン・
バイパス配管が前記ボイラ出口止弁より上流側で
主蒸気管から分岐されると共に、 再熱蒸気管の低圧タービン入口近くに設けられ
た再熱蒸気弁と、再熱蒸気管から分岐されて復水
器に至る低圧タービン・バイパス配管と、低圧タ
ービン・バイパス配管の途中に設けられた低圧タ
ービン・バイパス弁と、前記再熱蒸気管の再熱蒸
気止弁より上流側に設けられた再熱蒸気ドレン弁
とをさらに具備したことを特徴とするタービンプ
ラント。 4 ボイラ過熱器から発生された主蒸気を、主蒸
気管を介して供給される高圧タービンと、ボイラ
で発生された再熱蒸気を、再熱蒸気管を介して供
給される低圧タービンと、主蒸気管から分岐され
て再熱器入口へ至る高圧タービン・バイパス配管
と、高圧タービン・バイパス配管の途中に設けら
れた高圧タービン・バイパス弁と、ボイラ過熱器
出口近くの主蒸気管途中に設けられたボイラ出口
止弁と、前記ボイラ出口止弁と並列に設けられた
ボイラ出口弁バイパス弁と、主蒸気管の高圧ター
ビン入口近くに設けられた主蒸気止弁と、前記主
蒸気止弁より上流側に設けられた主蒸気ドレン弁
と、主蒸気管ボイラ出口の内壁および外壁温度検
出器、主蒸気管タービン入口の内壁および外壁温
度検出器、高圧タービンメタル温度検出器ならび
にボイラ出口主蒸気温度検出器の各検出出力を入
力され、これら入力に基づいて主蒸気管ドレン弁
およびボイラ出口止弁に対する制御信号を出力す
る主蒸気管ウオーミング制御装置とを具備し、前
記高圧タービン・バイパス配管が前記ボイラ出口
止弁より上流側で主蒸気管から分岐されたことを
特徴とするタービンプラント。 5 ボイラ過熱器から発生された主蒸気を、主蒸
気管を介して供給される高圧タービンと、ボイラ
で発生された再熱蒸気を、再熱蒸気管を介して供
給される低圧タービンと、主蒸気管から分岐され
て再熱器入口へ至る高圧タービン・バイパス配管
と、高圧タービン・バイパス配管の途中に設けら
れた高圧タービン・バイパス弁と、ボイラ過熱器
出口近くの主蒸気管途中に設けられたボイラ出口
止弁と、前記ボイラ出口止弁と並列に設けられた
ボイラ出口止弁バイパス弁と、主蒸気管の高圧タ
ービン入口近くに設けられた主蒸気止弁と、前記
主蒸気管の主蒸気止弁より上流側に設けられた主
蒸気ドレン弁と、再熱蒸気管の低圧タービン入口
近くに設けられた再熱蒸気止弁と、再熱蒸気管か
ら分岐されて復水器に至る低圧タービン・バイパ
ス配管と、低圧タービン・バイパス配管の途中に
設けられた低圧タービン・バイパス弁と、前記再
熱蒸気管の再熱蒸気止弁より上流側に設けられた
再熱蒸気ドレン弁と、高圧タービン・バイパス出
口温度に応じて制御される高圧タービン・バイパ
ス・スプレー調節弁と、再熱蒸気管ボイラ出口内
壁温度検出器、再熱蒸気管ボイラ出口外壁温度検
出器、再熱蒸気管タービン入口内壁温度検出器、
再熱蒸気管タービン入口外壁温度検出器および低
圧タービンメタル温度検出器の各検出出力を入力
され、これら入力に基づいて低圧タービン・バイ
パス弁、低圧タービン・バイパス・スプレー調節
弁および再熱蒸気管ドレン弁に対する制御信号を
出力する再熱蒸気管ウオーミング制御装置とを具
備し、前記高圧タービン・バイパス配管が前記ボ
イラ出口止弁より上流側で主蒸気から分岐された
ことを特徴とするタービンプラント。 6 ボイラ過熱器から発生された主蒸気を、主蒸
気管を介して供給される高圧タービンと、ボイラ
で発生された再熱蒸気を、再熱蒸気管を介して供
給される低圧タービンと、主蒸気管から分岐され
て再熱器入口へ至る高圧タービン・バイパス配管
と、高圧タービン・バイパス配管の途中に設けら
れた高圧タービン・バイパス弁と、ボイラ過熱器
出口近くの主蒸気管途中に設けられたボイラ出口
止弁と、前記ボイラ出口止弁と並列に設けられた
ボイラ出口止弁バイパス弁と、主蒸気管の高圧タ
ービン入口近くに設けられた主蒸気止弁と、前記
主蒸気止弁より上流側に設けられた主蒸気ドレン
弁とを具備し、前記高圧タービン・バイパス配管
が、前記ボイラ出口止弁より上流側で、主蒸気管
から分岐されたタービンプラントの制御方法であ
つて、ボイラ出口止弁およびボイラ出口止弁バイ
パス弁を全閉とし、高圧タービン・バイパス配管
を通して蒸気を流すことによりボイラの温度上昇
を行なわせる過程と、ボイラ出口における主蒸気
温度が主蒸気管の各部の内壁温度近くになつた
後、少なくとも前記ボイラ出口止弁バイパス弁を
開き、主蒸気管ドレン弁の開度を調節して、主蒸
気管各部の内壁温度および外壁温度の差が設定値
を超えないように、主蒸気管を通る蒸気量を制御
し、主蒸気管のウオーミングを行なう過程と、主
蒸気管の内壁温度および外壁温度の差が規定値以
内になり、かつ高圧タービン入口での蒸気温度と
高圧タービンの内壁温度との差が規定値以内にな
つた後に、ボイラ出口止弁を全開し、かつボイラ
出口止弁バイパス弁を全閉して、高圧タービンへ
の通気操作を行なう過程とよりなることを特徴と
するタービンプラントの制御方法。 7 ボイラ過熱器から発生された主蒸気を、主蒸
気管を介して供給される高圧タービンと、ボイラ
で発生された再熱蒸気を、再熱蒸気管を介して供
給される低圧タービンと、主蒸気管から分岐され
て再熱器入口へ至る高圧タービン・バイパス配管
と、高圧タービン・バイパス配管の途中に設けら
れた高圧タービン・バイパス弁と、ボイラ過熱器
出口近くの主蒸気管途中に設けられたボイラ出口
止弁と、前記ボイラ出口止弁と並列に設けられた
ボイラ出口止弁バイパス弁と、主蒸気管の高圧タ
ービン入口近くに設けられた主蒸気止弁と、前記
主蒸気管の主蒸気止弁より上流側に設けられた主
蒸気ドレン弁と、再熱蒸気管の低圧タービン入口
近くに設けられた再熱蒸気止弁と、再熱蒸気管か
ら分岐されて復水器に至る低圧タービン・バイパ
ス配管と、低圧タービン・バイパス配管の途中に
設けられた低圧タービン・バイパス弁と、前記再
熱蒸気管の再熱蒸気止弁より上流側に設けられた
再熱蒸気ドレン弁とを具備し、前記高圧タービ
ン・バイパス配管が前記ボイラ出口止弁より上流
側で主蒸気管から分岐されたタービンプラントの
制御方法であつて、高圧タービン・バイパス弁を
予定開度まで開いて、ボイラ過熱器および再熱蒸
気管に蒸気を流すと共に、低下タービン・バイパ
ス弁を全閉とする過程と、再熱蒸気管ドレン弁の
開度を調節して、再熱蒸気管各部の内壁温度およ
び外壁温度の差が設定値を超えないように、再熱
蒸気管を通る蒸気量を制御し、再熱蒸気管のウオ
ーミングを行なう過程と、再熱蒸気管の内壁温度
および外壁温度の差が規定値以内になり、かつ再
熱蒸気管の内壁温度が規定値以上になつた後に、
高圧タービン・バイパス出口温度および再熱器ス
プレー温度の設定を調節して再熱蒸気温度を予定
値に制御する過程と、低圧タービン入口蒸気温度
および低圧タービン内壁メタル温度の差が規定値
以内になつた後に、低圧タービンへの通気操作を
行なう過程とよりなることを特徴とするタービン
プラントの制御方法。
[Claims] 1. A high-pressure turbine to which main steam generated from a boiler superheater is supplied via a main steam pipe, and a high-pressure turbine to which reheat steam generated in the boiler is supplied via a reheat steam pipe. A turbine plant comprising a low-pressure turbine, a high-pressure turbine bypass pipe branched from a main steam pipe and leading to a reheater inlet, and a high-pressure turbine bypass valve provided in the middle of the high-pressure turbine bypass pipe. , a boiler outlet stop valve provided in the middle of the main steam pipe near the boiler superheater outlet, and a boiler outlet stop valve bypass valve provided in parallel with the boiler outlet stop valve;
A turbine plant characterized in that a bypass pipe is branched from a main steam pipe upstream of the boiler outlet stop valve. 2 The main steam generated from the boiler superheater is supplied to the high-pressure turbine through the main steam pipe, and the reheat steam generated in the boiler is supplied to the low-pressure turbine through the reheat steam pipe. A turbine plant equipped with a high-pressure turbine bypass pipe branched from a steam pipe and leading to a reheater inlet, and a high-pressure turbine bypass valve installed in the middle of the high-pressure turbine bypass pipe, near the boiler superheater outlet. a boiler outlet stop valve provided in the middle of the main steam pipe, and a boiler outlet stop valve bypass valve provided in parallel with the boiler outlet stop valve;
A bypass pipe is branched from the main steam pipe upstream of the boiler outlet stop valve, and a main steam stop valve provided in the main steam pipe near the high-pressure turbine inlet, and a main steam stop valve provided upstream of the main steam stop valve of the main steam pipe A turbine plant further comprising a main steam drain valve provided on the side. 3 The main steam generated from the boiler superheater is supplied to the high-pressure turbine through the main steam pipe, and the reheat steam generated in the boiler is supplied to the low-pressure turbine through the reheat steam pipe. A turbine plant equipped with a high-pressure turbine bypass pipe branched from a steam pipe and leading to a reheater inlet, and a high-pressure turbine bypass valve installed in the middle of the high-pressure turbine bypass pipe, near the boiler superheater outlet. a boiler outlet stop valve provided in the middle of the main steam pipe, and a boiler outlet stop valve bypass valve provided in parallel with the boiler outlet stop valve;
A bypass pipe is branched from the main steam pipe upstream of the boiler outlet stop valve, and a reheat steam valve is provided near the low-pressure turbine inlet of the reheat steam pipe, and a bypass pipe is branched from the reheat steam pipe to supply condensate water. a low-pressure turbine bypass piping leading to the vessel, a low-pressure turbine bypass valve provided in the middle of the low-pressure turbine bypass piping, and a reheat steam drain provided upstream of the reheat steam stop valve of the reheat steam pipe. A turbine plant further comprising a valve. 4 The main steam generated from the boiler superheater is supplied to the high-pressure turbine through the main steam pipe, and the reheat steam generated in the boiler is supplied to the low-pressure turbine through the reheat steam pipe. A high-pressure turbine bypass pipe that branches from the steam pipe to the reheater inlet, a high-pressure turbine bypass valve installed in the middle of the high-pressure turbine bypass pipe, and a high-pressure turbine bypass valve installed in the middle of the main steam pipe near the boiler superheater outlet. a boiler outlet stop valve provided in parallel with the boiler outlet stop valve, a main steam stop valve provided near the high pressure turbine inlet of the main steam pipe, and a boiler outlet valve bypass valve provided in parallel with the boiler outlet stop valve; The main steam drain valve installed on the side, the main steam pipe boiler outlet inner and outer wall temperature detectors, the main steam pipe turbine inlet inner and outer wall temperature detectors, the high pressure turbine metal temperature detector, and the boiler outlet main steam temperature detector a main steam pipe warming control device that receives each detection output of the boiler and outputs control signals for the main steam pipe drain valve and the boiler outlet stop valve based on these inputs, and the high pressure turbine bypass piping is connected to the boiler A turbine plant characterized by being branched from a main steam pipe upstream of an outlet stop valve. 5 The main steam generated from the boiler superheater is supplied to the high-pressure turbine through the main steam pipe, and the reheat steam generated in the boiler is supplied to the low-pressure turbine through the reheat steam pipe. A high-pressure turbine bypass pipe that branches from the steam pipe to the reheater inlet, a high-pressure turbine bypass valve installed in the middle of the high-pressure turbine bypass pipe, and a high-pressure turbine bypass valve installed in the middle of the main steam pipe near the boiler superheater outlet. a boiler outlet stop valve provided in parallel with the boiler outlet stop valve; a main steam stop valve provided near the high-pressure turbine inlet of the main steam pipe; The main steam drain valve is installed upstream from the steam stop valve, the reheat steam stop valve is installed near the low-pressure turbine inlet of the reheat steam pipe, and the low pressure valve is branched from the reheat steam pipe to the condenser. A turbine bypass pipe, a low pressure turbine bypass valve provided in the middle of the low pressure turbine bypass pipe, a reheat steam drain valve provided upstream of the reheat steam stop valve of the reheat steam pipe, and a high pressure High-pressure turbine bypass spray control valve controlled according to turbine bypass outlet temperature, reheat steam tube boiler outlet inner wall temperature sensor, reheat steam tube boiler outlet outer wall temperature sensor, reheat steam tube turbine inlet inner wall temperature sensor,
The detection outputs of the reheat steam pipe turbine inlet outer wall temperature sensor and low pressure turbine metal temperature sensor are input, and based on these inputs, the low pressure turbine bypass valve, low pressure turbine bypass spray control valve, and reheat steam pipe drain are input. A turbine plant comprising: a reheat steam pipe warming control device that outputs a control signal to a valve, and wherein the high-pressure turbine bypass pipe is branched from main steam upstream of the boiler outlet stop valve. 6 The main steam generated from the boiler superheater is supplied to the high-pressure turbine through the main steam pipe, and the reheat steam generated in the boiler is supplied to the low-pressure turbine through the reheat steam pipe. A high-pressure turbine bypass pipe that branches from the steam pipe to the reheater inlet, a high-pressure turbine bypass valve installed in the middle of the high-pressure turbine bypass pipe, and a high-pressure turbine bypass valve installed in the middle of the main steam pipe near the boiler superheater outlet. a boiler outlet stop valve provided in parallel with the boiler outlet stop valve; a boiler outlet stop valve bypass valve provided in parallel with the boiler outlet stop valve; a main steam stop valve provided near the high pressure turbine inlet of the main steam pipe; a main steam drain valve provided on an upstream side, and the high-pressure turbine bypass pipe is branched from the main steam pipe at an upstream side of the boiler outlet stop valve, the boiler A process in which the outlet stop valve and the boiler outlet stop valve bypass valve are fully closed, and the temperature of the boiler is raised by flowing steam through the high-pressure turbine bypass piping, and the main steam temperature at the boiler outlet is raised to the inner wall of each part of the main steam pipe. After the temperature has reached close to the temperature, at least open the boiler outlet stop valve bypass valve and adjust the opening degree of the main steam pipe drain valve so that the difference between the inner wall temperature and outer wall temperature of each part of the main steam pipe does not exceed a set value. The process of controlling the amount of steam passing through the main steam pipe and warming the main steam pipe, and ensuring that the difference between the inner wall temperature and outer wall temperature of the main steam pipe is within a specified value, and that the steam temperature at the high pressure turbine inlet is The process consists of fully opening the boiler outlet stop valve and fully closing the boiler outlet stop valve bypass valve to ventilate the high-pressure turbine after the difference between the inner wall temperature of the high-pressure turbine and the inner wall temperature falls within a specified value. A method for controlling a turbine plant, characterized in that: 7 The main steam generated from the boiler superheater is supplied to the high-pressure turbine through the main steam pipe, and the reheat steam generated in the boiler is supplied to the low-pressure turbine through the reheat steam pipe. A high-pressure turbine bypass pipe that branches from the steam pipe to the reheater inlet, a high-pressure turbine bypass valve installed in the middle of the high-pressure turbine bypass pipe, and a high-pressure turbine bypass valve installed in the middle of the main steam pipe near the boiler superheater outlet. a boiler outlet stop valve provided in parallel with the boiler outlet stop valve; a main steam stop valve provided near the high-pressure turbine inlet of the main steam pipe; The main steam drain valve is installed upstream from the steam stop valve, the reheat steam stop valve is installed near the low-pressure turbine inlet of the reheat steam pipe, and the low pressure valve is branched from the reheat steam pipe to the condenser. It includes a turbine bypass piping, a low pressure turbine bypass valve provided in the middle of the low pressure turbine bypass piping, and a reheat steam drain valve provided on the upstream side of the reheat steam stop valve of the reheat steam pipe. and a control method for a turbine plant in which the high-pressure turbine bypass pipe is branched from the main steam pipe upstream of the boiler outlet stop valve, the high-pressure turbine bypass valve being opened to a predetermined opening degree, and the boiler superheater Then, while flowing steam through the reheat steam pipe, the lowering turbine bypass valve is fully closed, and the opening degree of the reheat steam pipe drain valve is adjusted to maintain the inner and outer wall temperatures of each part of the reheat steam pipe. The amount of steam passing through the reheat steam pipe is controlled so that the difference does not exceed the set value, and the process of warming the reheat steam pipe and ensuring that the difference between the inner and outer wall temperatures of the reheat steam pipe is within the specified value. and after the inner wall temperature of the reheat steam pipe reaches or exceeds the specified value,
The process of adjusting the settings of the high-pressure turbine bypass outlet temperature and reheater spray temperature to control the reheat steam temperature to the scheduled value, and the difference between the low-pressure turbine inlet steam temperature and low-pressure turbine inner wall metal temperature is within specified values. 1. A method for controlling a turbine plant, the method comprising: performing ventilation operation to a low-pressure turbine.
JP10702881A 1981-07-10 1981-07-10 Turbine plant and control thereof Granted JPS5810104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10702881A JPS5810104A (en) 1981-07-10 1981-07-10 Turbine plant and control thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10702881A JPS5810104A (en) 1981-07-10 1981-07-10 Turbine plant and control thereof

Publications (2)

Publication Number Publication Date
JPS5810104A JPS5810104A (en) 1983-01-20
JPS6239646B2 true JPS6239646B2 (en) 1987-08-24

Family

ID=14448679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10702881A Granted JPS5810104A (en) 1981-07-10 1981-07-10 Turbine plant and control thereof

Country Status (1)

Country Link
JP (1) JPS5810104A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4448026A (en) * 1981-09-25 1984-05-15 Westinghouse Electric Corp. Turbine high pressure bypass pressure control system
CN1005870B (en) * 1986-06-17 1989-11-22 松下电器产业株式会社 Device for storing latent heat
EP1191192A1 (en) * 2000-09-26 2002-03-27 Siemens Aktiengesellschaft Method and apparatus for preheating and dewatering of turbine stage steam conduits
EP1775431A1 (en) * 2005-10-12 2007-04-18 Siemens Aktiengesellschaft Method for warming-up a steam turbine
EP1775429A1 (en) * 2005-10-12 2007-04-18 Siemens Aktiengesellschaft Method for warming-up a steam turbine
EP2698507B1 (en) * 2012-08-17 2017-03-01 General Electric Technology GmbH System and method for temperature control of reheated steam

Also Published As

Publication number Publication date
JPS5810104A (en) 1983-01-20

Similar Documents

Publication Publication Date Title
JP2000161014A5 (en)
US10982567B2 (en) Condensate and feedwater system of steam power plant and operation method for the same
JPH0454802B2 (en)
CA2264157C (en) Steam cooling apparatus for gas turbine
JPS6239646B2 (en)
US4343682A (en) Plant having feed water heating means for nuclear units during plant start up and method of operating the same
JP2013217200A (en) Steam turbine plant
JPH04148002A (en) Prewarming method for steam turbine
JP3117358B2 (en) Automatic bypass valve warming device
JPH03267509A (en) Control method of reheating steam turbine
JP2953794B2 (en) Steam control valve chest warming method
JP2558700B2 (en) Plant warming controller
JPS6239653B2 (en)
JPH07318006A (en) White smoke preventing device for steam generating equipment
JPH0443996A (en) Steam flow rate controller for fast reactor plant
JPH0350881B2 (en)
JP3585975B2 (en) Isolation and restart systems for moisture separation heater devices and methods thereof
JPS59113212A (en) Steam turbine device
CN114738732A (en) One-key start-stop system of high-pressure heater and control method thereof
JPH07280205A (en) Apparatus for protecting damage of feed water heating capillary of feed water heater
JPH02130202A (en) Combined plant
JP2670059B2 (en) Drum level controller for waste heat recovery boiler
JPH07174304A (en) Water level controller for feed water heater
JPS6245908A (en) Starting method for turbine and device thereof
JPH0549884B2 (en)