JPH0335624B2 - - Google Patents

Info

Publication number
JPH0335624B2
JPH0335624B2 JP57102600A JP10260082A JPH0335624B2 JP H0335624 B2 JPH0335624 B2 JP H0335624B2 JP 57102600 A JP57102600 A JP 57102600A JP 10260082 A JP10260082 A JP 10260082A JP H0335624 B2 JPH0335624 B2 JP H0335624B2
Authority
JP
Japan
Prior art keywords
magnetic field
inspected
magnetic
defect
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57102600A
Other languages
Japanese (ja)
Other versions
JPS58218644A (en
Inventor
Tatsuo Hiroshima
Tetsuya Hirota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP57102600A priority Critical patent/JPS58218644A/en
Priority to US06/502,547 priority patent/US4602212A/en
Priority to DE19833321375 priority patent/DE3321375A1/en
Publication of JPS58218644A publication Critical patent/JPS58218644A/en
Publication of JPH0335624B2 publication Critical patent/JPH0335624B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9046Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents by analysing electrical signals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【発明の詳細な説明】 本発明は、金属材料の表面疵探傷方法およびそ
の装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for detecting surface flaws in metal materials.

現在、金属材料の表面疵探傷方法として種々の
非破壊検査法が実用化されており、存在が予想さ
れる欠陥に応じて一種あるいは複数種の方法が適
用されている。例えば予想される欠陥の方向があ
る程度定まつている場合の割れ状欠陥の検出には
漏洩磁束探傷法や又は表面波を用いた超音波探傷
法等を採用する。そして、方向性のないピツト状
欠陥の検出には渦流探傷法が適用されている。と
ころでこのうち、漏洩磁束探傷法と渦流探傷法に
ついてとりあげその特長を述べると以下に示す通
りである。前者の磁気探傷法は、一般に鉄鋼材
料等の強磁性体の表面欠陥の検出に優れている。
割れが開口していない地きずのような欠陥でも
検出できる。等の長所を有しているが、反面、鉄
鋼材料でもオーステナイトステンレス鋼のような
非磁性材料には適用出来ず、又欠陥の位置、表面
上の長さがわかるが、深さはわからず、内部欠陥
の検出が困難であるという短所も併せもつてい
る。また後者の渦探傷法は、探傷結果が直接的
に電気的出力として得られる。非接触的方法で
試験速度が速い。表面欠陥の検出に適してい
る。欠陥、材質変化、寸法変化等適用範囲が広
い。信号と欠陥体積とが略比例関係になる。等
の長所を有しているが、以下に列挙する短所も併
せもつている。材料形状が単純なものでないと
適用しにくい。表面下の深い位置にある欠陥の
検出が出来ない。試験対象以外の材料的因子の
影響が雑音の因子となる場合が多い。
Currently, various non-destructive inspection methods are in practical use as surface flaw detection methods for metal materials, and one or more methods are applied depending on the defects expected to exist. For example, to detect a crack-like defect when the expected direction of the defect is determined to some extent, leakage magnetic flux flaw detection, ultrasonic flaw detection using surface waves, or the like is employed. Eddy current flaw detection is applied to detect pit-like defects without directionality. By the way, among these, the leakage magnetic flux flaw detection method and the eddy current flaw detection method will be discussed and their features will be described below. The former magnetic flaw detection method is generally excellent in detecting surface defects in ferromagnetic materials such as steel materials.
Even defects such as ground scratches without open cracks can be detected. However, on the other hand, it cannot be applied to non-magnetic materials such as austenitic stainless steel even if it is a steel material.Furthermore, although the position and length of the defect on the surface can be determined, the depth cannot be determined. It also has the disadvantage that internal defects are difficult to detect. In the latter vortex flaw detection method, the flaw detection results are directly obtained as electrical output. Testing speed is fast due to non-contact method. Suitable for detecting surface defects. Wide range of applications including defects, material changes, dimensional changes, etc. The signal and the defect volume have a substantially proportional relationship. Although it has the following advantages, it also has the disadvantages listed below. It is difficult to apply this method unless the material shape is simple. Defects located deep below the surface cannot be detected. Noise is often caused by the influence of material factors other than the test object.

また、上記磁気探傷法では、欠陥と直角な方向
に磁化した場合には有効であるが、平行な方向に
磁化した場合には、欠陥部に磁極が生じないので
欠陥の探傷が不可能であるが、現在では、下記に
示す方法で欠陥の方法に関係なく探傷出来るよう
になつてきた。
In addition, the magnetic flaw detection method described above is effective when magnetized in a direction perpendicular to the defect, but if it is magnetized in a direction parallel to the defect, no magnetic pole is generated at the defect, making it impossible to detect the flaw. However, it has now become possible to detect defects regardless of the method described below.

例えば、棒鋼1の軸方向欠陥を(a)、周方向の欠
陥を(b)とすれば、電源(A)を用いて棒鋼1に軸通電
法による円周方向磁化を、又電源(B)を用いて棒鋼
1に軸方向磁化をコイル法で行なわせしめこれら
夫々の磁化で欠陥(a)、(b)を探傷する方法(第1図
参照)や、又スラブ等の平板状被検査体2では、
コイル(C)および(D)を交差状に配置せしめ、これら
コイル(C)および(D)によつて長手方向欠陥(a)′と幅
方向欠陥(b)′を連続的に探傷する方法(第2図イ
参照)や、更に管材1′では、この管材1′が貫通
する磁化コイル(E)、(E)′と、この管材1′を直径方
向より磁化する一対の磁化マグネツト(F)を夫々ダ
ンデム配置せしめ、これら磁化コイル(E)、(E)′お
よび磁化マグネツト(F)で軸方向欠陥(a)と円方向欠
陥(b)を連続的に探傷する方法(第2図ロ)等であ
る。
For example, if the axial defect of the steel bar 1 is (a) and the circumferential defect is (b), the power source (A) is used to magnetize the steel bar 1 in the circumferential direction by the axial energization method, and the power source (B) There is a method in which the steel bar 1 is magnetized in the axial direction using a coil method, and defects (a) and (b) are detected using these respective magnetizations (see Fig. 1), or a flat plate-shaped object to be inspected 2 such as a slab. So,
A method in which coils (C) and (D) are arranged in an intersecting manner, and longitudinal defects (a)' and width direction defects (b)' are continuously detected using these coils (C) and (D). In addition, the tube 1' has magnetization coils (E), (E)' that the tube 1' passes through, and a pair of magnetization magnets (F) that magnetize the tube 1' from the diametrical direction. A method of sequentially detecting axial defects (a) and circular defects (b) using these magnetized coils (E), (E)' and magnetized magnets (F) (Fig. 2 B) etc.

一方、金属材料の表面に発生する疵は割れ状の
欠陥以外に穴状のピツト疵と呼ばれるものもあり
通常磁気探傷ではピツト疵を検出し難い事は良く
知られており、よつて、現在実用されている探傷
方法では、一種類の探傷方法で全ての種類の疵を
検出することは至難である。
On the other hand, in addition to crack-like defects, there are also pit-like defects that occur on the surface of metal materials, and it is well known that it is difficult to detect pit defects using normal magnetic flaw detection. With the existing flaw detection methods, it is extremely difficult to detect all types of flaws using one type of flaw detection method.

今、丸棒鋼を例にとつてみると、割れ状の欠陥
は磁気探傷法の一つである磁粉探傷法での検出能
が良好であり、又ピツト状の疵は渦流探傷法での
検出能が良好である為、通常は検査目的に応じて
最良の探傷方法を採択し、使用しているのが現状
である。このため、疵の性状によつては、どちら
か一種類のみの探傷では、検出能が低下するため
数種類の探傷を併用しなければならないという問
題点があつた。
Now, taking round steel bars as an example, crack-like defects can be detected well by magnetic particle testing, which is a type of magnetic flaw detection, and pit-like flaws can be detected by eddy current testing. Since the flaw detection method is good, the best flaw detection method is usually selected and used according to the inspection purpose. For this reason, depending on the nature of the flaw, there is a problem in that detecting performance of only one type of flaw decreases, so that several types of flaw detection must be used in combination.

本発明は、上記問題点に鑑みて成されたもので
あつて、一回の探傷で欠陥の性状および被探傷材
の種類(磁性材料又は非磁性材料)に影響される
ことがなく、かつ良好なる検出能を有する金属材
料の表面疵探傷方法およびその装置を提供せんと
するものである。
The present invention has been made in view of the above-mentioned problems, and is capable of performing a single flaw detection without being affected by the nature of the defect or the type of material being tested (magnetic material or non-magnetic material). It is an object of the present invention to provide a method for detecting surface flaws on metal materials and an apparatus therefor, which have the following detection ability.

すなわち、本発明の特徴は、被検査材表面に、
これに沿う方向と被検査材表面に対し垂直方向の
二方向から同時に磁場を与えることにより、被検
査材表面付近に直交する磁場を形成せしめ、表面
疵からの漏洩磁場と、表面に誘起される渦電流の
表面疵による乱れに起因する磁場の合成磁場を測
定し、欠陥の存在、情報を得る方法及び装置であ
る。
That is, the feature of the present invention is that on the surface of the material to be inspected,
By simultaneously applying a magnetic field from two directions, one along this direction and the other perpendicular to the surface of the material to be inspected, a magnetic field perpendicular to the surface of the material to be inspected is formed, and the leakage magnetic field from surface flaws and the magnetic field induced on the surface are generated. A method and apparatus for measuring the composite magnetic field of magnetic fields caused by disturbances of eddy currents due to surface flaws and obtaining information on the presence of defects.

以下、本発明を第3図以降の添付図面に示す一
実施例に基づいて説明する。
Hereinafter, the present invention will be explained based on an embodiment shown in the accompanying drawings starting from FIG.

本発明は、被検査材11表面に沿う方向の磁場
を発生させる第1の磁場発生器12と、被検査材
11表面に垂直方向の磁場を発生させる第2の磁
場発生器13とから成る交流磁場発生装置14を
用いて被検査材11表面に沿う第1の磁場イと、
該磁場に直交するような被検査材11表面に垂直
な第2の磁場ロとを同時に被検査材11に与えて
第8図に一例を示す様に被検査材11表面付近に
表面に直交し時間的にその方向が変化する合成磁
場を形成せしめると、被検査材11上に存在する
欠陥によつて、合成磁場の時間経過に伴なう渦流
の乱れによる磁場乱れと、漏洩磁場の合成磁場が
あらわれ、この合成磁場を前記被検査材11表面
に近接した磁場検出器15で検出することにより
被検査材11の表面疵を探傷するもので、検査対
象とする欠陥の形状、方向等により信号処理は変
わる。例えば、磁場検出器を被検査材11表面に
近接配置し、被検査材11表面に垂直な磁場を検
出するとして、第9図イに示す様な角溝欠陥を対
象とする場合、磁場検出器の出力を、励磁合成磁
場の磁場方向が被検査材11表面に平行になつた
瞬間の出力を取出せば精度よく欠陥信号を得るこ
とができる。また、第9図ロの如きV溝状の欠陥
を対象とする場合、磁場検出器の出力を励磁合成
磁場の磁場方向が被検査材11表面に垂直になつ
た瞬間の出力を取出せは精度よく欠陥信号を得る
ことができる。更に、第9図ハの如き傾きを有す
る欠陥の場合、同様に時間的にその方向が変化す
る励磁合成磁場の磁場方向が欠陥に直角になつた
瞬間の出力を取り出せば精度よく欠陥信号を得る
ことができる。
The present invention consists of an alternating current magnetic field generator 12 that generates a magnetic field in the direction along the surface of the material 11 to be inspected, and a second magnetic field generator 13 that generates a magnetic field in the direction perpendicular to the surface of the material 11 to be inspected. A first magnetic field A along the surface of the inspected material 11 using the magnetic field generator 14;
A second magnetic field perpendicular to the surface of the material to be inspected 11 and perpendicular to the magnetic field is applied to the material to be inspected 11 at the same time, and a second magnetic field perpendicular to the surface of the material to be inspected 11 is applied near the surface of the material to be inspected 11, as shown in an example in FIG. When a synthetic magnetic field whose direction changes over time is formed, a defect existing on the material to be inspected 11 causes magnetic field disturbance due to disturbance of the eddy current in the synthetic magnetic field over time, and a synthetic magnetic field of a leakage magnetic field. appears, and this composite magnetic field is detected by a magnetic field detector 15 close to the surface of the inspected material 11 to detect surface flaws on the inspected material 11. Signals are generated depending on the shape, direction, etc. of the defect to be inspected. Processing will change. For example, if a magnetic field detector is placed close to the surface of the material to be inspected 11 to detect a magnetic field perpendicular to the surface of the material to be inspected 11, and a square groove defect as shown in FIG. 9A is to be targeted, the magnetic field detector If the output is taken out at the moment when the magnetic field direction of the excitation combined magnetic field becomes parallel to the surface of the inspected material 11, a defect signal can be obtained with high accuracy. In addition, when targeting a V-groove-shaped defect as shown in Fig. 9 (b), it is possible to accurately obtain the output of the magnetic field detector at the moment when the magnetic field direction of the excited combined magnetic field becomes perpendicular to the surface of the inspected material 11. A defect signal can be obtained. Furthermore, in the case of a defect having an inclination as shown in Fig. 9 (c), a defect signal can be obtained with high precision by extracting the output at the moment when the magnetic field direction of the excitation composite magnetic field, whose direction changes over time, becomes perpendicular to the defect. be able to.

上記の如く、本方法の信号処理は対象とする欠
陥の形状、方向等を予め想定し、経時的に変化す
る励磁合成磁場方向の最も精度よく得られる瞬間
の出力値を取出すのである。
As described above, the signal processing of this method assumes the shape, direction, etc. of the target defect in advance, and extracts the instantaneous output value that can be obtained with the most precision in the direction of the excitation combined magnetic field that changes over time.

第4図に示す第1実施例では、被検査材11表
面に発生する垂直の磁束の検出を行なわせる磁場
検出器15を、第2の磁場発生器13の直下に備
えたものを示している。また、第5図では被検査
材11の大きさに対応可能な様に、第1の磁場発
生器12を、左右逆ねじを有するねじ軸27に螺
合せしめた支持部材28,28′に取付け、前記
ねじ軸27を正逆回転させることにより、被検査
材11に対して接離移動するよう構成したものを
示している。
In the first embodiment shown in FIG. 4, a magnetic field detector 15 for detecting the perpendicular magnetic flux generated on the surface of the inspected material 11 is provided directly below the second magnetic field generator 13. . In addition, in FIG. 5, the first magnetic field generator 12 is attached to support members 28, 28' screwed onto a screw shaft 27 having opposite left and right threads so as to be able to correspond to the size of the inspected material 11. , which is configured to move toward and away from the material to be inspected 11 by rotating the screw shaft 27 in forward and reverse directions.

第6図は、本発明に係る表面疵探傷装置におけ
る処理装置の構成を示す第1ブロツク図であり、
この第1ブロツク図に基づいて、更に説明する。
FIG. 6 is a first block diagram showing the configuration of a processing device in a surface flaw detection device according to the present invention;
Further explanation will be given based on this first block diagram.

先ず被検査材表面に、水平磁場用マグネツト1
6(周波数sinωt)および垂直磁場用コイル17
(周波数sin(ωt+))を用いて直交する磁場を形
成する。
First, a horizontal magnetic field magnet 1 is placed on the surface of the material to be inspected.
6 (frequency sinωt) and vertical magnetic field coil 17
(Frequency sin(ωt+)) is used to form orthogonal magnetic fields.

ここで、被検査材11に欠陥が存在すると、こ
の欠陥により漏洩磁場と渦流の乱れによる磁場の
合成磁場が生じる。
Here, if a defect exists in the material to be inspected 11, this defect generates a composite magnetic field of the leakage magnetic field and the magnetic field caused by the disturbance of the eddy current.

磁場検出器はこの合成磁場を検出し、この検出
値を夫々サンプルホールド回路18,18′に供
給し、各励振磁場の周波数に同期してサンプルホ
ールドし、信号を弁別する。サンプルホールド回
路18,18′出力はレコーダ19,19′および
比較器20,20′に送り、前記レコーダ19,
19′で記録すると共に比較器20,20′で予め
設定された有害疵と判定される信号レベルと比較
され、更に夫々のカウンター21,21′やマー
カ22,22′に送られ、欠陥数のカウントやマ
ーキングが施される。
The magnetic field detector detects this composite magnetic field, supplies the detected values to sample and hold circuits 18 and 18', respectively, samples and holds them in synchronization with the frequency of each excitation magnetic field, and discriminates the signals. The outputs of the sample and hold circuits 18 and 18' are sent to recorders 19 and 19' and comparators 20 and 20'.
19' and is compared with a preset signal level determined to be a harmful defect by comparators 20, 20', and is further sent to respective counters 21, 21' and markers 22, 22' to record the number of defects. Counting and marking are performed.

なお、上記した直交する磁場を被検査材11表
面に形成させるには、位相だけずらせて同期せ
しめた第1および第2の発振器23,24で作ら
れた交流を、夫々のパワーアンプ25,25′を
介して水平磁場用マグネツト16および垂直磁場
用コイル17に流せばよい。
In order to form the above-described orthogonal magnetic fields on the surface of the material to be inspected 11, the alternating current generated by the first and second oscillators 23 and 24, which are synchronized with a phase difference, is transmitted to the respective power amplifiers 25 and 25. ' to the horizontal magnetic field magnet 16 and the vertical magnetic field coil 17.

このように位相をずらせる理由は、本発明方法
では欠陥に作用する磁場が水平磁場と垂直磁場と
の合成である為、位相をずらせることで合成磁場
の取り得る角度が垂直方向から水平方向にまで全
ての方向に亘つて可能となり、欠陥の角度に関係
なく一定の磁場の乱れを得ることができるからで
ある。
The reason for shifting the phase in this way is that in the method of the present invention, the magnetic field that acts on the defect is a combination of a horizontal magnetic field and a vertical magnetic field, so by shifting the phase, the angle that the composite magnetic field can take is changed from vertical to horizontal. This is because it is possible to obtain a constant magnetic field disturbance regardless of the angle of the defect.

第7図は同じく本発明装置における処理装置の
構成を示す第2ブロツク図であり、この場合に
は、磁場検出器15により同時に検出された検出
値は2つの同調アンプ26,26′に送られる。
ここでこの同調アンプ26,26′の同調周波数
は、夫々水平磁場用マグネツト16および垂直磁
場用コイル17に供給される電流と同じ周波数で
ある。そして上記同調アンプ26,26′の出力
は夫々水平磁場用マグネツト16、垂直磁場用コ
イル17に供給される電流に同期して検波され、
欠陥信号が復調されて夫々の比較器20,20′
に送られ第1ブロツク図の場合と同じように処理
される。
FIG. 7 is a second block diagram showing the configuration of the processing device in the apparatus of the present invention, and in this case, detection values simultaneously detected by the magnetic field detector 15 are sent to two tuned amplifiers 26 and 26'. .
Here, the tuning frequency of the tuning amplifiers 26, 26' is the same frequency as the current supplied to the horizontal magnetic field magnet 16 and the vertical magnetic field coil 17, respectively. The outputs of the tuned amplifiers 26 and 26' are detected in synchronization with the currents supplied to the horizontal magnetic field magnet 16 and the vertical magnetic field coil 17, respectively.
The defective signal is demodulated and sent to each comparator 20, 20'.
and is processed in the same way as in the first block diagram.

なお、この第2ブロツク図の場合には水平磁場
用マグネツト16および垂直磁場用コイル17に
流す交流の発振器23′,24′の位相は同じでよ
い。なぜならコイル及びマグネツトに同位相の電
流を流す事によりそれぞれの磁場に90°位相差が
生じるからである。
In the case of this second block diagram, the phases of the alternating current oscillators 23' and 24' flowing through the horizontal magnetic field magnet 16 and the vertical magnetic field coil 17 may be the same. This is because by passing currents of the same phase through the coil and magnet, a 90° phase difference occurs in the respective magnetic fields.

以上述べた如く本発明によれば、従来の探傷方
法の様に、数種類の探傷を行なうことなく、一回
の探傷のみで、非磁性材料、磁性材料を問わず、
かつ欠陥の性状に影響されることなく、高精度な
探傷が行なえる産業上益するところ大なる発明で
ある。
As described above, according to the present invention, unlike conventional flaw detection methods, it is not necessary to perform several types of flaw detection, but with just one flaw detection, regardless of whether it is a non-magnetic material or a magnetic material,
Furthermore, this invention is of great industrial benefit as it allows highly accurate flaw detection to be performed without being affected by the nature of the defect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は磁粉探傷法の説明図、第
3図は本発明法の概念図、第4図は本発明装置の
第1実施例を示す概略説明図、第5図は同じく第
2実施例を示す正面図、第6図は本発明装置にお
ける処理装置の構成を示す第1ブロツク図、第7
図は同じく第2ブロツク図、第8図は垂直磁場
(sinωt)および水平磁場(cosωt)と励振合成磁
場との関係図、第9図は各欠陥における励振合成
磁場の取出し方向を説明する図面で、同図イは角
溝欠陥、同図ロはV溝欠陥、同図ハは傾きを有す
る欠陥の場合である。 11は被検査材、12は第1の磁場発生器、1
3は第2の磁場発生器、14は交流磁場発生装
置、15は磁場検出器。
Figures 1 and 2 are explanatory diagrams of the magnetic particle flaw detection method, Figure 3 is a conceptual diagram of the method of the present invention, Figure 4 is a schematic diagram showing the first embodiment of the apparatus of the present invention, and Figure 5 is the same diagram. 6 is a front view showing the second embodiment, FIG. 6 is a first block diagram showing the configuration of the processing device in the apparatus of the present invention, and FIG.
The figure is also the second block diagram, Figure 8 is a diagram of the relationship between the vertical magnetic field (sinωt), the horizontal magnetic field (cosωt), and the excitation composite magnetic field, and Figure 9 is a drawing explaining the extraction direction of the excitation composite magnetic field at each defect. , Figure A shows a square groove defect, Figure B shows a V-groove defect, and Figure C shows a defect with an inclination. 11 is a material to be inspected, 12 is a first magnetic field generator, 1
3 is a second magnetic field generator, 14 is an AC magnetic field generator, and 15 is a magnetic field detector.

Claims (1)

【特許請求の範囲】 1 被検査材表面に、これに沿う方向と垂直方向
の二方向から同時に磁束を与えることにより、被
検査材表面付近に直交する磁場を形成せしめ、前
記表面に沿う方向の磁束によつて得られる表面疵
からの漏洩磁場と、表面に垂直方向の磁束によつ
て得られる渦電流の表面疵による乱れに起因する
磁場との合成磁場を一つの磁場検出器で検出する
ことを特徴とする金属材料の表面疵探傷方法。 2 被検査材表面に、これに沿う方向と垂直方向
の二方向から同時に磁束を与えることにより、被
検査表面付近に直交する磁場を形成せしめ、前記
表面に沿う方向の磁束によつて得られる表面疵か
らの漏洩磁場と、表面に垂直方向の磁束によつて
得られる渦電流の表面疵による乱れに起因する磁
場との合成磁場を一つの磁場検出器で検出した
後、前記磁場検出器の出力を励磁磁場に対応した
信号に弁別し、これら各信号により表面疵探傷の
評価を行なうことを特徴とする金属材料の表面疵
探傷方法。 3 被検査材表面に沿う方向の磁束を発生させる
第1の磁場発生器と、被検査材表面に垂直方向の
磁束を発生させる第2の磁場発生器とから成る交
流磁場発生器と、該交流磁場発生器により形成さ
れる被検査材表面付近の直交磁場の垂直方向の磁
場を検出する磁場検出器と、該磁場検出器での検
出値を、表面に沿う方向の磁場と、表面に垂直方
向の磁場変化とに弁別し、これら弁別した夫々の
値を処理する処理装置とを具備して成ることを特
徴とする金属材料の表面疵探傷装置。
[Claims] 1. By simultaneously applying magnetic flux to the surface of a material to be inspected from two directions, one along and perpendicular to the surface, a magnetic field orthogonal to the vicinity of the surface of the material to be inspected is formed, and a magnetic field in the direction along the surface is created. A single magnetic field detector detects the composite magnetic field of the leakage magnetic field from the surface flaw obtained by magnetic flux and the magnetic field caused by the disturbance of the eddy current due to the surface flaw obtained by the magnetic flux perpendicular to the surface. A method for detecting surface flaws on metal materials, characterized by: 2 By simultaneously applying magnetic flux to the surface of the material to be inspected from two directions, one along and perpendicular to the surface, a magnetic field orthogonal to the vicinity of the surface to be inspected is formed, and the surface obtained by the magnetic flux in the direction along the surface. After the combined magnetic field of the leakage magnetic field from the flaw and the magnetic field caused by the disturbance of the eddy current due to the surface flaw obtained by the magnetic flux perpendicular to the surface is detected by one magnetic field detector, the output of the magnetic field detector is detected. A method for detecting surface flaws in metal materials, characterized in that the signals are differentiated into signals corresponding to an excitation magnetic field, and surface flaw detection is evaluated using these signals. 3. An alternating current magnetic field generator consisting of a first magnetic field generator that generates magnetic flux in a direction along the surface of the material to be inspected, and a second magnetic field generator that generates magnetic flux in a direction perpendicular to the surface of the material to be inspected; A magnetic field detector detects the perpendicular magnetic field of the orthogonal magnetic field near the surface of the material to be inspected generated by the magnetic field generator, and detects the detected value of the magnetic field detector by detecting the magnetic field in the direction along the surface and the magnetic field in the direction perpendicular to the surface. 1. An apparatus for detecting surface flaws in metal materials, comprising: a processing device for discriminating changes in a magnetic field and processing each of the discriminated values.
JP57102600A 1982-06-14 1982-06-14 Method and apparatus for testing surface flaw of metallic material Granted JPS58218644A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP57102600A JPS58218644A (en) 1982-06-14 1982-06-14 Method and apparatus for testing surface flaw of metallic material
US06/502,547 US4602212A (en) 1982-06-14 1983-06-09 Method and apparatus including a flux leakage and eddy current sensor for detecting surface flaws in metal products
DE19833321375 DE3321375A1 (en) 1982-06-14 1983-06-14 Method and device for measuring surface defects on metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57102600A JPS58218644A (en) 1982-06-14 1982-06-14 Method and apparatus for testing surface flaw of metallic material

Publications (2)

Publication Number Publication Date
JPS58218644A JPS58218644A (en) 1983-12-19
JPH0335624B2 true JPH0335624B2 (en) 1991-05-28

Family

ID=14331724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57102600A Granted JPS58218644A (en) 1982-06-14 1982-06-14 Method and apparatus for testing surface flaw of metallic material

Country Status (2)

Country Link
JP (1) JPS58218644A (en)
DE (1) DE3321375A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018169361A (en) * 2017-03-30 2018-11-01 国立大学法人名古屋大学 Magnetic measuring device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4492115A (en) * 1984-04-11 1985-01-08 Pa Incorporated Method and apparatus for measuring defects in ferromagnetic tubing
JPS61104250A (en) * 1984-10-26 1986-05-22 Kawasaki Steel Corp Hot eddy current flaw detection apparatus
JPH0711508B2 (en) * 1987-03-10 1995-02-08 住友金属工業株式会社 Leakage magnetic flux flaw detection method
JPH0648262B2 (en) * 1987-04-07 1994-06-22 日本鋼管株式会社 Magnetic particle flaw detector
DE3937261C2 (en) * 1989-11-09 1996-04-11 Foerster Inst Dr Friedrich Rotating head for scanning metallic test material
DE9011478U1 (en) * 1990-08-07 1990-12-20 Nukem GmbH, 63755 Alzenau Arrangement for non-destructive material testing
DE9011477U1 (en) * 1990-08-07 1990-12-20 Nukem GmbH, 63755 Alzenau Arrangement for non-destructive material testing
DE102008020194A1 (en) * 2008-04-16 2009-10-22 Institut Dr. Foerster Gmbh & Co. Kg Method and device for detecting near-surface defects by means of leakage flux measurement
DE102022213259A1 (en) 2022-12-08 2024-06-13 Zf Friedrichshafen Ag Test bench for measuring eddy current losses in a permanent magnetic specimen

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5667747A (en) * 1979-11-08 1981-06-08 Denshi Jiki Kogyo Kk Magnetic powder flaw detector for steel pipe

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4439730A (en) * 1981-05-08 1984-03-27 Amf Inc. Nondestructive inspection apparatus and method utilizing combined inspection signals obtained from orthogonal magnetic fields

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5667747A (en) * 1979-11-08 1981-06-08 Denshi Jiki Kogyo Kk Magnetic powder flaw detector for steel pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018169361A (en) * 2017-03-30 2018-11-01 国立大学法人名古屋大学 Magnetic measuring device

Also Published As

Publication number Publication date
JPS58218644A (en) 1983-12-19
DE3321375C2 (en) 1987-04-02
DE3321375A1 (en) 1983-12-22

Similar Documents

Publication Publication Date Title
US4602212A (en) Method and apparatus including a flux leakage and eddy current sensor for detecting surface flaws in metal products
US6791319B2 (en) Eddy current probe with transverse polygonal detecting coil
US3579099A (en) Improved flaw detection apparatus using specially located hall detector elements
JP4975142B2 (en) Eddy current measuring sensor and eddy current measuring method
US6014024A (en) Apparatus and method for detecting and/or measuring flaws in conductive material
KR102501065B1 (en) Flaw measurement method, defect measurement device and inspection probe
JP4804006B2 (en) Flaw detection probe and flaw detection apparatus
JP2009069090A (en) Method and device for detecting flaw of inspecting object, and probe for eddy current flaw detection
EP3376216B1 (en) Method for eddy-current testing of electrically conductive objects and device for realizing said method
JPH0335624B2 (en)
US2758276A (en) Apparatus for the non-destructive testing of magnetizable objects
US3588683A (en) Method and apparatus for nondestructive testing of ferromagnetic articles,to determine the location,orientation and depth of defects in such articles utilizing the barkhausen effect
US5777469A (en) Method and apparatus for detecting flaws in conductive material
JPH0989843A (en) Method and apparatus for eddy current flaw detection
RU2566416C1 (en) Device for eddy-current magnetic examination of ferromagnetic objects
US5986452A (en) Apparatus and method for detecting flaws in conductive material
Lijian et al. Sensor development and application on the oil-gas pipeline magnetic flux leakage detection
JPS59226858A (en) Flaw detector
Fukuoka et al. Flaw detection for microcrack in spring steel and estimation of crack shape with eddy current testing
JP2855186B2 (en) Non-destructive measurement method of surface flaw by multi-frequency magnetization
JPH0820421B2 (en) Flaw detection method and flaw detection device
JP4349012B2 (en) Magnetic flaw detection method for ferromagnetic materials
Gunn An Eddy-Current Method of Flaw Detection in Nonmagnetic Metals
Otterbach et al. Portable system for motion induced eddy current testing
JPH0439031B2 (en)