JPS6183802A - Boiler boosting controller - Google Patents

Boiler boosting controller

Info

Publication number
JPS6183802A
JPS6183802A JP20549984A JP20549984A JPS6183802A JP S6183802 A JPS6183802 A JP S6183802A JP 20549984 A JP20549984 A JP 20549984A JP 20549984 A JP20549984 A JP 20549984A JP S6183802 A JPS6183802 A JP S6183802A
Authority
JP
Japan
Prior art keywords
pressure
boiler
steam
stress
thermal stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20549984A
Other languages
Japanese (ja)
Other versions
JPH0646083B2 (en
Inventor
庫本 篤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP59205499A priority Critical patent/JPH0646083B2/en
Publication of JPS6183802A publication Critical patent/JPS6183802A/en
Publication of JPH0646083B2 publication Critical patent/JPH0646083B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はボイラ昇圧制御装置に係り、特に過熱器の出口
ヘッダのコー十部に発生する熱応力を減少させて寿命消
費量を低減するボイラ昇圧制御装置に関するものである
。゛ 〔発明の背景〕 近年急増する電力需要に応えるために大容量の火力発電
所が建設されているが、これらのボイラは部分負荷時に
おいても高い発電効率を得るために、超臨界圧から亜臨
界圧へ変圧運転を行なうことが要求されている。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a boiler boost control device, and particularly to a boiler boost control device that reduces thermal stress generated in the cord section of the outlet header of a superheater and reduces life consumption. This relates to a control device. [Background of the Invention] Large-capacity thermal power plants have been constructed in recent years to meet the rapidly increasing demand for electricity.In order to obtain high power generation efficiency even during partial load, these boilers have to convert from supercritical pressure to subcritical pressure. It is required to perform variable pressure operation to critical pressure.

これは最近の電力需要の特徴として、原子力発nの伸び
と共に、負荷の最大と最小の差も増大し、火力発電はベ
ースロード用から負荷調整用へと移行する傾向にあるか
らである。
This is because, as a feature of recent electricity demand, as nuclear power generation increases, the difference between maximum and minimum loads increases, and thermal power generation tends to shift from base load to load adjustment.

つまり、火力発電は、ボイラ負荷が常に全負荷で・運転
されるものは少なく、負荷を80%負荷、50%負荷、
25%負荷へと負荷を上げ、下げして運転したり、運転
を停止するなど、いわゆる高H度起動停止CDaily
 5tart 5top 以下単にDsSという)運転
を行なって中間負荷を担うのである。
In other words, in thermal power generation, the boiler load is always operated at full load.There are few cases where the boiler load is always operated at full load.
So-called high-H start/stop CDaily, such as increasing the load to 25% load, lowering it, and stopping the operation.
5tart 5top (hereinafter simply referred to as DsS) operation to carry intermediate loads.

このように火力発電は部分負荷での運転が増えた場合、
負荷に応じて圧力を変化させて運転する、いわゆる全負
荷では超臨界圧域、部分負荷では亜臨界圧域で運転する
DSS運転を行なうことによって、部分負荷での発電効
率を数%向上させることができる。
In this way, if thermal power generation is operated at partial load,
By performing DSS operation, which operates by changing the pressure according to the load, operating in the supercritical pressure region at full load and in the subcritical pressure region at partial load, power generation efficiency at partial load can be improved by several percentage points. Can be done.

第2図は変圧運転強制貫流ボイラの概略系統図である。FIG. 2 is a schematic system diagram of a forced once-through boiler operated at variable pressure.

給水ポンプ1で昇圧された給水は給水管路2で給水加熱
器3で加熱された後、節炭器4に入り、予熱されて火炉
水冷壁5,6で熱吸収し、天井壁7、ケージ壁8で再び
熱吸収されて蒸発し、気水分離器9に流入する。
The feed water pressurized by the feed water pump 1 is heated by the feed water heater 3 in the water supply pipe line 2, then enters the economizer 4, where it is preheated and absorbed by the furnace water cooling walls 5 and 6, and is then transferred to the ceiling wall 7 and the cage. Heat is absorbed again by the wall 8, evaporates, and flows into the steam/water separator 9.

気水分離器9で分離された給水は循環管路10の再循環
ポンプ11で昇圧され、再循環流量調整弁12により火
炉水冷壁5,6を冷却するために必要な流量に調整され
、給水管路2の給水と合流する。
The feed water separated by the steam water separator 9 is pressurized by the recirculation pump 11 in the circulation pipe 10, and adjusted to the flow rate necessary for cooling the furnace water cooling walls 5, 6 by the recirculation flow rate adjustment valve 12. It merges with the water supply of pipe line 2.

一方、気水分1w器9のレベルは気水分M器水位制御弁
13により調整され、気水分離器9で分離された蒸気は
一次過熱器バイパス管路14、−大過熱器バイパス弁1
5を経てフラッシュタンク16に導かれる。
On the other hand, the level of the steam/moisture 1w device 9 is adjusted by the steam/moisture M device water level control valve 13, and the steam separated in the steam/water separator 9 is passed through the primary superheater bypass line 14 - the large superheater bypass valve 1.
5 and is led to a flash tank 16.

この導かれた流体はフラッシュタンク16で気水分離さ
れ、液状流体はフラッシュタンクドレン弁17を有する
液体戻し管路18より復水器19の源側に供給され、蒸
気状流体はフラッシュタンク蒸気ダンプ弁20を有する
蒸気戻し管路21より復水器19の蒸気側に供給されそ
れぞれ回収される。復水器19の蒸気側に供給されそれ
ぞれ回収される。
This led fluid is separated into steam and water in a flash tank 16, the liquid fluid is supplied to the source side of the condenser 19 from a liquid return line 18 having a flash tank drain valve 17, and the vapor fluid is transferred to a flash tank steam dump. The steam is supplied to the steam side of the condenser 19 through a steam return line 21 having a valve 20 and recovered. They are supplied to the steam side of the condenser 19 and recovered.

この復水器19で回収された復水は給水となって復水管
路22より復水ポンプ23で圧送されて脱気器24に導
かれて、ここで脱気されその後再び給水管路2に導かれ
る。
The condensate recovered in the condenser 19 becomes feed water and is pumped through the condensate pipe 22 by the condensate pump 23 and led to the deaerator 24, where it is deaerated and then returned to the water supply pipe 2. be guided.

他方、ケージ壁8の蒸気温度及び蒸気圧力が上昇するに
つれて発生蒸気の一部は蒸気供給管路25を経て一次過
熱器26に供給され、ここでさらに過熱された蒸気は二
次過熱器バイパス管路27、二次過熱器バイパス弁28
を経てフラッシュタンク16へ導かれる。
On the other hand, as the steam temperature and steam pressure on the cage wall 8 rise, a part of the generated steam is supplied to the primary superheater 26 via the steam supply pipe 25, and the steam further superheated here is supplied to the secondary superheater bypass pipe. passage 27, secondary superheater bypass valve 28
It is guided to the flash tank 16 through the.

また−次週熱器26で加熱された蒸気は過熱器減圧弁2
9を経て二次過熱器60で過熱され主蒸気管路31へ供
給される。
Also, the steam heated in the heater 26 next week will be transferred to the superheater pressure reducing valve 2.
9, is superheated in a secondary superheater 60, and is supplied to the main steam pipe line 31.

この様に主蒸気管路61が暖まるまでは絞り弁32が閉
じられて蒸気はタービンバイパス管路33、ター1:”
ンバイパス弁64を経てフラッシュタンク16へ導かれ
る。
In this way, the throttle valve 32 is closed until the main steam line 61 warms up, and the steam is transferred to the turbine bypass line 33 and the turbine 1.
is led to the flash tank 16 via a bypass valve 64.

その後に主蒸気管路31が暖まると絞り弁62をやや開
いてタービンバイパス弁64を閉じて高圧タービン35
へ蒸気を供給しタービン暖機運転に入る。
After that, when the main steam line 31 warms up, the throttle valve 62 is slightly opened and the turbine bypass valve 64 is closed, and the high-pressure turbine 35
supply steam to the turbine and start turbine warm-up operation.

高圧タービン35を出た蒸気は再熱器66によって加熱
され、低圧タービン67を経て排気管路68より復水器
19に導かれる。69は脱気器加熱蒸気弁、40はバー
ナ、41は燃料調節弁である0 一方、二次過熱器60の出口には第6図に示す様な出口
ヘッダ40が取付けられ、ノズルコーナ部41を有する
Steam exiting the high-pressure turbine 35 is heated by a reheater 66, passes through a low-pressure turbine 67, and is guided to the condenser 19 via an exhaust pipe 68. 69 is a deaerator heating steam valve, 40 is a burner, and 41 is a fuel control valve.On the other hand, an outlet header 40 as shown in FIG. 6 is attached to the outlet of the secondary superheater 60, and the nozzle corner portion 41 is have

ところが、火力発電用ボイラの中間負荷運用化に伴ない
DBS運転を行なうと、ボイラ耐圧部の厚肉管(二次過
熱器30の出口ヘッダ42のノズルコーナ部43)に発
生する応力、およびこの応力に伴なう寿命消費が問題と
なる。
However, when DBS operation is performed in conjunction with intermediate load operation of boilers for thermal power generation, stress occurs in the thick-walled tube of the boiler pressure-resistant section (nozzle corner portion 43 of the outlet header 42 of the secondary superheater 30), and this stress Life consumption associated with this becomes a problem.

特に、高温で高圧の蒸気にさらされる最終過熱器30の
出口ヘッダ42の7ズルフ一ナ部43に発生する応力、
寿命消費はボイラプラントが要求される運用期間を信頼
性高く運用できるか否かの重要な評価基準になっている
In particular, the stress generated in the inner part 43 of the outlet header 42 of the final superheater 30, which is exposed to high temperature and high pressure steam;
Lifetime consumption is an important evaluation criterion for whether a boiler plant can operate reliably for the required operating period.

最終過熱器30の出口へラダ42で消費される寿命の大
部分はクリープ損傷によるものである。
Most of the life consumed in the ladder 42 to the exit of the final superheater 30 is due to creep damage.

以下このクリープ損傷評価法を第4図を用いて簡単に説
明する。
This creep damage evaluation method will be briefly explained below using FIG. 4.

第4図は横軸に時間、縦軸に応力を示したボイラ起動時
の発生応力模式図である。
FIG. 4 is a schematic diagram of the stress generated when the boiler is started, with time on the horizontal axis and stress on the vertical axis.

ボイラをコールドスタートで運転して停止したり、ある
いはウオームスタートで運転して停止したりの様に、運
転、停止を繰り返すと第3図の出口ヘッダ42の中で最
も発生応力の大きいノズルコーナ部46の応力は第4図
に示す様に変化する。
When the boiler is repeatedly operated and stopped, such as when the boiler is operated with a cold start and then stopped, or when it is operated and stopped with a warm start, the nozzle corner portion 46 in the outlet header 42 shown in FIG. 3 has the largest stress. The stress changes as shown in FIG.

それは、ボイラ点人後、出口ヘッダ42の流体温度上昇
とともに第4図のA点からB点では圧縮応力が発生し、
定常運転に移行するに従って第4図のB点から0点では
引張応力が発生する。この現象は、A点からB点間では
熱応力、B点からD点間では熱応力に対して内圧応力が
優勢になっていることを表わしている。
This is because after the boiler is turned on, compressive stress is generated from point A to point B in Fig. 4 as the fluid temperature in the outlet header 42 rises.
As the operation shifts to steady state, tensile stress is generated from point B to point 0 in FIG. This phenomenon indicates that thermal stress is dominant between points A and B, and internal pressure stress is dominant over thermal stress between points B and D.

ここで、蒸気温度が出口ヘッダ41の材質により決まる
クリープ温度領域を越える所で、応力を保持していると
クリープ損傷による寿命を消費することになる。
Here, if stress is maintained at a point where the steam temperature exceeds the creep temperature range determined by the material of the outlet header 41, the service life will be wasted due to creep damage.

第5図は縦軸に第4図の応力を示し、横軸にひずみを示
した応力、ひずみ特性曲線図で、第5図中の^ゝ、B、
O,D点は第4図のA、B、O,D点と同一のものを示
す。
Figure 5 is a stress/strain characteristic curve diagram in which the stress in Figure 4 is shown on the vertical axis and the strain is shown on the horizontal axis.
Points O and D are the same as points A, B, O and D in FIG.

クリープ損傷は、第4図、第5図の初期応力σiとクリ
ープ保持時間により決まるが、第4図、第5図の初期応
力σ1 は、下式(1)で得られる。
Creep damage is determined by the initial stress σi and creep holding time shown in FIGS. 4 and 5, and the initial stress σ1 shown in FIGS. 4 and 5 is obtained by the following formula (1).

ア σi−(σr + Yt) (−1)+すτ・・・・・
(1)ここに、すf:定格運転時相当応力 σf :圧縮最大相当応力  ゛ (マイナスは圧縮応力、プラスは 引張応力) E、F:材質、温度により決る定数 Y1:降伏応力 初期応力σi を抑えて、クリープ損傷を小さくしよう
とすれば(1)式のうち圧縮最大相当応力στ(第4図
、第5図のB点)の絶対値を抑えることが必要になる。
Aσi−(σr + Yt) (−1)+suτ・・・・・・
(1) Here, f: Equivalent stress at rated operation σf: Maximum compressive equivalent stress (minus: compressive stress, plus: tensile stress) E, F: Constant determined by material and temperature Y1: Yield stress Initial stress σi In order to reduce the creep damage, it is necessary to suppress the absolute value of the maximum compressive equivalent stress στ (point B in FIGS. 4 and 5) in equation (1).

すなわち、前記(1)式で、定格運転は、材質、温度に
より決まるので直接制御することはできないからである
That is, in the above equation (1), the rated operation is determined by the material and temperature and cannot be directly controlled.

第6図はボイラの連続運転時間(保持時間)を一定とし
たときの圧縮最大相当応力δζ と寿命消費率φの特性
曲線図で、目盛は両対数表示である0この第6図からク
リープ損傷は圧縮最大相当応力δζ に依存している。
Figure 6 is a characteristic curve diagram of maximum compressive equivalent stress δζ and life consumption rate φ when the continuous operation time (holding time) of the boiler is constant, and the scale is logarithmic. depends on the maximum compressive equivalent stress δζ.

第7図は縦軸に蒸気圧力、蒸気温度を示し、横軸に時間
を示した起動時の蒸気圧力、蒸気温度の時間変化?示す
特性曲線図、第8図は縦軸に応力、横軸に時間を示し、
第7図の流体条件における過熱器60における出口ヘッ
ダ42のノズルコーナ部43に発生する熱応力、内圧応
力の変化を示す特性曲線図である。
In Figure 7, the vertical axis shows steam pressure and steam temperature, and the horizontal axis shows time. Changes in steam pressure and steam temperature over time at startup? The characteristic curve diagram shown in Figure 8 shows stress on the vertical axis and time on the horizontal axis,
8 is a characteristic curve diagram showing changes in thermal stress and internal pressure stress generated in the nozzle corner portion 43 of the outlet header 42 in the superheater 60 under the fluid conditions of FIG. 7. FIG.

なお、第7図において曲線Gは蒸気温度、曲線Hは蒸気
圧力、第8図において、曲線工は内圧応力、曲線Jは熱
応力を示し、TI−Tsは時間を示す。
In addition, in FIG. 7, the curve G shows the steam temperature, the curve H shows the steam pressure, and in FIG. 8, the curve line shows the internal pressure stress, the curve J shows the thermal stress, and TI-Ts shows the time.

従来のボイラ起動時におけるタービン通気(第7図、#
!8図のT2)後、ボイラが再循環運転されている間(
第7図、tJs図の’I’s)の昇圧制御は主蒸気圧カ
一定の目標設定を行ない第2図に示すり・ −ビンバイ
パス弁34を閉じるか、あるいは燃料調節弁41を開い
て第7図の曲線H上に示すK。
Turbine ventilation during conventional boiler startup (Fig. 7, #
! After T2 in Figure 8), while the boiler is in recirculation operation (
The pressure increase control of 'I's in the tJs diagram in Fig. 7 is performed by setting a constant target for the main steam pressure as shown in Fig. 2. K shown on curve H in FIG.

L、M、N点の様に主蒸気圧力を上げて制御していた。It was controlled by increasing the main steam pressure at points L, M, and N.

従って、変圧ペンソンボイラの最終過熱器30の出口ヘ
ッダ42に発生する応力を実運転データより解析すると
通気時T2  から低負荷時(循環運転時) Ta  
間において□は第8図の曲線Jで示す如く最大の圧縮相
当応力δζ が発生している。
Therefore, when the stress generated in the outlet header 42 of the final superheater 30 of a transformer Penson boiler is analyzed from actual operation data, it varies from T2 during ventilation to Ta at low load (during circulation operation).
As shown by the curve J in FIG. 8, the maximum compressive equivalent stress δζ occurs in the area □.

この様にT2からIII、においては第8図の曲線Jで
は圧縮応力がピークになり、曲線工では引張応力が一定
であり、圧縮最大相当応力δζ を低下させてクリープ
損傷による寿命消費を低減することはできない。   
     り 〔発明の目的〕 本発明はかかる従来の欠点を解消しようとするもので、
その目的とするところは、ボイラ起動時に過熱器の出口
ヘッダに発生する熱応力を減少して発生応力、寿命消費
を低減し、ボイラにおける信頼性の向上を計ることがで
きるざイラ昇圧制御装置を得ようとするものである。
In this way, from T2 to III, compressive stress peaks at curve J in Figure 8, while tensile stress remains constant at curved lines, reducing the maximum compressive equivalent stress δζ and reducing life consumption due to creep damage. It is not possible.
[Object of the Invention] The present invention aims to eliminate such conventional drawbacks,
The objective is to develop a boiler boost control system that can reduce the thermal stress generated at the outlet header of the superheater when the boiler is started, thereby reducing the generated stress and life consumption, and improving the reliability of the boiler. That's what you're trying to get.

〔発明の概要〕[Summary of the invention]

本発明は前述の目的を達成するために、実測値を基にボ
イラ耐圧部に発生する熱応力を予測する熱応力ピーク予
測器と、この熱応力ピーク予測器からの熱応力ピーク予
測値を基に主蒸気圧力を設定する主蒸気圧力設定器を設
け、主蒸気圧力設定器からの主蒸気圧力設定値と、主蒸
気圧力検出器からの主蒸気圧力実測値との偏差によって
ボイラ耐圧部の内圧を高めるようにしたものである。
In order to achieve the above-mentioned object, the present invention provides a thermal stress peak predictor that predicts the thermal stress occurring in a boiler pressure section based on actual measurement values, and a thermal stress peak predictor based on the thermal stress peak predicted value from the thermal stress peak predictor. A main steam pressure setting device is installed to set the main steam pressure, and the internal pressure of the boiler pressure-resistant section is determined by the deviation between the main steam pressure set value from the main steam pressure setting device and the main steam pressure actual value from the main steam pressure detector. It was designed to increase the

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の実施例に係るボイラの昇圧制御装置の
概略系統図である。
FIG. 1 is a schematic system diagram of a boiler boost control device according to an embodiment of the present invention.

第1図において蒸気温度検出器44により蒸気温度実測
値45、蒸”気圧力検出器46により蒸気圧力実測値4
7、蒸気流量検出器48により蒸気流量実測値49を検
出する。検出した実測値45゜47.49をもとに、統
計モデルにより区間(第7図、第8図のT2〜Ts間)
内の時刻における流体条件を予測する。すなわち、蒸気
温度予測器50において蒸気温度予測値51、蒸気圧力
予測器52において蒸気圧力予測値53、蒸気流量予測
器54において蒸気流量予測値55が得られる。
In FIG. 1, the steam temperature detector 44 indicates an actual steam temperature value 45, and the steam pressure detector 46 indicates an actual steam pressure value 4.
7. The steam flow rate detector 48 detects the actual steam flow rate value 49. Based on the detected actual measurement value of 45°47.49, the interval (between T2 and Ts in Figures 7 and 8) is calculated using a statistical model.
Predict fluid conditions at times within. That is, the steam temperature predictor 50 obtains a steam temperature predicted value 51, the steam pressure predictor 52 obtains a steam pressure predicted value 53, and the steam flow rate predictor 54 obtains a steam flow rate predicted value 55.

これら予測値51.53.55の流体条件から流体から
熱伝達率演算器56においてメタルへの熱伝達率演算値
57を求める。これをもとに、非定常熱伝導方程式を解
いて管寄板厚方向温度外布を求める。
Based on the fluid conditions of these predicted values 51, 53, and 55, a heat transfer coefficient calculation value 57 from the fluid to the metal is determined by a heat transfer coefficient calculation unit 56. Based on this, the unsteady heat conduction equation is solved to find the temperature distribution in the thickness direction of the header board.

例えば円筒の熱伝達方程式■および境界条件(3)、(
4)を解くことにより求める。
For example, the heat transfer equation for the cylinder ■ and the boundary condition (3), (
It is obtained by solving 4).

工 1 “T1ff”I’  ・・・・・・・・・・・
・■α−τ−τ=シ+717  。
Engineering 1 “T1ff”I' ・・・・・・・・・・・・
・■α−τ−τ=shi+717.

J Clニーh(Tt   To)’内面境界条件・・
・(6)α r cr T−o         、外面境界条件・・・
A)α r α:メタル温度伝導度 T:メタル温度68時間   
    r:円筒中心からの距離Tf:流体温度   
 T、:メタル内面温度この方程式■、(3)、(4)
を解いて求められた熱伝達率演算値57を基に温度分布
演算器58によって温度分布演算値59を求める。
J Cl knee h (Tt To)' inner boundary condition...
・(6) α r cr T−o, outer boundary condition...
A) α r α: Metal temperature conductivity T: Metal temperature 68 hours
r: Distance from cylinder center Tf: Fluid temperature
T: Metal inner temperature This equation ■, (3), (4)
A temperature distribution calculation value 59 is determined by a temperature distribution calculation unit 58 based on the heat transfer coefficient calculation value 57 obtained by solving the equation.

この温度分布演算値59より、熱応力演算器60におい
て熱応力演算値61を求める。つぎに、熱応力演算値6
1を基に熱応力ピーク時刻予測器62において、区間内
で最大の圧縮熱応力が発生する時刻を予測する。
From this temperature distribution calculation value 59, a thermal stress calculation value 61 is determined by a thermal stress calculation unit 60. Next, the thermal stress calculation value 6
1, the thermal stress peak time predictor 62 predicts the time at which the maximum compressive thermal stress will occur within the section.

この様に蒸気温度予11!I器50、蒸気圧力予測器5
2、蒸気流量子1m器54、熱伝達率演算器56、温度
分布演算器58、熱応力演算器6Gおよび熱応力ピーク
時刻予測器62によって熱応力ピーク予測器63が構成
されている。
In this way, the steam temperature is predicted to be 11! I device 50, steam pressure predictor 5
2. The thermal stress peak predictor 63 is composed of the steam flow rate 1m device 54, the heat transfer coefficient calculator 56, the temperature distribution calculator 58, the thermal stress calculator 6G, and the thermal stress peak time predictor 62.

この熱応力ピーク予測器63からの熱応力ピーク予測値
64に基し1て主蒸気圧力設定器65において、その区
間(#!7図、第8図のT1−Ti)での昇圧が、熱応
力ピーク発生時刻に一致するよう、主蒸気圧力設定を行
なう。
Based on the predicted thermal stress peak value 64 from the thermal stress peak predictor 63, the main steam pressure setting unit 65 determines whether the pressure increase in that section (T1-Ti in Figures #!7 and 8) The main steam pressure is set to match the stress peak occurrence time.

この主蒸気圧力設定器65で設定した主蒸気圧力設定値
66と、蒸気圧力検出器46で検出された蒸気圧力実測
値47を一致させるために演算器67によって偏差68
を求め、この偏差68を比例積分演算器69に入れ、出
力信号7oを弁開度調節rI71に与える制御信号72
によってタービンバイパス弁34を閉じるか、あるいは
燃料調節弁41を開いて昇圧するのである。
In order to match the main steam pressure setting value 66 set by the main steam pressure setting device 65 and the steam pressure actual value 47 detected by the steam pressure detector 46, the calculator 67 uses a deviation 68.
This deviation 68 is input to the proportional integral calculator 69, and the control signal 72 gives the output signal 7o to the valve opening adjustment rI71.
Accordingly, the turbine bypass valve 34 is closed or the fuel control valve 41 is opened to increase the pressure.

従来のボイラ起動時における昇圧制御は、前述した様に
タービンバイパス弁64、燃料調節弁41の弁操作はプ
ログラム制御により行なわれ、その目標圧力の設定は計
画時に決めたものを泪い変更されるものではなく第7図
の曲線Hで示す様にに、L、M点へと昇圧していた。
In the conventional pressure increase control at the time of boiler startup, as mentioned above, the valve operations of the turbine bypass valve 64 and the fuel control valve 41 are performed by program control, and the target pressure setting is changed from that determined at the time of planning. Instead, the pressure increased to points L and M, as shown by curve H in Figure 7.

ところが、本発明においては、高温、高圧の蒸気にさら
される過熱器出口ヘッダ60等のクリープ損傷による寿
命消費に大きく寄与する起動時の圧縮応力δ、に注目し
、目標圧力設定を行なうものでタービン通気時(第7,
8図のTz)からボイラの再循環運転時(第7.8図の
Ts)間に第7図の破線Oで示す如く内圧をに、P、M
へと高くし、第8図の曲線Jで示す圧縮熱応力のピーク
に一致するように昇圧するのである。
However, in the present invention, the target pressure is set by focusing on the compressive stress δ at startup, which greatly contributes to the life consumption due to creep damage of the superheater outlet header 60 etc. exposed to high temperature and high pressure steam. During ventilation (7th,
During the recirculation operation of the boiler (Ts in Figure 7.8), the internal pressure is changed to P, M as shown by the broken line O in Figure 7.
The pressure is increased to match the peak of compressive thermal stress shown by curve J in FIG.

第8図で昇圧時、圧縮熱応力ピークに昇圧を一致させた
場合、蒸気圧力は第7図の破線Oで示すように高くなる
が、内圧応力は第8図の破線Qで示すように低くなる。
When increasing the pressure in Figure 8, if the pressure increase coincides with the compression thermal stress peak, the steam pressure will increase as shown by the broken line O in Figure 7, but the internal pressure stress will decrease as shown by the broken line Q in Figure 8. Become.

つまり、従来の昇圧装置では内圧応力は第8図の曲線■
(実線)で示す如く大きくなり、この時の昇正による熱
応力への影響は小さく、熱応力は第8図の曲線Jで示す
如く変らない。
In other words, in the conventional pressure booster, the internal pressure stress is the curve shown in Figure 8.
(solid line), the influence of the increase on the thermal stress at this time is small, and the thermal stress does not change as shown by the curve J in FIG.

つぎに、過熱器30における出口ヘッダ42ノズル内面
コーナ部43でのトータルの発生応力を見ると、本発明
のように昇圧させると圧縮の熱応力を引張の内圧応力で
相殺することになり、第4図および第5図における従来
の点A、B、O,Dの実線は、本発明の点A、R,8,
Tの破線の様になる。
Next, looking at the total stress generated at the outlet header 42 nozzle inner corner portion 43 in the superheater 30, when the pressure is increased as in the present invention, the compressive thermal stress is offset by the tensile internal pressure stress. The solid lines of the conventional points A, B, O, and D in FIGS. 4 and 5 are the points A, R, 8, and 8 of the present invention.
It will look like the broken line of T.

従って、結果的には圧縮応力の絶対値を小さくすること
になり、クリープ寿命消費をそれだけ小さくすることが
できる。
Therefore, as a result, the absolute value of the compressive stress is reduced, and the creep life consumption can be reduced accordingly.

なお第6図において、材質、設計圧力にもよるが、例え
ば、保持時間100時間で圧縮最大相当応力δtを16
蝙−から15〜〜 に抑えるこ、 とができれば、寿命
消費率φは約0.00007から約0.00006にな
り寿命消費を約14%低減することができる。
In Fig. 6, although it depends on the material and design pressure, for example, if the maximum equivalent compressive stress δt is 16 at a holding time of 100 hours,
If it is possible to suppress the loss to 15~~, the lifetime consumption rate φ will go from about 0.00007 to about 0.00006, and the lifetime consumption can be reduced by about 14%.

〔発明の効果〕〔Effect of the invention〕

本発明は実測値な基にボイラ耐圧部に発生する熱応力を
予測する熱応力ピーク予?llI器と、この熱応力ピー
ク予測器からの熱応力ピーク予測値を基に主蒸気圧力を
設定する主蒸気圧力設定器を設け、主蒸気圧力設定器か
らの主蒸気圧力設定値と、主蒸気圧力検出器からの主蒸
気圧力実測値との偏差によってボイラ耐圧部の内圧を高
めるようにしたので、ボイラ起動時に発生する熱応力を
減少して寿命消費を低減することができ、しかもDS8
運転を行なうものにおいては特に有効である。
The present invention is a thermal stress peak prediction system that predicts the thermal stress generated in the boiler pressure-resistant part based on actual measured values. A main steam pressure setter that sets the main steam pressure based on the predicted thermal stress peak value from the thermal stress peak predictor is provided. Since the internal pressure of the boiler pressure-resistant section is increased based on the deviation from the actual main steam pressure measured by the pressure detector, it is possible to reduce the thermal stress that occurs when starting the boiler and reduce the life consumption.Moreover, the DS8
This is particularly effective for vehicles that are driven.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係るボイラ昇圧制御装置の概
略系統図、第2図は変圧運転強制貫流ボイラの概略系統
図、第3V4は出口ヘッダのノズルコーナ部を示す拡大
断面図、第4図はボイラ起動時の発生応力模式図1.第
5図は第4図の応力とひずみの特性曲線図、第6図は圧
縮最大相当応力と寿命消費率の特性曲線図、第7図は起
動時の蒸気圧力、蒸気温度の時間変化を示す特性曲線図
、第811!Jは熱応力、内圧応力の時間変化?示す特
性曲線図である。 34・・・タービンバイパス弁、41・・・燃料mtm
弁、42・・・出口ヘッダ、43・・・ノズルコーナ部
、45・・・蒸気温度実測値、46・・・蒸気圧力検出
器、47・・・蒸気圧力実測値、49・・・蒸気流量実
測値、63・・・熱応力ピーク予測器、64・・・熱応
力ピーク予測値、65・・・主蒸気圧力設定器、66・
・・主蒸気圧力設定値、67・・・演算器、68・・・
偏差、71・・・弁開度調節器。 第2図 第3図 第4図 @5図 第6図 〃 □寿命清I卆ψ
Fig. 1 is a schematic system diagram of a boiler boost control device according to an embodiment of the present invention, Fig. 2 is a schematic system diagram of a variable pressure operation forced once-through boiler, No. 3V4 is an enlarged sectional view showing the nozzle corner of the outlet header, and No. 4 Figure 1 is a schematic diagram of the stress generated during boiler startup. Figure 5 is a characteristic curve diagram of stress and strain in Figure 4, Figure 6 is a characteristic curve diagram of maximum compressive equivalent stress and life consumption rate, and Figure 7 is a graph of steam pressure and steam temperature changes over time at startup. Characteristic curve diagram, No. 811! Is J the temporal change in thermal stress or internal pressure stress? FIG. 34...Turbine bypass valve, 41...Fuel mtm
Valve, 42... Outlet header, 43... Nozzle corner section, 45... Steam temperature actual value, 46... Steam pressure detector, 47... Steam pressure actual value, 49... Steam flow rate actual measurement Value, 63... Thermal stress peak predictor, 64... Thermal stress peak predicted value, 65... Main steam pressure setting device, 66.
...Main steam pressure setting value, 67...Calculator, 68...
Deviation, 71...Valve opening adjuster. Figure 2 Figure 3 Figure 4 @ 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] ボイラ耐圧部からの蒸気温度、蒸気流量、圧力の実測値
を基に燃料調節弁、タービンバイパス弁を開、閉する弁
開度調節器を備え、ボイラ起動時の昇圧を制御するもの
において、前記実測値を基にボイラ耐圧部に発生する熱
応力を予測する熱応力ピーク予測器と、この熱応力ピー
ク予測器からの熱応力ピーク予測値を基に主蒸気圧力を
設定する主蒸気圧力設定器を設け、主蒸気圧力設定器か
らの主蒸気圧力設定値と、主蒸気圧力検出器からの主蒸
気圧力実測値との偏差によってボイラ耐圧部の内圧を高
めるようにしたことを特徴とするボイラ昇圧制御装置。
The above-mentioned device is equipped with a valve opening controller that opens and closes a fuel control valve and a turbine bypass valve based on actual measured values of steam temperature, steam flow rate, and pressure from a boiler pressure-resistant part, and controls pressure increase at the time of boiler startup. A thermal stress peak predictor that predicts the thermal stress generated in the boiler pressure-resistant part based on actual measurement values, and a main steam pressure setting device that sets the main steam pressure based on the thermal stress peak predicted value from this thermal stress peak predictor. A boiler booster characterized in that the internal pressure of the boiler pressure-resistant part is increased by the deviation between the main steam pressure setting value from the main steam pressure setting device and the main steam pressure actual value from the main steam pressure detector. Control device.
JP59205499A 1984-10-02 1984-10-02 Boiler boost controller Expired - Fee Related JPH0646083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59205499A JPH0646083B2 (en) 1984-10-02 1984-10-02 Boiler boost controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59205499A JPH0646083B2 (en) 1984-10-02 1984-10-02 Boiler boost controller

Publications (2)

Publication Number Publication Date
JPS6183802A true JPS6183802A (en) 1986-04-28
JPH0646083B2 JPH0646083B2 (en) 1994-06-15

Family

ID=16507868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59205499A Expired - Fee Related JPH0646083B2 (en) 1984-10-02 1984-10-02 Boiler boost controller

Country Status (1)

Country Link
JP (1) JPH0646083B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011157853A (en) * 2010-01-29 2011-08-18 Chugoku Electric Power Co Inc:The Heat recovery device and heat recovery method for turbine in power generation facility

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59219604A (en) * 1983-05-26 1984-12-11 株式会社日立製作所 Controller for warm air in steam piping

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59219604A (en) * 1983-05-26 1984-12-11 株式会社日立製作所 Controller for warm air in steam piping

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011157853A (en) * 2010-01-29 2011-08-18 Chugoku Electric Power Co Inc:The Heat recovery device and heat recovery method for turbine in power generation facility

Also Published As

Publication number Publication date
JPH0646083B2 (en) 1994-06-15

Similar Documents

Publication Publication Date Title
US4425762A (en) Method and system for controlling boiler superheated steam temperature
US9593844B2 (en) Method for operating a waste heat steam generator
US4651533A (en) Protection-driving method of a feedwater heater and the device thereof
RU2467250C2 (en) Operating method of combined-cycle turbine plant, and combined-cycle turbine plant designed for that purpose
JP2010223579A (en) Single loop temperature regulation control mechanism
JP2008032367A (en) Control method for once-through waste heat recovery boiler
AU2008328934A1 (en) Method for operating a once-through steam generator and forced-flow-once-through steam generator
JP5183305B2 (en) Startup bypass system in steam power plant
JPH0353525B2 (en)
CN101305163B (en) Method for starting a steam turbine installation
JP7111525B2 (en) Once-through heat recovery boiler and control system for once-through heat recovery boiler
JPS6183802A (en) Boiler boosting controller
KR101960554B1 (en) Method for operating a once-through steam generator and steam generator designed for carrying out the method
JP2005214047A (en) Combined cycle power generation plant and method of operating the same
JP3285946B2 (en) Steam temperature controller for variable-pressure once-through boiler
CN114543074B (en) DC coal-fired generator set starting system
JPS63682B2 (en)
JP2653798B2 (en) Boiler and turbine plant control equipment
JP5409882B2 (en) Operation method of start-up bypass system in steam power plant
JP2511400B2 (en) Steam temperature control method for once-through boiler
SU931916A1 (en) Method of cooling steam turbine
JPH11159305A (en) Pressurized fluidized bed combined generating plant
JPH0325201A (en) Boiler starting control device
JPH01212802A (en) Steam temperature control device for boiler
JP2799506B2 (en) Start-up control device for once-through boiler

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees