JPS62237009A - Steam valve for steam turbine - Google Patents

Steam valve for steam turbine

Info

Publication number
JPS62237009A
JPS62237009A JP8011186A JP8011186A JPS62237009A JP S62237009 A JPS62237009 A JP S62237009A JP 8011186 A JP8011186 A JP 8011186A JP 8011186 A JP8011186 A JP 8011186A JP S62237009 A JPS62237009 A JP S62237009A
Authority
JP
Japan
Prior art keywords
steam
valve
warm
temperature
steam chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8011186A
Other languages
Japanese (ja)
Other versions
JPH0754089B2 (en
Inventor
Tsutomu Araki
勉 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61080111A priority Critical patent/JPH0754089B2/en
Publication of JPS62237009A publication Critical patent/JPS62237009A/en
Publication of JPH0754089B2 publication Critical patent/JPH0754089B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Abstract

PURPOSE:To suppress the generation of an excessive thermal stress in a steam chamber and shorten the warming time by constituting the steam chamber of a steam reducing valve into the inside and outside parts and forming gaps between the both parts. CONSTITUTION:The steam chamber of a steam valve is constituted of an inside steam chamber 10 and an outside steam chamber 16, and gaps 15a and 15b are formed between the both chambers. The steam which leaks from the fitting gap 17 between a valve rod 13 and a cover 14 is introduced into the gaps 15a and 15b. Further, a hole 21 is formed in the upper part of the outside steam chamber 16, and the warming steam is introduced through a warming valve 19. Thus, the thermal stress of the steam chamber is reduced, and the warming time can be shortened.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、蒸気タービンの駆動用蒸気を制御する為に用
いられる蒸気弁に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a steam valve used for controlling steam for driving a steam turbine.

〔従来技術〕[Prior art]

この種の弁を暖機(蒸気温度にマツチングさせるように
予熱)する場合、従来技術では暖機弁の開閉時間を調整
して行っている。
When warming up this type of valve (preheating to match the steam temperature), in the prior art, the opening/closing time of the warm-up valve is adjusted.

この暖機弁の操作はタービンの起動モード(コールド、
ウオーム、ホット等)に関係なく一定の間隔がある。こ
のため、蒸気加減弁のメタル温度が比較的低い場合、暖
機開始時に蒸気案内壁と外壁との温度差が制限値以上と
なり易く、制限値に達すると、暖機が中断される。従っ
て、暖機完了までの所要時間が長かった。
This warm-up valve is operated in the turbine startup mode (cold, cold,
There is a fixed interval regardless of the temperature (warm, hot, etc.). Therefore, when the metal temperature of the steam control valve is relatively low, the temperature difference between the steam guide wall and the outer wall is likely to exceed a limit value at the start of warm-up, and when the limit value is reached, warm-up is interrupted. Therefore, the time required to complete warm-up was long.

従来技術に係る蒸気加減弁の暖機方法の1例について、
第2図を参+it L、つつ説明する。蒸気加減弁3の
暖機弁5を一定の開度にし蒸気加減弁3に設vt して
いるシートドレン弁6をある一定の周期で全開→全閉、
全閉→全開する。この様に従来の暖機法ではタービン起
動モードに関係なくある同−周期で暖機弁を切り換える
ために蒸気加減弁3のメタル温度を目標温度まで上昇さ
せるのに時間がかかつていた。
Regarding an example of a method of warming up a steam control valve according to the prior art,
This will be explained with reference to FIG. 2. The warm-up valve 5 of the steam control valve 3 is opened to a certain degree, and the seat drain valve 6 installed in the steam control valve 3 is fully opened → fully closed at a certain period.
Fully closed → fully open. As described above, in the conventional warm-up method, it takes time to raise the metal temperature of the steam control valve 3 to the target temperature because the warm-up valve is switched at the same cycle regardless of the turbine startup mode.

冷却された状態にある蒸気加減弁3のメタル温度を速や
かに上昇させるには、蒸気加減弁暖機弁5を全開にして
暖機すれば良いが、この方法では蒸気加減弁3の内壁と
外壁とのメタル温度の差が急激に生じるため、過大の熱
応力が発生する。
In order to quickly raise the metal temperature of the steam control valve 3 in a cooled state, it is sufficient to fully open the steam control valve warm-up valve 5 to warm it up. However, in this method, the inner and outer walls of the steam control valve 3 The sudden difference in metal temperature between the metal and the metal temperature causes excessive thermal stress.

第3図(a)は、暖機開始時点で暖機加減弁を全開した
場合の、蒸気加減弁内壁温度Tiの変化状況と、蒸気加
減弁外壁温度Tsの変化状況とを示す図表であ、双方の
温度の温度差ΔTの最大値ΔT 、a x が大きい。
FIG. 3(a) is a chart showing changes in the steam control valve inner wall temperature Ti and changes in the steam control valve outer wall temperature Ts when the warm-up control valve is fully opened at the start of warm-up. The maximum value ΔT and a x of the temperature difference ΔT between both temperatures is large.

上記の温度差を軽減するため、第3図(b)に示したよ
うに暖機加減弁を開閉操作することも考えられる。この
ような方法によると、暖機弁5の数多くの開閉繰返しを
必要とし、その上開閉量の停滞時間を要するためにメタ
ル温度を目標の値に上昇させるまでの時間が多くかかる
という欠点がある。
In order to reduce the above-mentioned temperature difference, it is also possible to open and close the warm-up control valve as shown in FIG. 3(b). This method has the drawback that the warm-up valve 5 needs to be opened and closed many times, and in addition, it takes a long time to raise the metal temperature to the target value because the amount of opening and closing requires a stagnation time. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

−ヒ述の従来技術に係る暖機方法においては、蒸気加減
弁暖機弁の開閉間隔が一定であったため長時間タービン
を停止した後の状態で(つまり加減弁3のメタル温度が
低い場合)蒸気加減弁暖機用の高温蒸気が流入した場合
、過大な熱応力が加減弁3の蒸気室に発生していた。
- In the warm-up method according to the prior art described above, the opening and closing intervals of the steam control valve warm-up valve were constant, so that the temperature of the steam control valve after the turbine has been stopped for a long time (that is, when the metal temperature of the control valve 3 is low) When high-temperature steam for warming up the steam control valve flows in, excessive thermal stress is generated in the steam chamber of the control valve 3.

又過大な熱応力の発生を防止するため、第4図に示した
蒸気加減弁の内壁温度7と外壁温度8とを検出して、温
度差が制限値以上になった場合、警報を出して暖機操作
を中止し、この温度差が小さく(制限値以下)なるまで
暖機弁5を閉状態とするため暖機操作を停止させる。こ
のため、プラント起動時間が長くなるという短所があっ
た。
In addition, in order to prevent the occurrence of excessive thermal stress, the inner wall temperature 7 and outer wall temperature 8 of the steam control valve shown in Fig. 4 are detected, and if the temperature difference exceeds the limit value, an alarm is issued. The warm-up operation is stopped and the warm-up valve 5 is kept closed until this temperature difference becomes small (below the limit value). For this reason, there was a disadvantage that the plant start-up time became long.

又この様に暖機時間が長くかかつている間に主蒸気条件
(ボイラ出口温度)が上昇するためタービン通気時のミ
スマツチ(タービンメタル温度と蒸気温度との不整合)
が大きくなり、通気後タービンロータに発生する熱応力
が高くなるという副次的な短所も内包している。
Also, while the warm-up time is long, the main steam condition (boiler outlet temperature) increases, resulting in mismatch during turbine ventilation (mismatch between turbine metal temperature and steam temperature).
This also has the secondary drawback that the thermal stress generated in the turbine rotor after ventilation increases.

又従来の蒸気加減弁は第4図に示す如き形状になってお
り、加減弁蒸気室9の内側に暖機用蒸気を流入させるた
めどうしても内壁温度7と外壁温度8との差が発生する
。更に、加減弁蒸気室9は、胴長となっておりしかも肉
厚が不均一であるため応力集中が発生し易く暖機時に発
生する熱応力を考えた場合不利な形状になっていること
も否めない。
Further, the conventional steam control valve has a shape as shown in FIG. 4, and since warm-up steam flows into the inside of the control valve steam chamber 9, a difference between the inner wall temperature 7 and the outer wall temperature 8 inevitably occurs. Furthermore, since the regulator valve steam chamber 9 has a long body and uneven wall thickness, stress concentration tends to occur, and the shape is disadvantageous when considering thermal stress generated during warm-up. can not deny.

本発明は上述の事情に鑑みて為されたもので。The present invention has been made in view of the above circumstances.

その目的とするところは、過大な熱応力を発生させる虞
れ無く、速やかに暖機を行い得る蒸気弁を提供しようと
するものである。
The purpose is to provide a steam valve that can be warmed up quickly without the risk of generating excessive thermal stress.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するため1本発明の蒸気弁は、蒸気タ
ービンに供給される駆動用蒸気を制御する蒸気弁におい
て、蒸気室を内、外、少なくとも2重に構成し、かつ、
その間に空隙を設けたことを特徴とする。
In order to achieve the above object, 1 the steam valve of the present invention is a steam valve for controlling driving steam supplied to a steam turbine, the steam chamber is configured to be at least double inside and outside, and
It is characterized by having a gap between them.

〔作用〕[Effect]

上述の構成によれば、前記の空隙内に暖機用の蒸気を流
通せしめて、蒸気室を内、外両面から加熱して、大きい
温度差を生ゼしめることなく迅速に昇温せしめることが
できる。従って、過大な熱応力を発生させる虞れ無く速
やかに暖機を完了させることが出来る。
According to the above-mentioned structure, it is possible to circulate warm-up steam in the gap, heat the steam chamber from both the inside and outside, and quickly raise the temperature without creating a large temperature difference. can. Therefore, warm-up can be completed quickly without the risk of generating excessive thermal stress.

〔実施例〕〔Example〕

第1図は、本発明に係る蒸気弁の断面図に蒸気系統を付
記した説明図である。ボイラから供給される主蒸気aは
、内部蒸気室10の弁座11の上方にある加減弁12の
開閉によりタービンへ導かれる。又内部蒸気室10の上
方には弁棒13をガイドするカバー14がある。内部蒸
気室10の外周に空間15a、15bを隔てて外部蒸気
室16を設けろ。又弁棒13とカバー14との嵌合ギャ
ップ17を通った漏洩蒸気を前記の空間15a。
FIG. 1 is an explanatory diagram in which a steam system is added to a sectional view of a steam valve according to the present invention. Main steam a supplied from the boiler is guided to the turbine by opening and closing a control valve 12 located above a valve seat 11 of an internal steam chamber 10. Further, above the internal steam chamber 10 there is a cover 14 that guides the valve rod 13. An external steam chamber 16 is provided around the outer periphery of the internal steam chamber 10 with spaces 15a and 15b being separated therebetween. Also, the leaked steam passing through the fitting gap 17 between the valve stem 13 and the cover 14 is absorbed into the space 15a.

15bに導く孔18を設ける。外部蒸気室16の上方に
は暖機弁19を経由した排蒸気aからの暖機蒸気が入る
孔21を設けておく。
A hole 18 leading to the hole 15b is provided. A hole 21 is provided above the external steam chamber 16 to receive warm-up steam from the exhaust steam a via the warm-up valve 19.

この他に内部蒸気室の熱壁温度7.外壁温度8を検出し
て、その出力信号を温度設定器23に導きこれらの両者
の温度を比較して判別する判別器 124に連絡させる
。判別器24の信号で、暖機弁19を開閉させる。蒸気
開度調整器25及外部蒸気室16の下部に取付けられた
ドレン弁26を開閉させるドレン弁開度調整器27に送
る系統としておく装置とする。
In addition to this, the temperature of the thermal wall of the internal steam chamber7. The outer wall temperature 8 is detected, and its output signal is sent to the temperature setting device 23 and communicated to the discriminator 124 which compares and discriminates the two temperatures. The warm-up valve 19 is opened and closed in response to the signal from the discriminator 24. The device is configured as a system for sending steam to a drain valve opening regulator 27 that opens and closes a drain valve 26 attached to the lower part of the steam opening regulator 25 and the external steam chamber 16.

この装置において蒸気加減弁の蒸気室が常温である場合
の起動法について説明する。この場合の暖機操作は、蒸
気加減弁室に流入する蒸気温度は(初期起動のため)蒸
気条件が低く、当然温度も低いものである。又内部蒸気
室10の外壁を暖機させるため、暖機弁19を経由させ
て主蒸気aを外部蒸気室16の孔21に導き、内部蒸気
室10の外周と外部蒸気室16の内面との間隙15a。
A method of starting this device when the steam chamber of the steam control valve is at room temperature will be explained. In the warm-up operation in this case, the temperature of the steam flowing into the steam control valve chamber is low (due to initial startup), and the temperature is naturally low. In addition, in order to warm up the outer wall of the internal steam chamber 10, the main steam a is introduced into the hole 21 of the external steam chamber 16 via the warm-up valve 19, and the outer circumference of the internal steam chamber 10 and the inner surface of the external steam chamber 16 are connected. Gap 15a.

15b内を矢印の如く流動せしめて充満させる。The inside of 15b is made to flow as shown by the arrow to fill it.

この場合はドレン弁26を全閉としておく。このため空
間15a、15bは密閉された部屋となり、蒸気温度は
徐々に下がってくる。このため内部蒸気室10の内壁温
度7と外壁温度8との間には温度差ΔTが生ずる。この
温度差ΔTが許容範囲内であればそのままとし、許容範
囲外である場合には判別器24の信号によりドレン弁間
度調整器27を介してドレン弁26を開動作させること
により空間L5a、L5bの内の暖機蒸気を排出させる
。つまり、主蒸気aの温い蒸気を流入させて内部蒸気室
10の外壁温度8を上昇させ、しかも温度差ΔTを許容
温度内に収めることが出来る。
In this case, the drain valve 26 is kept fully closed. Therefore, the spaces 15a and 15b become sealed rooms, and the steam temperature gradually decreases. Therefore, a temperature difference ΔT occurs between the inner wall temperature 7 and the outer wall temperature 8 of the internal steam chamber 10. If this temperature difference ΔT is within the allowable range, it is left as it is, and if it is outside the allowable range, the drain valve 26 is opened via the drain valve distance adjuster 27 based on the signal from the discriminator 24, thereby opening the space L5a. The warm-up steam in L5b is discharged. That is, it is possible to increase the temperature 8 of the outer wall of the internal steam chamber 10 by letting the warm steam of the main steam a flow in, and to keep the temperature difference ΔT within the permissible temperature range.

従来技術に於ては蒸気室10内の蒸気で内壁昇温させ、
メタル伝熱によって外壁を昇温させるために、内外壁の
温度差を生じ、外壁温度8が許容温度差内となるまで上
昇させるには時間がかかり。
In the conventional technology, the temperature of the inner wall is raised by the steam in the steam chamber 10,
In order to raise the temperature of the outer wall by metal heat transfer, a temperature difference is created between the inner and outer walls, and it takes time to raise the outer wall temperature 8 to within the allowable temperature difference.

過大な熱応力を発生させる虞れが有った。There was a risk of generating excessive thermal stress.

しかし、本実施例においては蒸気室の内壁及外壁を同時
に暖機蒸気で加熱し内壁温度7を基本に外壁温度8を常
に判別器24で比較判別し許容温度差内ではドレン弁2
6を全閉し、許容温度差から外れた場合は、該ドレン弁
26を開くことにより許容温度差内で、短時間に目標の
メタル温度まで昇温させるよう自動的に制御することが
可能となる6 本発明を実施する場合、前記の主蒸気aの代りに補助蒸
気源20を用いて暖機することも可能である。
However, in this embodiment, the inner and outer walls of the steam chamber are simultaneously heated with warm-up steam, and the outer wall temperature 8 is constantly compared and discriminated by the discriminator 24 based on the inner wall temperature 7. If the temperature difference is within the allowable temperature difference, the drain valve 2
6 is fully closed, and if the temperature difference falls outside the allowable temperature difference, by opening the drain valve 26, it is possible to automatically control the temperature to rise to the target metal temperature within the allowable temperature difference in a short time. When carrying out the present invention, it is also possible to warm up the engine by using the auxiliary steam source 20 instead of the main steam a.

以上のようにして暖機操作を進めた後、最終的には蒸気
室の温度が目標のメタル温度まで昇温した判別器24の
信号を暖機弁開度調整器25に送り、暖機弁19を全閉
させる。その後、内部蒸気室10の外周の空間15a、
15bに送る暖機用の蒸気は、弁棒14とカバー14と
のギャップ17からの漏洩蒸気によってまかなう、この
ように構成すると、運転中に於いても常時内部蒸気室1
0の外壁に暖機蒸気が流入するので、内外壁の温度差が
生じない。
After proceeding with the warm-up operation as described above, the signal from the discriminator 24 indicating that the temperature of the steam chamber has finally reached the target metal temperature is sent to the warm-up valve opening degree regulator 25, and the warm-up valve 19 is fully closed. After that, a space 15a around the outer periphery of the internal steam chamber 10,
The warm-up steam to be sent to the valve stem 15b is supplied by the steam leaking from the gap 17 between the valve stem 14 and the cover 14. With this configuration, the internal steam chamber 1 is always maintained even during operation.
Since the warm-up steam flows into the outer wall of 0, there is no temperature difference between the inner and outer walls.

第5図は本発明の実施例において蒸気加減弁内壁温度T
、と同外壁温度Ts とが、メタル温度Toから目標温
Tに至る間の変化を示す図表である。双方の温度の差の
最大値ΔT m a xが、従来例(第3図)に比して
著しく小さい。
FIG. 5 shows the steam control valve inner wall temperature T in the embodiment of the present invention.
, and the outer wall temperature Ts are charts showing changes from the metal temperature To to the target temperature T. The maximum value ΔT max of the difference between both temperatures is significantly smaller than that of the conventional example (FIG. 3).

また、蒸気室のメタル温度が目標温度Tに近い状態にお
ける起動操作(ホットスタート)にあっては、暖機弁1
9を開くことなく、弁棒漏洩蒸気によって暖機を行えば
良い。
In addition, in a startup operation (hot start) when the metal temperature of the steam chamber is close to the target temperature T, the warm-up valve 1
It is sufficient to warm up the valve stem by leaking steam without opening 9.

本実施例のように蒸気室を球形に構成すると。If the steam chamber is configured in a spherical shape as in this embodiment.

蒸気室の必要肉厚が胴長の場合よりも半分の肉厚で良い
ことになる。そして、肉厚が薄いと言うことはタービン
起動時の暖機時間が短かくてすむ上に熱応力的に良好な
結果が得られることになる。
This means that the required wall thickness for the steam chamber is only half that of the length of the torso. Moreover, the thin wall thickness means that the warm-up time when starting the turbine is short, and good results can be obtained in terms of thermal stress.

しかも球形の場合は比較的均一化された肉厚にすること
が可能で応力集中に関する強度的見地からも好都合であ
る。
Furthermore, in the case of a spherical shape, it is possible to have a relatively uniform wall thickness, which is advantageous from the viewpoint of strength regarding stress concentration.

上述した球形蒸気室の利点について、以下理論的根拠を
詳述する。
The rationale for the above-mentioned advantages of the spherical steam chamber will be explained in detail below.

蒸気室の肉厚は一般に下記式で表わされろ。The wall thickness of the steam chamber is generally expressed by the following formula.

(i)  胴長の場合 Xr tl= σ t ここで  tl=胴長の場合の必要肉厚t2=球形の場
合の必要肉厚 P =蒸気室に作用する内圧 r =朋及び球の内面の半径 上式により、蒸気室の必要肉厚は、球形の場合は胴長の
場合に比して半分で良いことが解る。肉厚が薄い球形の
場合は蒸気室メタルの暖機昇温所要時間が胴長の場合の
半分で良いことになる。同時に熱応力も軽減することは
明らかである。
(i) Xr for body length tl= σ t where tl = required wall thickness for body length t2 = required wall thickness P for spherical shape = internal pressure acting on steam chamber r = radius of inner surface of body and sphere From the above formula, it can be seen that the required wall thickness of the steam chamber is only half that in the case of a spherical shape compared to the case of a long body. In the case of a spherical shape with a thin wall, the time required to warm up the steam chamber metal is half that of a long body. It is clear that thermal stress is also reduced at the same time.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の方法によれば、蒸気加減
弁の暖機時間の短縮及び熱応力の低減が可能となりター
ビン起動所要時間を短縮することが出来る。
As explained above, according to the method of the present invention, it is possible to shorten the warm-up time of the steam control valve and reduce thermal stress, and it is possible to shorten the time required for starting the turbine.

上記の暖機時間の短縮が、実用面において発揮する効果
の意義について付脱する。
The significance of the practical effect of shortening the warm-up time described above will be explained below.

最近の火力プラントはDSS、WSS等の運用が多く、
起動時間が極めて短縮化されつつある。
Recent thermal power plants often operate DSS, WSS, etc.
Start-up time is becoming extremely short.

蒸気加減弁の暖機時間の短縮はボイラ一点火からタービ
ン通気までの時間短縮に大きく寄与できる。
Reducing the warm-up time of the steam control valve can greatly contribute to shortening the time from boiler ignition to turbine venting.

更に本発明を適用すると、最近検討されている超高温高
圧タービンの主要弁に大きな効果がある。
Furthermore, application of the present invention will have a significant effect on the main valves of ultra-high-temperature, high-pressure turbines that have been studied recently.

超高温高圧タービンの蒸気条件は現在までの169 a
 t g / 566℃、246atg1538℃より
史に上昇し、7う15atg〜350atg1593℃
〜649℃となりこの場合のタービン効率は6〜8%良
くなる。この蒸気条件に耐えるため、主要弁の弁室の機
質はオーステナイト系ステンレス鋼を使わなければなら
ない。オーステナイト系のステンレス鋼の材質は現在主
要弁の蒸気室に使用している低合金鋼の材料特性よりも
耐力が格段に小さくなり、かつ熱膨張係数も大きくなる
。蒸気室の熱応力は一般的に下記の式で表わされる。
The steam conditions for ultra-high temperature and high pressure turbines are currently 169 a.
t g / 566℃, historically rising from 246atg1538℃, 715atg to 350atg1593℃
~649°C, and the turbine efficiency in this case is improved by 6-8%. In order to withstand these steam conditions, the valve chambers of the main valves must be made of austenitic stainless steel. The austenitic stainless steel material has a much lower yield strength and a higher coefficient of thermal expansion than the material properties of the low-alloy steel currently used in the steam chambers of the main valves. Thermal stress in a steam chamber is generally expressed by the following formula.

σ、=αXEXΔTくσ、S ここで σt :熱応力 α :熱膨張係数 Δ′r : m度差 σysニオステナイト系ステンレス鋼の耐力値上式で判
る様に熱応力を小さくするためにはΔTを小さくする必
要がある。先述の通すオーステナイト系の材質はσys
は非常に低値で、且っαが大きいため尚一層へTを小さ
く押える必要がある0本発明による温度差(ΔT)減少
効果は上記の要諦に対して充分に応え得るものであり、
こうした意味において、本発明は超高温高圧タービンの
発展普及に貢献するところ多大である。
σ, = αXEXΔT σ, S Here, σt: Thermal stress α: Thermal expansion coefficient Δ′r: m degree difference σys Proof strength value of niostenitic stainless steel As can be seen from the above formula, in order to reduce the thermal stress, ΔT is It needs to be made smaller. The austenitic material mentioned above is σys
is a very low value, and since α is large, it is necessary to further reduce T. The temperature difference (ΔT) reducing effect of the present invention can fully meet the above requirements,
In this sense, the present invention greatly contributes to the development and popularization of ultra-high-temperature, high-pressure turbines.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例の断面図に蒸気系統及び制御
系統を付記した説明図である。 第2図は従来の蒸気加減弁の暖機系統図、第3図は従来
の暖機法に於ける暖機弁開動作と蒸気加減弁内外壁温度
差の関係を示す図表、第4図は従来形の蒸気加減弁の断
面図、第5図は本発明の1実施例における暖機弁、ドレ
ン弁の開閉制御と蒸気加減弁内外壁温度差とを示した図
表である。 1・・・ボイラ、2・・・主蒸気止め弁、:3・・・暖
機弁、4・・・タービン、5・・・暖機弁、6・・・ド
レン弁、7・・・蒸気加減弁内壁温度、8・・・蒸気加
減弁外壁温度。 10・・・蒸気加減弁内部蒸気室、11・・・弁座、】
2・・・加減弁、13・・・弁棒、14・・・カバー、
15a。 15b・・・間隙、16・・・蒸気加減弁外部蒸気室、
17・・・ギャップ、18・・・孔、19・・・暖機弁
、20・・・補助蒸気源、21・・・孔、23・・・温
度設定器、24・・・判別器、25・・・暖機弁開度f
J14a器、26・・・ドレン弁、27・・・ドレン弁
開度調整器、a・・・主蒸気。
FIG. 1 is an explanatory diagram in which a steam system and a control system are added to a sectional view of one embodiment of the present invention. Figure 2 is a warm-up system diagram of a conventional steam control valve, Figure 3 is a chart showing the relationship between the warm-up valve opening operation and the temperature difference between the inner and outer walls of the steam control valve in the conventional warm-up method, and Figure 4 is FIG. 5, which is a sectional view of a conventional steam control valve, is a chart showing the opening/closing control of the warm-up valve and drain valve and the temperature difference between the inner and outer walls of the steam control valve in one embodiment of the present invention. 1... Boiler, 2... Main steam stop valve, : 3... Warm-up valve, 4... Turbine, 5... Warm-up valve, 6... Drain valve, 7... Steam Control valve inner wall temperature, 8...Steam control valve outer wall temperature. 10...Steam control valve internal steam chamber, 11...Valve seat,]
2... Adjustment valve, 13... Valve stem, 14... Cover,
15a. 15b... Gap, 16... Steam control valve external steam chamber,
17... Gap, 18... Hole, 19... Warm-up valve, 20... Auxiliary steam source, 21... Hole, 23... Temperature setter, 24... Discriminator, 25・・・Warm-up valve opening f
J14a device, 26... Drain valve, 27... Drain valve opening regulator, a... Main steam.

Claims (1)

【特許請求の範囲】 1、蒸気タービンに供給される駆動用蒸気を制御する蒸
気弁において、蒸気室を内、外、少なくとも2重に構成
し、かつ、その間に空隙を設けたことを特徴とする蒸気
タービン用の蒸気弁。 2、前記2重構造の蒸気室は、これをほぼ球形に構成し
たものであることを特徴とする特許請求の範囲第1項に
記載の蒸気タービン用の蒸気弁。 3、前記の空隙にに暖機用の蒸気を流通せしめる手段を
設けたことを特徴とする特許請求の範囲第1項に記載の
蒸気タービン用の蒸気弁。 4、前記の暖機用の蒸気を流通せしめる手段は、蒸気室
の内、外壁温度差に基づいて開閉制御される弁手段を設
けたものであることを特徴とする特許請求の範囲第3項
に記載の蒸気タービン用の蒸気弁。
[Scope of Claims] 1. A steam valve for controlling driving steam supplied to a steam turbine, characterized in that the steam chamber is configured in at least two layers, one inside and one outside, and a gap is provided between them. Steam valve for steam turbine. 2. The steam valve for a steam turbine according to claim 1, wherein the double-structured steam chamber has a substantially spherical shape. 3. The steam valve for a steam turbine according to claim 1, further comprising means for causing warm-up steam to flow through the gap. 4. The means for circulating the warm-up steam is provided with a valve means that is controlled to open and close based on the temperature difference between the inner and outer walls of the steam chamber. A steam valve for a steam turbine described in .
JP61080111A 1986-04-09 1986-04-09 Steam valve for steam turbine Expired - Lifetime JPH0754089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61080111A JPH0754089B2 (en) 1986-04-09 1986-04-09 Steam valve for steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61080111A JPH0754089B2 (en) 1986-04-09 1986-04-09 Steam valve for steam turbine

Publications (2)

Publication Number Publication Date
JPS62237009A true JPS62237009A (en) 1987-10-17
JPH0754089B2 JPH0754089B2 (en) 1995-06-07

Family

ID=13709073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61080111A Expired - Lifetime JPH0754089B2 (en) 1986-04-09 1986-04-09 Steam valve for steam turbine

Country Status (1)

Country Link
JP (1) JPH0754089B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043590A (en) * 2008-08-11 2010-02-25 Mitsubishi Heavy Ind Ltd Steam valve for steam turbine
JP2010043591A (en) * 2008-08-11 2010-02-25 Mitsubishi Heavy Ind Ltd Steam valve device
JP2013217219A (en) * 2012-04-05 2013-10-24 Mitsubishi Heavy Ind Ltd Steam valve
JP2015017595A (en) * 2013-07-12 2015-01-29 三菱重工業株式会社 Combination valve and steam turbine system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4170784B2 (en) * 2003-01-28 2008-10-22 株式会社東芝 Steam valve and method of manufacturing steam valve

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5412006A (en) * 1977-06-29 1979-01-29 Toshiba Corp Preheater for asteam valve body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5412006A (en) * 1977-06-29 1979-01-29 Toshiba Corp Preheater for asteam valve body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043590A (en) * 2008-08-11 2010-02-25 Mitsubishi Heavy Ind Ltd Steam valve for steam turbine
JP2010043591A (en) * 2008-08-11 2010-02-25 Mitsubishi Heavy Ind Ltd Steam valve device
JP2013217219A (en) * 2012-04-05 2013-10-24 Mitsubishi Heavy Ind Ltd Steam valve
JP2015017595A (en) * 2013-07-12 2015-01-29 三菱重工業株式会社 Combination valve and steam turbine system

Also Published As

Publication number Publication date
JPH0754089B2 (en) 1995-06-07

Similar Documents

Publication Publication Date Title
US4425762A (en) Method and system for controlling boiler superheated steam temperature
US5054996A (en) Thermal linear actuator for rotor air flow control in a gas turbine
US3983696A (en) Combustion engine having at least one outlet passage
US5018356A (en) Temperature control of a steam turbine steam to minimize thermal stresses
JPS62237009A (en) Steam valve for steam turbine
KR20040099558A (en) a system for cooling an engine
JPS60247001A (en) Thermal stress control device for steam turbine casing
JPS61138804A (en) Cooling system for steam turbine
CN210264832U (en) Warming-up device applied to double-layer cylinder steam turbine
JP2953794B2 (en) Steam control valve chest warming method
CN108825312A (en) A kind of turbine high-pressure main steam control valve group
JPH0236896Y2 (en)
JPS63255507A (en) Exhaust air temperature control device for internal combustion engine
JPH0281905A (en) Forced cooling method for steam turbine and cooling device for the same
JPH0356796A (en) Oil heating device
KR102341183B1 (en) A system for recycling waste heat using gas generator
JPH06101418A (en) Casing temperature adjustment device for steam turbine
JPS58124009A (en) Main steam valve device
JPS62324B2 (en)
JPS60164606A (en) Piping warming up control device
SU1126027A1 (en) Steam turbine cylinder
SU889873A1 (en) Steam turbine regulocking valve body
JPS5881280A (en) Main steam valve device
JPS6079107A (en) Turbine starting method
JPS5817330B2 (en) High pressure turbine rotating shaft cooling method