JPH034371B2 - - Google Patents

Info

Publication number
JPH034371B2
JPH034371B2 JP58044477A JP4447783A JPH034371B2 JP H034371 B2 JPH034371 B2 JP H034371B2 JP 58044477 A JP58044477 A JP 58044477A JP 4447783 A JP4447783 A JP 4447783A JP H034371 B2 JPH034371 B2 JP H034371B2
Authority
JP
Japan
Prior art keywords
mol
polypropylene
film
polymerization
propylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58044477A
Other languages
Japanese (ja)
Other versions
JPS59171625A (en
Inventor
Masaki Kamyama
Mamoru Kioka
Norio Kashiwa
Masanobu Ishama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP4447783A priority Critical patent/JPS59171625A/en
Priority to DE8484300453T priority patent/DE3461811D1/en
Priority to CA000446025A priority patent/CA1216700A/en
Priority to AT84300453T priority patent/ATE24522T1/en
Priority to EP84300453A priority patent/EP0115940B2/en
Publication of JPS59171625A publication Critical patent/JPS59171625A/en
Priority to US06/899,796 priority patent/US4668753A/en
Publication of JPH034371B2 publication Critical patent/JPH034371B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/16Ethene-propene or ethene-propene-diene copolymers

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は透明性、剛性、耐衝撃性及び耐熱収縮
性に優れた二軸延伸ポリプロピレンフイルムの製
造方法及び二軸延伸フイルムに関する。 二軸延伸ポリプロピレンフイルム(以下OPP
フイルムと呼ぶことがある)は、その優れた透明
性、機械的強度、防湿性、剛性等を活かして包装
材料として広く用いられている。しかしながら通
常OPPフイルムに用いるポリプロピレンはプロ
ピレンの単独重合体であるので、耐衝撃性が充分
ではない。ポリプロピレンの耐衝撃性を改良する
方法としては従来よりポリエチレン、非晶性ある
いは低結晶性のエチレン・プロピレンランダム共
重合体等を添加する方法あるいはプロピレンを重
合させる際に少量のエチレン、1−ブテン等のα
−オレフインを共重合させる方法等が提案されて
いる。しかしながらこれらの方法はいずれも
OPPフイルム本来の透明性、剛性を損うといつ
た如く、透明性、剛性と耐衝撃性がともに優れた
OPPフイルムは得られていない。 本発明者らは、かかる現状に鑑み、透明性及び
剛性と耐衝撃性のバランスのとれたOPPフイル
ムの製造方法の開発について種々検討した結果、
特定のプロピレン・エチレン共重合体を用いると
本発明の目的を達成できることが分かつた。 すなわち本発明は、ポリプロピレンをT−ダイ
より溶融押出し、シート状に冷却固化し、つづい
て予熱後、縦方向に延伸し、次いで横方向に延伸
する二軸延伸ポリプロピレンフイルムの製造方法
において、前記ポリプロピレンとして、 (A) エチレン含有量(EC)が0.1ないし2.0モル
%、及び (B) アイソタクチツク値(ISO)が式(1)及び(2)で
規定される範囲、 0.1≦EC≦0.3(モル%)において、 ISO≧−5EC+96.3 (1) 0.3<EC≦2.0(モル%)において、 ISO≧−0.67EC+95.0 (2) のポリプロピレンを用いることを特徴とする透明
性、剛性、耐衝撃性及び耐熱収縮性に優れた二軸
延伸ポリプロピレンフイルムの製造方法及び二軸
延伸フイルムを提供するものである。 本発明に用いるポリプロピレンは、(A)エチレン
含有量(EC)が0.1ないし2.0モル%、好ましくは
0.1ないし1.5モル%、特に好ましくは0.3ないし
1.5モル%である。エチレン含有量が0.1モル%未
満のものは耐衝撃性に劣り、且つ透明性及び延伸
性にも劣る。2.0モル%を越えるものは、剛性が
不足し腰が弱くなる。本発明におけるエチレン含
有量は 13C−NMRスペクトルによつて測定した
値である。 また本発明に用いるポリプロピレンは(B)アイソ
タクチツク値(ISO)が式(1)及び(2)、好ましくは
式(3)及び式(4)で規定される範囲である。 0.1≦EC≦0.3(モル%)において、 ISO≧−5EC+96.3 (1) ISO≧−5EC+96.8 (3) 0.3<EC≦2.0(モル%)において、 ISO≧−0.67EC+95.0 (2) ISO≧−0.67EC+95.5 (4) ISOが上記範囲未満のものは、延伸物の剛性が
不足し、腰が弱い。本発明におけるアイソタクチ
ツク値は、 13C−NMRスペクトルによりメチル
基のシグナルを用いて定量したトライアドタクテ
イシテイ(triads tacticity)である。但し、エ
チレンに隣接するプロピレンのメチル基は除外し
た。 本発明に用いるポリプロピレンは、好ましくは
デカリン溶媒中135℃で測定した極限粘度〔η〕
が1.2ないし6.0dl/g、更に好ましくは1.5ないし
5.0dl/gである。〔η〕が1.2dl/g未満のもの
は溶融粘度が低く成形性に劣り、6.0dl/gを越
えるものは溶融粘度が高く、延伸性、成形性に劣
る。 本発明に用いるポリプロピレンは次のような方
法により製造することができる。例えば、()
マグネシウム、チタン、塩素及びフタル酸と炭素
数2以上のアルコールとのエステルを必須成分と
して含有し、且つ平均粒径が約1ないし約200μ
で粒度分布の幾何標準偏差が2.1以下で球状の高
活性チタン触媒成分、()トリアルキルアルミ
ニウム及び()si−o−c結合を有する有機ケ
イ素化合物触媒成分から形成される触媒を用い、
プロピレンのみの重合を行つたときに得られるポ
リプロピレンのホモポリマーのIspが97%以上に
なる条件下でプロピレンと少量のエチレンを共重
合させることにより製造できる。 該()成分は、非晶化された塩化マグネシウ
ムを含み、好ましくは比表面積が約40ないし約
800m2/gであつて、塩素/チタン(原子比)が
約5ないし約100、フタル酸エステル/チタン
(モル比)が約0.2ないし約6、マグネシウム/チ
タン(モル比)が約4ないし約50であつて、他の
電子供与体、官能基、金属、元素などを含んでい
てもよい。 該チタン触媒成分()は、約1ないし約
200μの粒径を有し、粒度分布の幾何標準偏差σg
が2.1以下、好ましくは1.95以下の真球状、楕円
球状、顆粒状の如き球状を呈している。 ここにチタン触媒成分()の粒子の粒度分布
の測定は光透過法により行いうる。具体的にはデ
カリン等の不活性溶媒中に0.01〜0.5%前後の濃
度に触媒成分を希釈し、測定用セリに入れ、セル
に細光をあて、粒子のある沈降状態での液体を通
過する光の強さを連続的に測定して粒度分布を測
定する。この粒度分布を基にして幾何標準差σg
は対数正規分布関数から求められる。なお触媒の
平均粒子径は重量平均径であり、粒度分布の測定
は、重量平均粒子径10〜20%の範囲で篩い分けを
行つて計算する。 前記のような高活性チタン触媒成分は、例えば
特願昭56−181019号に記載した方法に準じて製造
することができる。 チタン触媒成分()中の必須成分であるフタ
ル酸のエステルは、例えばフタル酸ジエチル、フ
タル酸ジn−プロピル、フタル酸ジイソプロピ
ル、フタル酸ジn−ブチル、フタル酸ジイソブチ
ル、フタル酸ジn−ヘキシル、フタル酸n−オク
チル、フタル酸2−エキチルヘキシル、フタル酸
エチルn−オクチルなどであつてもよい。 トリアルキルアルミニウム()は、例えばト
リエチルアルミニウム、トリイソプロピルアルミ
ニウム、トリイソブチルアルミニウム、トリn−
ヘキシルアルミニウム、トリn−ブチルアルミニ
ウムなどである。 有機ケイ素化合物()の代表例は、メチルト
リメトキシシラン、フエニルメトキシシラン、メ
チルトリエトキシシラン、エチルトリエトキシシ
ラン、ビニルトリエトキシシラン、フエニルトリ
エトキシシラン、ビニルトリブトキシシラン、ケ
イ酸エチル、ジフエニルジメトキシシラン、ジフ
エニルジエトキシシラン、メチルフエニルジメト
キシシランなどである。 前記ポリプロピレンを製造するに際し、重合は
液相、気相の何れの相においても行うことができ
る。液相重合を行う場合は、ヘキサン、ヘプタン
灯油のような不活性溶媒を反応媒体としてもよい
が、プロピレンそれ自身を反応媒体とすることも
できる。触媒の使用量は、反応容積1当たり、
()成分をチタン原子に換算して約0.0001ない
し約1.0ミリモル、()成分を()成分中のチ
タン原子1モルに対し、()成分中の金属原子
が約1ないし約2000モル、好ましくは約5ないし
約500モルとなるように、また()成分を、
()成分中の金属原子1モル当たり、()成分
中のsi原子が約0.001ないし約10モル、好ましく
は約0.01ないし約2モル、とくに好ましくは約
0.04ないし約1モルとなるようにするのが好まし
い。 これらの各触媒成分()、()及び()は
重合時に三者を接触させても良いし、又重合前に
接触させても良い。この重合前の接触に当つて
は、任意の二者のみを自由に選択して接触させて
も良いし、又各成分の一部を二者ないしは三者接
触させてもよい。又更に重合前の各成分の接触
は、不活性ガス雰囲気下であつても良いし、プロ
ピレンのようなオレフイン雰囲気下であつも良
い。 重合の温度は、好ましくは約20ないし約100℃、
一層好ましくは約50ないし約80℃程度、圧力は常
圧ないし約50Kg/cm2、好ましくは約2ないし約50
Kg/cm2程度の加圧下が望ましい。 重合は好ましくは連続的に行われれ。また極限
粘度の調節は、水素の使用によつて有利に行うこ
とができる。 本発明に用いるポリプロピレンには、耐熱安定
剤、耐候安定剤、滑剤、スリツプ剤、アンチ・ブ
ロツキング剤、帯電防止剤、防曇剤、顔料、染
料、無機または有機の充填剤等の通常ポリオレフ
インに用いる各種配合剤を本発明の目的を損わな
い範囲で添加しておいてもよい。 本発明の方法は、前記したポリプロピレンを押
出機で溶融後、T−ダイより押出し、シート状に
冷却固化し、つづいて予熱後、縦方向に延伸し、
次いで横方向に延伸することにより二軸延伸ポリ
プロピレンフイルムを製造する方法である。前記
方法において、ポリプロピレンの溶融温度は通常
220ないし300℃、好ましくは240ないし280℃、縦
方向の延伸時の温度は通常110ないし150℃、好ま
しくは120ないし140℃、縦延伸時の延伸倍率は、
3.5ないし7倍、好ましくは4.5ないし6倍、横方
向の延伸時の温度は通常155ないし165℃、好まし
くは160ないし165℃、横延伸時の延伸倍率は7な
いし12倍、好ましくは8ないし11倍の範囲であ
る。またOPPフイルムを成形後あるいは成形時
に必要に応じて片面あるいは両面をコロナ放電処
理、アルミニウム等の金属蒸着等を行つてもよ
い。 本発明の縦方向に3.5ないし7倍及び横方向に
7ないし12倍に延伸されたOPPフイルムは従来
のOPPにフイルムに比べて透明性、剛性及び耐
衝撃性のバランスが良く、ともに優れているの
で、単体のフイルムでも、あるいは他のフイル
ム、例えば低密度ポリエチレン、中密度ポリエチ
レン、エチレンとプロピレン、1−ブテン、4−
メチル−1−ペンテン、1−ヘキセン、1−デセ
ン等のα−オレフインとのランダム共重合体、プ
ロピレンとブテン−1、4−メチル−1−ペンテ
ン、1−ヘキセン、1−デセン等のα−オレフイ
ンとのランダム共重合体、エチレン・ビニルアル
コール共重合体、ポリ塩化ビニリデン等のフイル
ムとの積層フイルム、あるいは低結晶性、非結晶
性のエチレン・α−オレフインランダム共重合
体、プロピレン・α−オレフインランダム共重合
体及び塩化ビニリデン系樹脂等を押出コーテイン
グしたフイルム等として、包装用フイルム、絶縁
用コンデンサーフイルム等に好適である。 次に実施例を挙げて本発明を更に具体的に説明
するが、本発明はその要旨を越えない限りこれら
の実施例に制約されるものではない。 実施例 1、2、3 〔固体チタン触媒成分〔A〕の調製〕 無水塩化マグネシウム47.6g、デカン250mlお
よび2−エチルヘキシルアルコール234mlを130℃
で2時間加熱反応を行い均一溶液とした後、この
溶液中に無水フタル酸11.1gを添加し、130℃に
て更に1時間撹拌混合を行い、無水フタル酸を該
均一溶液に溶解させる。この様にして得られた均
一溶液を室温に冷却した後、−20℃に保持された
四塩化チタン2中に1時間に亙つて全量滴下装
入する。装入終了後、この混合液の温度を4時間
かけて110℃に昇温し、110℃に達したところでジ
イソブチルフタレート26.8mlを添加し、これより
2時間同温度にて撹拌下保持する。2時間の反応
終了後熱過にて固体部を採取し、この固体部を
2のTicl4にて再懸濁させた後、再び110℃で2
時間、加熱反応を行う。反応終了後、再び熱過
にて固体部を採取し、110℃デカン及びヘキサン
にて、洗液中に遊離のチタン化合物が検出されな
くなる迄充分洗浄する。以上の製造方法に依り固
体チタン触媒成分〔A〕を得た。 〔重合〕 内容積200のオートクレーブに精製ヘキサン
75を装入し、室温下プロピレン雰囲気下にてト
リエチルアルミニウム250mmol、ジフエニルジ
メトキシシラン15mmol及び固体チタン触媒成分
Aをチタン原子換算で1.5mmol装入した。水素
7を導入した後60℃に昇温し、重合系の温度が
60℃に到達したところでプロプレン−エチレン混
合ガス(ガス組成は第1表に記載)を供給し重合
圧力を2Kg/cm2Gに2時間保つた。重合終了後、
生成重合体を含むスラリーを過し白色粉末状重
合体を得た。この白色粉末状重合体の基本物性を
第1表に示す。 次に、該共重合体に適当な酸化防止剤、塩酸吸
収剤、帯電防止剤を添加し、押出機によりペレタ
イズした。そして、さらに押出機で溶融後、樹脂
温270℃でT−ダイより押出し、シート状に冷吸
固化し、ついて130℃と140℃の加熱ロール(速度
4m/min、20m/min)を通すことにより、延
伸倍率5倍になるように縦方向に延伸した。次い
で、このシートを入口付近190℃、出口付近165℃
のテンター内で横方向に延伸倍率10倍になるよう
に延伸することにより、厚みが約30μのフイルム
を得た。 次に該フイルムを以下の方法により評価した。 ヘイズ(%):ASTM D 1003 衝撃強度(Kg・cm/cm):東洋精機製フイルムイ
ンパクトテスターを用いて行つた。衝撃頭球面
の直径は1インチとした。 ヤング率(Kg/cm2):JIS K 6781のダンベルを
用い、200mm/minの引張速度で延伸した時の
値である。 熱収縮率(%):140℃の雰囲気下に15分間保持し
た後の収縮率を求めた。 表面固有抵抗(Ω):40℃の雰囲気中に2日間保
持した後に測定を行つた。 結果を第2表に示す。 比較例 1 〔重合〕 内容積200のオートクレーブに精製ヘキサン
75を装入し、室温下プロピレン雰囲気下にてト
リエチルアルミニウム251mmol、ジフエニルジ
メトキシシラン15mmol及び実施例1記載の固体
チタン触媒成分〔A〕をチタン原子換算で1.5m
mol装入した。水素18を導入した後、70℃に昇
温し、2時間のプロピレン重合を行つた。重合中
の圧力は7Kg/cm2Gに保つた。 重合終了後、生成重合体を含むスラリー過
し、白色粉末状重合体を得た。この白色粉末状重
合体の基本物性を第1表に示す。 次に該重合体を実施例1〜3と同様の方法で成
形した。但し、テンター設定温度190〜165℃では
良好なフイルムにならなかつたため、温度を入口
付近200℃、出口付近170℃に上げて成形した。 結果を第2表に示す。 比較例 2、3 内容積200のオートクレーブに精製ヘキサン
75を装入し、室温下プロピレン雰囲気下にてジ
エチルアルミニウムモノクロライド600mmolを
装入した後三塩化チタン(東邦チタニウム社製
TAC−131)をチタン原子換算で200mmol装入
した。水素10を導入した後55℃に昇温し、重合
系の温度が55℃に到達したところでプロピレン・
エチレン混合ガス(ガス組成は第1表に記載)を
供給し重合圧力を2Kg/cm2Gに10時間保つた。重
合終了後、生成重合体を含むスラリーを過し、
白色粉末状重合体を得た。この白色粉末状重合体
の基本物性を第1表に示す。 次に該共重合体を実施例1〜3と同様の方法で
成形した。但し、比較例3についてはテンター設
定温度を入口付近180℃、出口付近160℃に下げて
成形を行つた。 結果を第2表に示す。 比較例 4 内容積200のオートクレーブに精製ヘキサン
75を装入し、室温下プロピレン雰囲気下にてジ
エチルアルミニウムモノクロライド300mmolを
装入した後三塩化チタン(東邦チタニウム社製
TAC−131)をチタン原子換算で100mmol装入
した。水素52を導入した後60℃に昇温し、プロ
ピレンを導入し重合圧力を7Kg/cm2Gに8時間保
つた。重合終了後生成重合体を含むスラリーを
The present invention relates to a method for producing a biaxially oriented polypropylene film having excellent transparency, rigidity, impact resistance, and heat shrinkage resistance, and to a biaxially oriented film. Biaxially oriented polypropylene film (OPP)
Film (sometimes referred to as film) is widely used as a packaging material due to its excellent transparency, mechanical strength, moisture resistance, rigidity, etc. However, since the polypropylene normally used in OPP films is a propylene homopolymer, it does not have sufficient impact resistance. Conventional methods for improving the impact resistance of polypropylene include adding polyethylene, amorphous or low-crystalline ethylene/propylene random copolymers, or adding small amounts of ethylene, 1-butene, etc. when polymerizing propylene. α of
- Methods for copolymerizing olefins have been proposed. However, both of these methods
It has excellent transparency, rigidity, and impact resistance, as if the original transparency and rigidity of OPP film were compromised.
OPP film was not obtained. In view of the current situation, the present inventors conducted various studies on the development of a manufacturing method for OPP film that has a good balance of transparency, rigidity, and impact resistance.
It has been found that the objects of the present invention can be achieved using specific propylene-ethylene copolymers. That is, the present invention provides a method for producing a biaxially oriented polypropylene film in which polypropylene is melt-extruded through a T-die, cooled and solidified into a sheet shape, then preheated, stretched in the machine direction, and then stretched in the transverse direction. (A) ethylene content (E C ) is 0.1 to 2.0 mol%, and (B) isotactic value (I SO ) is within the range specified by formulas (1) and (2), 0.1≦E C ≦0.3. (mol%), I SO ≧-5E C +96.3 (1) 0.3<E C ≦2.0 (mol%), I SO ≧-0.67E C +95.0 (2) Characterized by using polypropylene. The present invention provides a method for producing a biaxially oriented polypropylene film having excellent transparency, rigidity, impact resistance, and heat shrinkage resistance, and the biaxially oriented film. The polypropylene used in the present invention has (A) an ethylene content ( EC ) of 0.1 to 2.0 mol%, preferably
0.1 to 1.5 mol%, particularly preferably 0.3 to 1.5 mol%
It is 1.5 mol%. Those with an ethylene content of less than 0.1 mol% have poor impact resistance, as well as poor transparency and stretchability. If it exceeds 2.0 mol%, the rigidity will be insufficient and the body will become weak. The ethylene content in the present invention is a value measured by 13 C-NMR spectrum. The polypropylene used in the present invention has (B) an isotactic value (I SO ) within the range defined by formulas (1) and (2), preferably formulas (3) and (4). When 0.1≦E C ≦0.3 (mol%), I SO ≧−5E C +96.3 (1) I SO ≧−5E C +96.8 (3) When 0.3<E C ≦2.0 (mol%), I SO ≧−0.67E C +95.0 (2) I SO ≧−0.67E C +95.5 (4) When I SO is less than the above range, the stretched product lacks rigidity and is weak. The isotactic value in the present invention is the triads tacticity determined using the signal of the methyl group by 13 C-NMR spectrum. However, the methyl group of propylene adjacent to ethylene was excluded. The polypropylene used in the present invention preferably has an intrinsic viscosity [η] measured at 135°C in a decalin solvent.
is 1.2 to 6.0 dl/g, more preferably 1.5 to 6.0 dl/g.
It is 5.0dl/g. If [η] is less than 1.2 dl/g, the melt viscosity is low and the moldability is poor, and if it exceeds 6.0 dl/g, the melt viscosity is high and the drawability and moldability are poor. The polypropylene used in the present invention can be produced by the following method. for example,()
Contains magnesium, titanium, chlorine, and ester of phthalic acid with alcohol having 2 or more carbon atoms as essential components, and has an average particle size of about 1 to about 200μ
using a catalyst formed from a spherical highly active titanium catalyst component with a geometric standard deviation of particle size distribution of 2.1 or less, () trialkylaluminum and () an organosilicon compound catalyst component having a si-oc-c bond,
It can be produced by copolymerizing propylene and a small amount of ethylene under conditions such that I sp of the polypropylene homopolymer obtained when propylene alone is polymerized is 97% or more. The component () contains amorphous magnesium chloride and preferably has a specific surface area of about 40 to about
800 m 2 /g, with a chlorine/titanium (atomic ratio) of about 5 to about 100, a phthalate/titanium (molar ratio) of about 0.2 to about 6, and a magnesium/titanium (molar ratio) of about 4 to about 50 and may contain other electron donors, functional groups, metals, elements, etc. The titanium catalyst component () is about 1 to about 1
With a particle size of 200μ, the geometric standard deviation of the particle size distribution σg
is 2.1 or less, preferably 1.95 or less, and exhibits a spherical shape such as a true sphere, an elliptical sphere, or a granular shape. Here, the particle size distribution of the particles of the titanium catalyst component (2) can be measured by a light transmission method. Specifically, the catalyst component is diluted to a concentration of around 0.01 to 0.5% in an inert solvent such as decalin, placed in a cell for measurement, illuminated with a narrow light, and passed through the liquid in a settled state with particles. The particle size distribution is determined by continuously measuring the light intensity. Based on this particle size distribution, the geometric standard difference σg
is determined from the lognormal distribution function. Note that the average particle diameter of the catalyst is the weight average diameter, and the measurement of particle size distribution is calculated by performing sieving within the range of 10 to 20% of the weight average particle diameter. The highly active titanium catalyst component as described above can be produced, for example, according to the method described in Japanese Patent Application No. 181019/1982. Examples of esters of phthalic acid, which are essential components in the titanium catalyst component (), include diethyl phthalate, di-n-propyl phthalate, diisopropyl phthalate, di-n-butyl phthalate, diisobutyl phthalate, and di-n-hexyl phthalate. , n-octyl phthalate, 2-ethylhexyl phthalate, ethyl n-octyl phthalate, and the like. Trialkylaluminium () is, for example, triethylaluminum, triisopropylaluminum, triisobutylaluminum, trin-
Hexylaluminum, tri-n-butylaluminum, etc. Representative examples of organosilicon compounds () include methyltrimethoxysilane, phenylmethoxysilane, methyltriethoxysilane, ethyltriethoxysilane, vinyltriethoxysilane, phenyltriethoxysilane, vinyltributoxysilane, ethyl silicate, These include diphenyldimethoxysilane, diphenyldiethoxysilane, and methylphenyldimethoxysilane. When producing the polypropylene, polymerization can be carried out in either a liquid phase or a gas phase. When carrying out liquid phase polymerization, an inert solvent such as hexane or heptane kerosene may be used as the reaction medium, but propylene itself may also be used as the reaction medium. The amount of catalyst used is per reaction volume,
Component () is about 0.0001 to about 1.0 mmol in terms of titanium atoms, and component () is about 1 to about 2000 mol of metal atoms in component () per 1 mole of titanium atom in component (), preferably Ingredients () so that the amount is about 5 to about 500 moles,
The si atoms in component () are about 0.001 to about 10 mol, preferably about 0.01 to about 2 mol, particularly preferably about 2 mol, per mol of metal atom in component ().
Preferably, the amount is from 0.04 to about 1 mole. These catalyst components (), (), and () may be brought into contact with each other during polymerization, or may be brought into contact with each other before polymerization. In contacting before polymerization, only two arbitrary components may be freely selected and brought into contact, or two or three components may be brought into contact with a part of each component. Furthermore, each component may be brought into contact with each other before polymerization under an inert gas atmosphere or under an olefin atmosphere such as propylene. The temperature of polymerization is preferably about 20 to about 100°C,
More preferably about 50 to about 80°C, the pressure is normal pressure to about 50 Kg/cm 2 , preferably about 2 to about 50
It is preferable to use a pressure of around Kg/ cm2 . Polymerization is preferably carried out continuously. The limiting viscosity can also be adjusted advantageously by using hydrogen. The polypropylene used in the present invention includes heat stabilizers, weather stabilizers, lubricants, slip agents, anti-blocking agents, antistatic agents, antifogging agents, pigments, dyes, inorganic or organic fillers, etc., which are commonly used in polyolefins. Various compounding agents may be added to the extent that the purpose of the present invention is not impaired. The method of the present invention involves melting the polypropylene described above in an extruder, extruding it through a T-die, cooling and solidifying it into a sheet, then preheating and stretching it in the longitudinal direction.
This is a method for producing a biaxially stretched polypropylene film by then stretching in the transverse direction. In the above method, the melting temperature of polypropylene is usually
220 to 300°C, preferably 240 to 280°C, the temperature during longitudinal stretching is usually 110 to 150°C, preferably 120 to 140°C, the stretching ratio during longitudinal stretching is:
3.5 to 7 times, preferably 4.5 to 6 times, the temperature during transverse stretching is usually 155 to 165°C, preferably 160 to 165°C, the stretching ratio during transverse stretching is 7 to 12 times, preferably 8 to 11 This is twice the range. Further, after or during molding, one or both sides of the OPP film may be subjected to corona discharge treatment, metal vapor deposition such as aluminum, etc., as required. The OPP film of the present invention, which is stretched 3.5 to 7 times in the longitudinal direction and 7 to 12 times in the transverse direction, has a better balance of transparency, rigidity, and impact resistance than conventional OPP films. Therefore, it is possible to use a single film or other films such as low density polyethylene, medium density polyethylene, ethylene and propylene, 1-butene, 4-
Random copolymers with α-olefins such as methyl-1-pentene, 1-hexene, and 1-decene; α-polymers of propylene and butene-1, 4-methyl-1-pentene, 1-hexene, and 1-decene, etc. Random copolymers with olefins, ethylene/vinyl alcohol copolymers, laminated films with films such as polyvinylidene chloride, or low-crystalline or non-crystalline ethylene/α-olefin random copolymers, propylene/α- The film is extrusion coated with olefin random copolymer, vinylidene chloride resin, etc., and is suitable for packaging films, insulating capacitor films, etc. Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples unless the gist thereof is exceeded. Examples 1, 2, 3 [Preparation of solid titanium catalyst component [A]] 47.6 g of anhydrous magnesium chloride, 250 ml of decane and 234 ml of 2-ethylhexyl alcohol were heated at 130°C.
After a heating reaction was carried out for 2 hours to form a homogeneous solution, 11.1 g of phthalic anhydride was added to this solution, and the mixture was stirred and mixed at 130° C. for an additional 1 hour to dissolve phthalic anhydride in the homogeneous solution. After the homogeneous solution thus obtained was cooled to room temperature, the entire amount was dropped into titanium tetrachloride 2 maintained at -20 DEG C. over a period of 1 hour. After charging, the temperature of this mixed solution was raised to 110°C over 4 hours, and when it reached 110°C, 26.8 ml of diisobutyl phthalate was added, and the mixture was maintained at the same temperature for 2 hours with stirring. After the completion of the 2-hour reaction, the solid portion was collected by heating, and this solid portion was resuspended in 2 Ticl 4 , and then resuspended at 110°C for 2 hours.
Perform the heating reaction for an hour. After the reaction is completed, the solid portion is collected again by heating and thoroughly washed with decane and hexane at 110°C until no free titanium compound is detected in the washing liquid. Solid titanium catalyst component [A] was obtained by the above production method. [Polymerization] Purified hexane in an autoclave with an internal volume of 200
75, and 250 mmol of triethylaluminum, 15 mmol of diphenyldimethoxysilane, and 1.5 mmol of solid titanium catalyst component A in terms of titanium atoms were charged under a propylene atmosphere at room temperature. After introducing hydrogen 7, the temperature was raised to 60℃, and the temperature of the polymerization system reached
When the temperature reached 60°C, a propene-ethylene mixed gas (gas composition is shown in Table 1) was supplied, and the polymerization pressure was maintained at 2 kg/cm 2 G for 2 hours. After polymerization,
The slurry containing the produced polymer was filtered to obtain a white powdery polymer. The basic physical properties of this white powdery polymer are shown in Table 1. Next, a suitable antioxidant, hydrochloric acid absorbent, and antistatic agent were added to the copolymer, and the mixture was pelletized using an extruder. Then, after melting in an extruder, extrude through a T-die at a resin temperature of 270°C, cool and solidify into a sheet, and then pass through heated rolls at 130°C and 140°C (speeds 4 m/min, 20 m/min). The film was stretched in the longitudinal direction at a stretching ratio of 5 times. Next, this sheet was heated to 190℃ near the entrance and 165℃ near the exit.
A film having a thickness of approximately 30 μm was obtained by stretching the film in the transverse direction in a tenter at a stretching ratio of 10 times. Next, the film was evaluated by the following method. Haze (%): ASTM D 1003 Impact strength (Kg·cm/cm): Tested using a Toyo Seiki film impact tester. The diameter of the impact head sphere was 1 inch. Young's modulus (Kg/cm 2 ): This is the value when stretched at a tensile speed of 200 mm/min using a JIS K 6781 dumbbell. Heat shrinkage rate (%): The shrinkage rate was determined after being held in an atmosphere at 140°C for 15 minutes. Surface resistivity (Ω): Measured after being kept in an atmosphere at 40°C for 2 days. The results are shown in Table 2. Comparative example 1 [Polymerization] Purified hexane in an autoclave with an internal volume of 200
75, 251 mmol of triethylaluminum, 15 mmol of diphenyldimethoxysilane and 1.5 m of solid titanium catalyst component [A] described in Example 1 in terms of titanium atoms at room temperature under a propylene atmosphere.
mol was charged. After introducing hydrogen 18, the temperature was raised to 70°C and propylene polymerization was carried out for 2 hours. The pressure during polymerization was maintained at 7 kg/cm 2 G. After the polymerization was completed, the slurry containing the produced polymer was filtered to obtain a white powdery polymer. The basic physical properties of this white powdery polymer are shown in Table 1. Next, the polymer was molded in the same manner as in Examples 1-3. However, since a good film could not be obtained with the tenter setting temperature of 190 to 165°C, the temperature was raised to 200°C near the inlet and 170°C near the exit. The results are shown in Table 2. Comparative Examples 2 and 3 Purified hexane in an autoclave with an internal volume of 200
75 and 600 mmol of diethylaluminum monochloride in a propylene atmosphere at room temperature.
200 mmol of TAC-131) was charged in terms of titanium atoms. After introducing hydrogen 10, the temperature was raised to 55℃, and when the temperature of the polymerization system reached 55℃, propylene and
Ethylene mixed gas (gas composition is listed in Table 1) was supplied and the polymerization pressure was maintained at 2 kg/cm 2 G for 10 hours. After the polymerization is completed, the slurry containing the produced polymer is filtered,
A white powdery polymer was obtained. The basic physical properties of this white powdery polymer are shown in Table 1. Next, the copolymer was molded in the same manner as in Examples 1-3. However, in Comparative Example 3, the tenter setting temperature was lowered to 180° C. near the inlet and 160° C. near the outlet. The results are shown in Table 2. Comparative example 4 Purified hexane in an autoclave with an internal volume of 200
75 and 300 mmol of diethylaluminum monochloride at room temperature under a propylene atmosphere.
100 mmol of TAC-131) was charged in terms of titanium atoms. After introducing hydrogen 52, the temperature was raised to 60°C, propylene was introduced, and the polymerization pressure was maintained at 7 kg/cm 2 G for 8 hours. After the polymerization is complete, the slurry containing the polymer produced is

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 ポリプロピレンをT−ダイより溶融押出し、
シート状に冷却固化し、つづいて予熱後、縦方向
に延伸し、次いで横方向に延伸する二軸延伸ポリ
プロピレンフイルムの製造方法において、前記ポ
リプロピレンとして、 (A) エチレン含有量(EC)が0.1ないし2.0モル
%、及び (B) アイソタクチツク値(ISO)が式(1)及び式(2)
で規定される範囲、 0.1≦EC≦0.3(モル%)において、 ISO≧−5EC+96.3 (1) 0.3<EC≦2.0(モル%)において、 ISO≧−0.67EC+95.0 (2) のポリプロピレンを用いることを特徴とする二軸
延伸ポリプロピレンフイルムの製造方法。 2 (A) エチレン含有量(EC)が0.1ないし2.0モ
ル%、及び (B) アイソタクチツク値(ISO)が式(1)及び式(2)
で規定される範囲、 0.1≦EC≦0.3(モル%)において、 ISO≧−5EC+96.3 (1) 0.3<EC≦2.0(モル%)において、 ISO≧−0.67EC+95.0 (2) からなるポリプロピレンで且つ縦方向の延伸倍率
が3.5ないし7倍及び横方向の延伸倍率が7ない
し12倍であることを特徴とする二軸延伸フイル
ム。
[Claims] 1. Melt extrusion of polypropylene through a T-die,
In the method for producing a biaxially oriented polypropylene film, which is cooled and solidified into a sheet, then preheated, stretched in the machine direction, and then stretched in the transverse direction, the polypropylene includes: (A) an ethylene content ( EC ) of 0.1; or 2.0 mol%, and (B) isotactic value (I SO ) is according to formula (1) and formula (2).
In the range defined by 0.1≦E C ≦0.3 (mol%), I SO ≧−5E C +96.3 (1) In 0.3<E C ≦2.0 (mol%), I SO ≧−0.67E C +95 .0 (2) A method for producing a biaxially oriented polypropylene film, characterized in that it uses polypropylene of: 2 (A) The ethylene content (E C ) is 0.1 to 2.0 mol%, and (B) the isotactic value (I SO ) is according to formula (1) and formula (2).
In the range defined by 0.1≦E C ≦0.3 (mol%), I SO ≧−5E C +96.3 (1) In 0.3<E C ≦2.0 (mol%), I SO ≧−0.67E C +95 .0 (2) A biaxially stretched film made of polypropylene and characterized in that the stretching ratio in the machine direction is 3.5 to 7 times and the stretching ratio in the horizontal direction is 7 to 12 times.
JP4447783A 1983-01-25 1983-03-18 Biaxially stretched polypropylene film and manufacture thereof Granted JPS59171625A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP4447783A JPS59171625A (en) 1983-03-18 1983-03-18 Biaxially stretched polypropylene film and manufacture thereof
DE8484300453T DE3461811D1 (en) 1983-01-25 1984-01-25 Film-forming propylene copolymer, film thereof and process for production of the film
CA000446025A CA1216700A (en) 1983-01-25 1984-01-25 Film-forming propylene copolymer, film thereof and process for production of the film
AT84300453T ATE24522T1 (en) 1983-01-25 1984-01-25 PROPYLENE COPOLYMER USABLE FOR FILM MANUFACTURE, FILM MADE THEREOF AND PROCESS FOR THE PRODUCTION THEREOF.
EP84300453A EP0115940B2 (en) 1983-01-25 1984-01-25 Film-forming propylene copolymer, film thereof and process for production of the film
US06/899,796 US4668753A (en) 1983-01-25 1986-08-25 Film-forming propylene copolymer, film thereof and process for production of the film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4447783A JPS59171625A (en) 1983-03-18 1983-03-18 Biaxially stretched polypropylene film and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS59171625A JPS59171625A (en) 1984-09-28
JPH034371B2 true JPH034371B2 (en) 1991-01-22

Family

ID=12692608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4447783A Granted JPS59171625A (en) 1983-01-25 1983-03-18 Biaxially stretched polypropylene film and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS59171625A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015064653A1 (en) 2013-10-31 2015-05-07 出光興産株式会社 Polyolefin composition, oriented polyolefin film, and production method for same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2579187Y2 (en) * 1991-02-13 1998-08-20 株式会社小松製作所 Steering device for traveling work vehicle
JP4798592B2 (en) * 2001-03-22 2011-10-19 株式会社プライムポリマー Polypropylene resin composition and biaxially stretched film
JP4798593B2 (en) * 2001-03-22 2011-10-19 株式会社プライムポリマー Polypropylene resin composition and biaxially stretched film
JP2002275327A (en) * 2001-03-22 2002-09-25 Grand Polymer Co Ltd Polypropylene resin composition and biaxially oriented film
CN107531915A (en) * 2015-04-15 2018-01-02 王子控股株式会社 Capacitor biaxial stretch-formed polypropylene film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5338307A (en) * 1976-09-20 1978-04-08 Hitachi Maxell Magnetic recording material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5338307A (en) * 1976-09-20 1978-04-08 Hitachi Maxell Magnetic recording material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015064653A1 (en) 2013-10-31 2015-05-07 出光興産株式会社 Polyolefin composition, oriented polyolefin film, and production method for same
US9688847B2 (en) 2013-10-31 2017-06-27 Idemitsu Kosan Co., Ltd. Polyolefin composition, oriented polyolefin film, and production method for same

Also Published As

Publication number Publication date
JPS59171625A (en) 1984-09-28

Similar Documents

Publication Publication Date Title
JPS61248740A (en) Polypropylene multilayer film
JP3264148B2 (en) Propylene-ethylene random copolymer, its production method and film
JPS60166455A (en) Polypropylene laminated film
JPH0433619B2 (en)
JPH0693061A (en) Polypropylene block copolymer and film therefrom
JP4002794B2 (en) Resin composition and film formed by molding the same
JP3575865B2 (en) Polypropylene composition
JPH08198913A (en) Polypropylene film
JP4803856B2 (en) Polypropylene for film and method for producing film
JPH034371B2 (en)
JP2882237B2 (en) Polypropylene random copolymer and its film
JP3228106B2 (en) Polypropylene composition for laminated stretched film and laminated stretched film
JP4177911B2 (en) Polypropylene resin composition
JP3175526B2 (en) Polypropylene composition for laminated stretched film and laminated stretched film
JP4310832B2 (en) Propylene-based resin sheet and molded body using the same
US6106938A (en) Polypropylene composition and laminated and oriented film therefrom
JP3290293B2 (en) Polypropylene resin and stretched film
JP4065612B2 (en) Polypropylene film
JPH0582416B2 (en)
JP4759235B2 (en) Polypropylene-based laminated film
JPH0417962B2 (en)
JP3235055B2 (en) Multilayer film of propylene-based random copolymer
JPH0417963B2 (en)
JPH0422923B2 (en)
JP2767706B2 (en) Propylene copolymer composition and method for producing the same