JPS58218644A - Method and apparatus for testing surface flaw of metallic material - Google Patents

Method and apparatus for testing surface flaw of metallic material

Info

Publication number
JPS58218644A
JPS58218644A JP57102600A JP10260082A JPS58218644A JP S58218644 A JPS58218644 A JP S58218644A JP 57102600 A JP57102600 A JP 57102600A JP 10260082 A JP10260082 A JP 10260082A JP S58218644 A JPS58218644 A JP S58218644A
Authority
JP
Japan
Prior art keywords
magnetic field
inspected
magnetic flux
magnetic
flaw detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57102600A
Other languages
Japanese (ja)
Other versions
JPH0335624B2 (en
Inventor
Tatsuo Hiroshima
龍夫 廣島
Tetsuya Hirota
哲也 廣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP57102600A priority Critical patent/JPS58218644A/en
Priority to US06/502,547 priority patent/US4602212A/en
Priority to DE19833321375 priority patent/DE3321375A1/en
Publication of JPS58218644A publication Critical patent/JPS58218644A/en
Publication of JPH0335624B2 publication Critical patent/JPH0335624B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9046Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents by analysing electrical signals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To detect with high accuracy a surface flaw of a metallic material by only a test of once, by giving simultaneously a magnetic flux to the surface of a material to be inspected, from two directions of the direction along the material to be inspected, and the vertical direction, and forming an orthogonal magnetic field in the vicinity of the surface of the material to be inspected. CONSTITUTION:An AC magnetic field generating device 14 consists of the first magnetic field generator 12 for generating a magnetic flux in the direction along the surface of a material to be inspected 11, and the second magnetic field generator 13 for generating a magnetic flux in the vertical direction to the surface of the material to be inspected 11. Subsequently, by use of this AC magnetic field generating device 14, the first magnetic flux (a) running along the surface of the material to be inspected 11, and the second magnetic flux (b) being vertical to the surface of the material to be inspected 11 being orthogonal to this magnetic flux are given simultaneously to the material to be inspected 11, and an orthogonal magnetic field is formed in the vicinity of the material to be inspected 11. Subsequently, by detecting the vertical magnetic flux generated on the surface of the material to be inspected, by a magnetic field detector 15, a surface flaw of a metallic material can be detected with high accuracy by only a test of once.

Description

【発明の詳細な説明】 本発明は、金属材料の表面疵探傷方法およびその装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for detecting surface flaws in metal materials.

現在、金属材料の表面疵探傷方法としては種々の方法が
実用化されているが、そのうちの電磁気探傷法としては
磁気探傷法と渦流探傷法が広く採用されている。しかし
、前者の磁気探傷法は、一般に■鉄鋼材料等の強磁性体
の表面欠陥の検出に優れている。■割れが開口していな
い他きすのような欠陥でも検出できる。等の長所を有し
ているが、反面、鉄鋼材料でもオーステナイトステンレ
ス鋼のような非磁性材料には適用出来ず、又欠陥の位置
、表面上の長ざがわかるが、深さはわからず、内部欠陥
の検出が困難であるという短所も併せもっている。また
後者の渦流探傷法は、■探傷結果が直接的に電気的出力
として得られる。■非接触的方法で試験速度が速い。0
表面欠陥の検出に適している。■欠陥、材質変化、寸法
変化等適用範囲が広い。■信号と欠陥体積とが略比例関
係になる。等の長所を有しているが、以下に列挙する短
所も併せもっている。■材料形状が単純なものでないと
適用しにくい。0表面下の深い位置にある欠陥の検出が
出来ない。■試験対象以外の材料的因子の影響が雑音の
因子となる場合が多い。
Currently, various methods are in practical use for detecting surface flaws in metal materials, and among them, magnetic flaw detection and eddy current flaw detection are widely adopted as electromagnetic flaw detection. However, the former magnetic flaw detection method is generally excellent in detecting surface defects in ferromagnetic materials such as steel materials. ■In addition to open cracks, defects such as scratches can also be detected. However, on the other hand, it cannot be applied to non-magnetic materials such as austenitic stainless steel even if it is a steel material.Furthermore, although the location and length of the defect on the surface can be determined, the depth cannot be determined. It also has the disadvantage that internal defects are difficult to detect. Furthermore, in the latter eddy current flaw detection method, (1) the flaw detection results are directly obtained as electrical output. ■Testing speed is fast due to non-contact method. 0
Suitable for detecting surface defects. ■Wide range of application including defects, material changes, dimensional changes, etc. ■The signal and defect volume have a substantially proportional relationship. However, it also has the following disadvantages. ■Difficult to apply unless the material shape is simple. 0 Defects located deep below the surface cannot be detected. ■Noise is often caused by the influence of material factors other than the test object.

また、上記磁気探傷法では、欠陥と直角な方向に磁化し
た場合には有効であるが、水平な方向に磁化した場合に
は、欠陥部に磁極が生じないので欠陥の探傷が不可能で
あったが、現在では、下記に示す方法で欠陥の方向に関
係なく探傷出来るようになって酋た。
In addition, the magnetic flaw detection method described above is effective when magnetized in a direction perpendicular to the defect, but if it is magnetized in a horizontal direction, no magnetic pole is generated at the defect, making it impossible to detect flaws. However, it has now become possible to detect defects regardless of their direction using the method shown below.

例えば、棒銅(1)の軸方向欠陥を(、)、周方向の欠
陥を(b)とすれば、電源(4)を用匹て棒講(1)に
軸通電法による円周方向磁化を、又電源(B)を用いて
棒鋼〔1)に軸方向磁化をコイル法で行なわせしめこれ
ら夫々の磁化で欠陥(、) 、 (b)を探傷する方法
(第1図赤照)や、又スラブ等の平板状被検査体(2)
では、コイル(0)および(D)を交差状に配置せしめ
、これらコイル(0)およびCD)によって長手方向欠
陥−と幅方向欠陥(b)を連続的に探傷する方法(第2
図er>谷照する一対の磁化マグネット(6)を夫々タ
ンデム配置せしめ、これら磁化コイル(El)(K)b
よび磁化マグネット0)で軸方向欠陥(&)と円方向欠
陥■)を連続的に探傷する方法(第2図@))等である
For example, if the defect in the axial direction of the copper bar (1) is (,) and the defect in the circumferential direction is (b), then the power supply (4) is used to magnetize the copper bar (1) in the circumferential direction by the axial energization method. In addition, there is a method in which the steel bar [1] is magnetized in the axial direction using a coil method using a power source (B), and defects (, ), (b) are detected using these respective magnetizations (red lights in Figure 1). Also, flat plate-shaped objects to be inspected such as slabs (2)
Here, we will introduce a method (second method) in which the coils (0) and (D) are arranged in an intersecting manner, and the defects in the longitudinal direction and the defect in the width direction (b) are continuously detected using these coils (0) and CD).
A pair of magnetized magnets (6) that illuminate the valley are arranged in tandem, and these magnetized coils (El) (K)b
and a method of continuously detecting axial defects (&) and circular defects (2) using a magnetized magnet 0) (Fig. 2 @)).

ところで、金属材料の表面に発生する疵は割れ状の欠陥
以外に穴状のビット疵と呼ばれるものもあり通常磁気探
傷ではピット疵を検出し難い事は良く知られている。す
なわち、現在実用されている探傷方法では、一種類の探
傷方法で全ての種類の疵を検出することは至難であった
Incidentally, in addition to crack-like defects, there are also pit-like defects called pit-like defects that occur on the surface of metal materials, and it is well known that it is difficult to detect pit defects using normal magnetic flaw detection. That is, with the flaw detection methods currently in use, it is extremely difficult to detect all types of flaws using one type of flaw detection method.

今、丸棒鋼を例にとってみると、割れ状の欠陥は磁気探
傷法の一つである磁粉探傷法での検出能が良好であり、
又ピット状の疵は渦流探傷法での検出能が良好である為
、通常は検査目的に応じて     1最良の探傷方法
を採択し、使用しているのが現状である。このため、疵
の性状によっては、どちらか一種類のみの探傷では、検
出能が低下するため数種類の探傷を併用しなければなら
ないという問題点があった。
Now, taking round steel bars as an example, crack-like defects can be detected well using magnetic particle testing, which is one of the magnetic testing methods.
In addition, pit-like flaws are well detected by eddy current flaw detection, so the current situation is that the best flaw detection method is usually selected and used depending on the inspection purpose. For this reason, depending on the nature of the flaw, if only one type of flaw detection is used, the detection ability is reduced, so there is a problem that several types of flaw detection must be used in combination.

本発明は、上記問題点に鑑みて成されたものであって、
−回の探傷で欠陥の性状および被探傷材の種類(磁性材
料又は非磁性材料)に影響されることがなく、かつ良好
なる検出能を有する金属材料の表面疵探傷方法およびそ
の装置を提供せんとするものである。
The present invention has been made in view of the above problems, and includes:
- Provide a method and device for detecting surface flaws in metal materials that are unaffected by the nature of the defect and the type of material to be detected (magnetic or non-magnetic material) and have good detection ability in multiple flaw detections. That is.

すなわち、本発明の特徴は、被検査材表面に、これに沿
う方向と垂直方向の二方向から同時に磁束を与えること
によシ、被検査材表面付近に直交する磁場を形成せしめ
、前記表面に沿う方向の磁束によって得られる表面疵か
らの漏洩磁束と、表面に垂直方向の磁束によって得られ
る渦電流の表面疵による乱れに起因する磁束変化とを測
定した後、これを2種類に弁別し、これら各測定値によ
り表面疵の探傷を行なう金属材料の表面疵探傷方法釦よ
びこの方法を実施するための装置である。
In other words, the feature of the present invention is to simultaneously apply magnetic flux to the surface of the material to be inspected from two directions, one along and perpendicular to the surface of the material to be inspected, thereby forming a magnetic field orthogonal to the surface of the material to be inspected. After measuring the leakage magnetic flux from the surface flaw obtained by the magnetic flux in the direction along the surface and the change in magnetic flux caused by the disturbance of the eddy current due to the surface flaw obtained by the magnetic flux perpendicular to the surface, these are distinguished into two types, This figure shows a method button for detecting surface flaws in metal materials for detecting surface flaws using these measured values, and a device for carrying out this method.

以下、本発明を第6図以降の添付図面に示す一実施例に
基づいて説明する。
Hereinafter, the present invention will be described based on an embodiment shown in the accompanying drawings starting from FIG.

本発明は、被検査材00表面に沿う方向の磁束を発生さ
せる第1の磁場発生器(ロ)と、被検査材(用表面に垂
直方向の磁束を発生させる第2の磁場発生器(ロ)とか
ら成る交流磁場発生装置α荀を用いて被検査材αす表面
に沿う第1の磁束(イ)と、該磁束に直交するような被
検査材(U)表面に垂直な第2の磁束6:I)とを同時
に被検査材(U)に与えて被検査材01)表面付近に直
交磁場を形成せしめ、このうちの被検査材(9)表面に
発生する垂直の磁束を、前記被検査材(ロ)表面に近接
配置した磁場検出器(至)により検出し、この検出値を
、前記第1の磁束(イ)によって得られる表面疵からの
漏洩磁束を測定して得られる第」の信号と、第29磁束
(ロ)によって被検査材(6)表面に得られる水平な渦
電流(ハ)の表面疵に起因する乱れの結果中じる第2の
磁束変化を測定して得られる第2の信号とに弁別し、こ
れら各信号の振巾および位相を測定して、この測定値に
基づいて信号処理を行い被検査材(11)の表面疵を探
傷するものである。
The present invention comprises a first magnetic field generator (b) that generates magnetic flux in a direction along the surface of the material to be inspected, and a second magnetic field generator (b) that generates magnetic flux in a direction perpendicular to the surface of the material to be inspected. ) is used to generate a first magnetic flux along the surface of the material to be inspected (A), and a second magnetic flux perpendicular to the surface of the material to be inspected (U) that is orthogonal to the magnetic flux. Magnetic flux 6:I) is simultaneously applied to the material to be inspected (U) to form an orthogonal magnetic field near the surface of the material to be inspected (01), and the perpendicular magnetic flux generated on the surface of the material to be inspected (9) is The material to be inspected (b) is detected by a magnetic field detector (to) placed close to the surface, and this detected value is used as the first magnetic flux obtained by measuring the leakage magnetic flux from the surface flaw obtained by the first magnetic flux (a). '' signal and the second magnetic flux change resulting from the disturbance caused by the surface flaw in the horizontal eddy current (c) obtained on the surface of the material to be inspected (6) by the 29th magnetic flux (b). The amplitude and phase of each of these signals are measured, and signal processing is performed based on the measured values to detect surface flaws on the material to be inspected (11).

第4図に示す第1実施例では、被検査材(10表面に発
生する垂直の磁束の検出を行なわせる磁場検出器(ロ)
を、第2の磁場発生器α8)の直下に備えたものを示し
ている。また、第5図では被検査材(11)の大きざに
対応可能な様に、第1の磁場発生器(ロ)を、左右逆ね
じを有するねじ軸に)に螺合せしめた支持部材f)!1
に)に取付け、前記ねじ軸(ロ)を正逆回転させること
により、被検査材(ロ)に対して接離移動す−るよう構
成したものを示している。
In the first embodiment shown in FIG.
is provided directly below the second magnetic field generator α8). In addition, in Fig. 5, the first magnetic field generator (b) is screwed onto a support member f that is screwed onto a threaded shaft having left and right reverse threads so that it can be adapted to the size of the material to be inspected (11). )! 1
2), and is configured to move toward and away from the material to be inspected (B) by rotating the screw shaft (B) in forward and reverse directions.

第6図は、本発明に係る表面疵探傷装置における処理装
置の構成を示す第1ブロック図であり、この第1ブロッ
ク図に基づいて、更に説明する。
FIG. 6 is a first block diagram showing the configuration of a processing device in the surface flaw detection apparatus according to the present invention, and further explanation will be given based on this first block diagram.

先ず被検査材表面に、水平磁場用マグネットα呻および
送直磁場用コイルαηを用Aて直交する磁場を形成する
First, a perpendicular magnetic field is formed on the surface of the material to be inspected using a horizontal magnetic field magnet α and a retransmission magnetic field coil αη.

ここで、被検査材(9)に欠陥が存在すると、この欠陥
により被検査材(10表面に沿う第1の磁束が漏洩する
と共に表面に垂直な第2の磁束も乱れる。
Here, if a defect exists in the material to be inspected (9), this defect causes the first magnetic flux along the surface of the material to be inspected (10) to leak and also disturbs the second magnetic flux perpendicular to the surface.

よって、上記第1の磁束の漏洩と、第2の磁束の乱れを
磁場検出器により同時に検出し、この検出値を夫々サン
プルホールド(18)mを介してレコーダ(ロ)編およ
び比較器に)−に送り、前記レコーダ(ロ)礒で記録す
ると共に比較器H−で予め設定された標準流と比較され
、更に夫々のカウンターho hb ヤマーカh4dに
送られ、欠陥数のカウントやマーキングが施される。
Therefore, the leakage of the first magnetic flux and the disturbance of the second magnetic flux are simultaneously detected by the magnetic field detector, and the detected values are sent to the recorder (b) and the comparator via the sample hold (18) m, respectively. - is recorded by the recorder (B), and is compared with a preset standard flow by the comparator H-, and is further sent to each counter (h4d) to count and mark the number of defects. Ru.

なお、上記した直交する磁場を被検金材αυ表面に形成
させるには、位相ゾだけずらせて同期せしめた第1およ
び第2の発振器−(ハ)で作られた交流を、夫々のパワ
ーアンプ(ハ)−を介して水平磁場用マグネツ) (1
6)および垂直磁場用コイ゛ルαのに流せばよい。
In order to form the above-mentioned orthogonal magnetic fields on the surface of the metal material αυ to be tested, the alternating current generated by the first and second oscillators (c), which are synchronized with a phase difference of 0, is transmitted to the respective power amplifiers. (c) - horizontal magnetic field magnets) (1
6) and the vertical magnetic field coil α.

このように位相をずらせる理由は、本発明方法では欠陥
に作用する磁場が水平磁場と垂直磁場との合成である為
、位相をずらせることで合成磁場の取り得る角度が垂直
方向から水平方向にまで全ての方向に亘って可能となり
、欠陥の角度に関係なく一定の漏洩磁場を得ることがで
きるからである。また上記した理由はくぼみ状の疵に対
しても同様である。
The reason for shifting the phase in this way is that in the method of the present invention, the magnetic field that acts on the defect is a combination of a horizontal magnetic field and a vertical magnetic field, so by shifting the phase, the angle that the composite magnetic field can take is changed from vertical to horizontal. This is because it is possible to obtain a constant leakage magnetic field regardless of the angle of the defect. Further, the above-mentioned reason also applies to depression-like flaws.

第7図は同じく本発明装置における処理装置の構成を示
す第2ブロック図であり、この場合には、磁場検出器(
ホ)により同時に検出された検出値は2つの同調アンプ
H−に送られる。ここでこの同調アンプH−の同調周波
数は、夫々水平磁場用マグネツ) (16)および垂直
磁場用コイルαηに供給される電流と同じ周波数である
。そして上記同調アンプmdの出力は夫々水平磁場用マ
グネットθ荀、垂直磁場用コイル(ロ)に供給される電
流に同期して検波され、欠陥信号が復調されて夫々の比
較器HtAに送られ第1ブロック図の場合と同じように
処理される。
FIG. 7 is a second block diagram showing the configuration of the processing device in the device of the present invention, and in this case, the magnetic field detector (
The detection values simultaneously detected by (e) are sent to two tuned amplifiers H-. Here, the tuning frequency of this tuning amplifier H- is the same frequency as the current supplied to the horizontal magnetic field magnet (16) and the vertical magnetic field coil αη, respectively. The output of the tuning amplifier md is detected in synchronization with the current supplied to the horizontal magnetic field magnet θ and the vertical magnetic field coil (b), and the defect signal is demodulated and sent to each comparator HtA. It is processed in the same way as for one block diagram.

なお、この第2ブロック図の場合には水平磁場用マグネ
ツ)C14および垂直磁場用コイルα乃に流す交流の発
振器−一の位相は同じでよい。なぜならコイル及びマグ
ネットに同位相の電流を流す事によりそれぞれの磁束に
90位相差が生じるからである。
In the case of this second block diagram, the phases of the alternating current oscillator 1 that flows through the horizontal magnetic field magnet C14 and the vertical magnetic field coil α may be the same. This is because by passing currents of the same phase through the coil and magnet, a 90 phase difference occurs in the respective magnetic fluxes.

以上述べた如ぐ本発明によれば、従来の探傷方法の様に
、数種類の探傷を行なうことなく、−回の探傷のみで、
非磁性材料、磁性材料を問わず、かつ欠陥の性状に影響
されることなく、高精度な探傷が行なえる産業上共する
ところ大なる発明である。
According to the present invention as described above, unlike conventional flaw detection methods, it is not necessary to perform several types of flaw detection, but only - times of flaw detection,
This invention is a great invention that is common in industry as it allows highly accurate flaw detection to be performed on both non-magnetic and magnetic materials and without being affected by the nature of defects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は磁粉探傷法の説明図、第3図は本
発明法の概念図、第4図は本発明装置の@1実施例を示
す概略説明図、第5図は同じく第2実施例を示す正面図
、第6図は本発明装置における処理装置の構成を示す第
1ブロック図、第7図は同じく第2ブロック図である。 (ロ)は被検査材、(ロ)は第1の磁場発生器、(ロ)
は第2の磁場発生器、α荀は交流磁場発生装置、(ロ)
は磁場検出器。 特許出願人  住友金属工業株式会社 \     〜     へ     Nへ     
へ     ヘ     ヘ手続補正書く自記ン 1、事件の表示 特願昭57−102600号 2、発明の名称 金属材料の表面疵探傷方法及びその装置3、補正をする
者 事件との関係     出願人 住 所  大阪府大阪市東区北浜5丁目15番地氏名(
名称)   (211) 住友金属工業株式会社4、代
 理 人 5、       の日付  昭和  年   月  
 日6、補正の対象 補正の内容 (1)0本願願書の「特許請求の範囲に記載さ扛た発明
の数1の欄に「z」とある記載を「3」と補正します。 (2)1本願明細書を別紙の通り(補正の対象の欄に記
載した事項以外は内容に変更なし)補正します。 (3)、同書添付図面(第1図〜第1図)に第8図およ
び第9図を追加補正します。 &添付書類の目録
Fig. 1 and Fig. 2 are explanatory diagrams of the magnetic particle flaw detection method, Fig. 3 is a conceptual diagram of the method of the present invention, Fig. 4 is a schematic explanatory diagram showing the @1 embodiment of the apparatus of the present invention, and Fig. 5 is the same. A front view showing the second embodiment, FIG. 6 is a first block diagram showing the configuration of a processing device in the apparatus of the present invention, and FIG. 7 is a second block diagram. (b) is the material to be inspected, (b) is the first magnetic field generator, (b)
is the second magnetic field generator, αXun is the AC magnetic field generator, (b)
is a magnetic field detector. Patent applicant: Sumitomo Metal Industries, Ltd. \ ~ To N
He He He Self-recording of procedural amendments 1, Indication of the case, Patent Application No. 1982-102600, 2, Name of the invention, Method and apparatus for detecting surface flaws in metal materials, 3, Person making the amendment, Relationship with the case, Applicant address, Osaka 5-15 Kitahama, Higashi-ku, Osaka, Japan Name (
Name) (211) Sumitomo Metal Industries Co., Ltd. 4, Agent 5, Date: Showa
Date 6, Contents of amendment subject to amendment (1) 0 The statement "z" in the "Number of inventions disclosed in the scope of claims 1" column of the application is amended to "3". (2) 1. Amend the specification of the application as per the attached sheet (no changes to the contents except for the matters stated in the column subject to amendment). (3) Figures 8 and 9 have been added and corrected to the drawings attached to the document (Figures 1 to 1). &Inventory of attached documents

【1】訂正願書             1通(2)
全文訂正明細書          1通(3)補正図
面C第8図および第9図)  1通明  細  書 1、発明の名称 金属材料の表面疵探傷方法及びその装置2、特許請求の
範囲 (1)、被検査材表面に、これに沿う方向と垂直方向の
二方向から同時に磁束fちえることにより、被検査材表
面付近に直交する磁場を形成せしめ、前記表面に沿う方
向の磁束によって得られる表面疵からの漏洩磁場と、表
面に垂直方向の磁束によって得られる渦電流の表面疵に
よる乱れに起因する磁場との合成磁場を一つの磁場検出
器で検出することを特徴とする金属材料の表面疵探傷方
法。 (2)、被検査材表面に、これに沿う方向と垂直方向の
二方向から同時に磁束を与えることにより、被検査材表
面付近に直交する磁場を形成せしめ、前記表面に沿う方
向の磁束によって得られる表面疵からの漏洩磁場と、表
面に垂竺り向の磁束によって得られる渦電流の表面疵に
よる乱れに起因する磁場との合成磁場を一つの磁場検出
器で検出した後、前記磁場検出器の出力を励磁磁場に対
応した信号に弁別し、これら各信号により表面疵探傷の
評価を行なうことを特徴とする金属材料の表面疵探傷方
法。 (3)、被検査材表面に沿う方向の磁束を発生させる第
1の磁場発生器と、被検査材表面に垂直方向の磁束を発
生させる第2の磁場発生器とから成る交流磁場発生器と
、該交流磁場発生器により形成される被検査材表面付近
の直交磁場の垂直方向の磁場を検出する磁場検出器と、
該磁場検出器での検出値を、表面に沿う方向の磁場と、
表面に垂直方向の磁場変化とに弁別し、これら弁別1−
た夫々の値を処:理する処理装置とを具備して成ること
を特徴とする金属材料の表面疵探傷装置。 3、発明の詳細な説明 本発明は、金属材料の表面疵探傷方法およびその装置に
関するものである。 現在、金属材料の表面疵探傷方法と1−て種々の非破壊
検査法が実用化されており、存在が予想される欠陥に応
じて一種あるいは複数種の方法が適用されている。例え
ば予想される欠陥の方向がらる程度定まっている場合の
割れ状欠陥の検出には漏洩磁束探傷法や又は表面波を用
いた超音波探傷法等を採用する。そして、方向性のなh
ピット状欠陥の検出には渦流探傷法が適用されている。 ところでこのうち、漏洩磁束探傷法と渦流探傷法につい
てとりめげてその特長を述べると以下に示す通りである
。前者の磁気探傷法は、一般に■鉄鋼材料等の強磁性体
の表面欠陥の検出に優れている。■割れが開口していな
い地きずのような欠陥でも検出できる。等の長所を有し
ているが、反面、鉄鋼材料でもオーステナイトステンレ
ス鋼のようの検出が困難であるという短所も併せもって
いる0また後者の渦流探傷法は、■探傷結果が直接的に
電気的出力として得られるわ■非接触的方法で試験速度
が速い。0表面欠陥の検出に適している0■欠陥、材質
変化、寸法変化等適用範囲が広い0■信号と欠陥体積と
が略比例関係になる。等の長所を有しているが、以下に
列挙する短所も併せもっている。■材料形状が単純なも
のでないと適用しにくい。0表面下の深い位置にある欠
陥の検出が出来ない。■試験対象以外の材料的因子の影
響が雑音の因子となる場合が多い。 また、上記磁気探傷法では、欠陥と直角な方向に磁化し
た場合には有効であるが、平行な方向に磁化した場合に
は、欠陥部に磁極が生じないので欠陥の探傷が不可能で
あるが、現在では、下記に示す方法で欠陥の方向に関係
なく探傷出来るようになってきた。 例えば、棒鋼(1)の軸方向火、陥を(a)、周方向の
欠陥を(b)とすれば、電源(4)を用いて棒鋼(1)
に軸通電法による円周方向磁化を、又電源の)を用いて
棒鋼(1)に軸方向磁化をコイル法で行なわせしめこれ
ら夫々の磁化で欠m(a)、(b)v探傷する方法(第
1図参照)や、又スラブ等の平板状被検査体(2)では
、コイル(C)およびff)3′fr交差状に配置せし
め、これらコイル(Qおよび0によって長手方向欠陥(
a)と幅方向欠陥(b)を連続的に探傷する方法(第2
図(イ)参照)や、更に管材(1)では、この管材(1
)が貫通する磁化コイル■mlと、この管材(1)を直
径方向より磁化する一対の磁化マグネット■を夫々タン
デム配置せしめ、これら磁化コイル(E)(E5および
磁化マグネツ) (1=)で軸方向欠陥(&)と円方向
欠陥(b)を連続的に探傷する方法(第2図(tl)等
テiル。 一方、金属材料の表面に発生する疵は割れ状の欠陥以外
に穴状のピット疵と呼ばれるものもあり通常磁気探傷で
はビット疵を検出し難い事は良く知られており、よって
、現在実用されている探傷方法では、一種類の探傷方法
で全ての種類の疵を検出することは至難である。 今、丸棒鋼を例にとってみると、割れ状の欠陥は磁気探
傷法の一つである磁粉探傷法での検出能が良好であり、
又ビット状の疵は渦流探傷法での検出能が良好である為
、通常は検査目的に応じて最良の探傷方法を採択し、使
用して因るのが現状である。このため、疵の性状によっ
ては、どちらか一種類のみの探傷では、検出能が低下す
るため数種類の探傷を併用しなければならないという問
題点があった。 本発明は、上記問題点に鑑みて成されたものであって、
−回の探傷で欠陥の性状および被探傷材の種類(磁性材
料又は非磁性材料)に影響されることがなく、かつ良好
なる検出能を有する金属材料の表面疵探傷方法およびそ
の装置を提供せんとするものである。 すなわち、本発明の特徴は、被検査材表面に、これに沿
う方向と被検査材表面に対し垂直方向の二方向から同時
に磁場を与えることにより、被検査材表面付近に直交す
る磁場を形成せしめ、表面疵からの漏洩磁場と、表面に
誘起される渦電流の表面疵による乱れに起因する磁場の
合成磁場を測定し、欠陥の存在、情報を得る方法及び装
置でろる0 以下、本発明を第3図以降の添付図面に示す一実施例に
基づいて説明する。 本発明は、被扶養材αυ表面に沿う方向の磁場を発生さ
せる第1の磁場発生器Q21と、被検査材(1υ表  
  1面に垂直方向の磁場を発生させる第2の磁場発生
器a9とから成る交流磁場発生装置(141を用いて被
検査材(If)表面に沿う第1の磁場(イ)と、該磁場
に直交するような被検葺材aυ表面に垂直な第2の磁場
(ロ)とを同時に被検査材圓に与えて第8図に一例を示
す様に被検査材01)表面付近ルし時間的にその方向が
変化する合成磁場を形成せしめると、被検査材01)上
に存在する欠陥によって、合成磁場の時間経過に伴なう
渦流の乱れによる磁場乱れと、漏洩磁場の合成磁場があ
られれ、この合成磁場を前記被検査材表面表面に近接配
置した磁場検出器αつで検出することにより被検査材0
υの表面疵を探傷するもので、検査対象とする欠陥の形
状、方向等により信号処理は変わる。例えば、磁場検出
器を被検査材0])表面に近接配置し、被検査材表面]
表面に垂直な磁場を検出するとして、第9図(イ)に示
す様な角溝欠陥を対象とする場合、磁場検出器の出力を
、励磁合成磁場の磁場方向が被検査材(11)表面に平
行になった瞬間の出力を散出せば精度よく欠陥信号を得
ることができる。また、第9図(Elの如きV溝状の欠
陥を対象とする場合、磁場検出器の出力を励磁合成磁場
の磁場方向が被検葺材αυ表面に垂直になった瞬間の出
力を取出せば精度よく欠陥信号を得ることができる。更
に、第9図(ハ)の如き傾きを有する欠陥の場合、同様
に時間的にその方向が変化する励磁合成磁場の磁場方向
が欠陥に直角になった瞬間の出力を取り出せば精度よく
欠陥信号を得ることができる。 上記の如く、本方法の信号処理は対象とする欠陥の形状
、方向等を予め想足し、経時的に変化する励磁合成磁場
方向の最も精度よく得られる瞬間の出力値を取出すので
ある。 第4図に示す第1実施例では、被検査材(11)表面に
発生する垂直の磁束の検出を行なわせる磁場検出器αQ
を、第2の磁場発生器a(至)の直下に備えたものを示
している。また、第5図では被検査材aυの大きさに対
応可能な様に、第1の磁場発生器Hを、左右逆ねじを有
するねじ軸(27)に螺合せしめた支持部材(28)0
4に取付け、前記ねじ軸(27)を正逆回転させること
により、被検査材αυに対して接離移動するよう構成し
たものを示している。 第6図は、本発明に係る表面疵探傷装置における処理装
置の構成を示す第1ブロック図であり、この第1ブロッ
ク図に基づいて、更に説明する。 先ず被検査材表面に、水平磁場用マグネツl(周波数i
ωt)および垂直磁場用コイル(17)(周波数i(ω
t+ψ))f用いて直交する磁場を形成する。 ここで、被検査材(1υに欠陥が存在すると、この欠陥
により漏洩磁場と渦流の乱れによる磁場の合成磁場が生
じる。 磁場検出器はこの合成磁場を検出し、この検出値を夫々
サンプルホールド回路o樽ajに供給し、各レコーダ0
3(Idおよび比i器(優纒に送り、前記レコーダH(
19で記録すると共に比較器(21■で予め設定された
有害疵と判定される信号レベルと比較され、更に夫々の
カウンター(21)コやマーカ(22)ryiに送られ
、欠陥数のカウントやマーキングが施される。 なお、上記した直交する磁場を被検査材α1)表面に形
成させるには、位相ψだけずらせて同期せしめた第1お
よび第2の発振器(231124)で作られた交流を、
夫々のパワーアンプ(25)(2ツを介して水平磁場用
マグネツ)(16)および垂直磁場用フィルaDに流せ
ばよい。 このように位相をずらせる理由は、本発明方法では欠陥
に作用する磁場が水平磁場と垂直磁場との合成である為
、位相をずらせることで合成磁場の取り得る角度が垂直
方向から水平方向に1で全ての方向に亘って可能となり
、欠陥の角度に関係なく一定の磁場の乱れを得ることが
できるからでめる0 第7図は同じく本発明装置における処理装置の構成を示
す第2ブロック図であり、この場合には、磁場検出器−
により同時に検出された検出値は2つの同調アンプ弼0
0に送られる。ここでこの同調アンプCI!6)(26
)の同調周波数は、夫々水平磁場用マグネット(16)
および垂直磁場用コイルαηに供給される電流と同じ周
波数である。そして上記同調アンプ(26)−の出力は
夫々水平磁場用マグネッ)(+61、垂直磁場用コイル
117)に供給される電流に同期して検波され、欠陥信
号が復調されて夫々の比較器(2ω媚に送られ第1ブロ
ック図の場合と同じように処理される。 なお、この第2ブロック図の場合には水平磁場用マグネ
ットαQおよび垂直磁場用コイル(17)K流す交流の
発振器(2I C?4)の位相は同じでよい。なぜなら
コイル及びマグネットに同位相の電流を流す事によりそ
れぞれの磁場に9ぽ位相差が生じるからである。 以上述べた如く本発明によれば、従来の探傷方法の様に
、数種類の探傷を行なうことなく、−回の探傷のみで、
非磁性材料、磁性材料を問わず、かつ欠陥の性状に影響
されることなく、高精度な探傷が行なえる童業上益する
ところ大なる発明である。 4、図面の簡単な説明 第1図および第2図は磁粉探傷法の説明図、第3図は本
発明法の概念図、第4図は本発明装置の第1実施例を示
す概略説明図、第5図は同じく第2実施例を示す正面図
、第6図は本発明装置における処理装置の構成を示す第
1ブロック図、第7図は同じぐ第2ブロック図、第8図
は垂直磁場(iωt)および水平磁場(噌ωt)と励振
合成磁場との関係図、第9図は各欠陥における励振合成
磁場の取出1.方向を輯明する図面で、同図(イ)は角
溝欠陥、同図(→はV溝1欠陥、同図(・つは傾きを有
する欠陥の場合である。 αDは被検査材、+12)け第1の磁場発生器、α湧は
第2の磁場発生器、(14+は交流磁場発生装置、(I
Qは磁場検出器。 特許出願人  住友金属工業株式会社
[1] Correction application 1 copy (2)
Full text correction statement 1 copy (3) Amended Drawing C Figures 8 and 9) 1 specification Statement 1, Name of invention Method and apparatus for detecting surface flaws in metal materials 2, Claims (1), Coverage By simultaneously applying a magnetic flux f to the surface of the material to be inspected from two directions, one along and perpendicular to the surface, a perpendicular magnetic field is formed near the surface of the material to be inspected, and surface flaws caused by the magnetic flux along the surface are prevented. A method for detecting surface flaws in metal materials, characterized in that a composite magnetic field of a leakage magnetic field and a magnetic field caused by disturbances of eddy currents due to surface flaws obtained by magnetic flux perpendicular to the surface is detected with one magnetic field detector. . (2) By simultaneously applying magnetic flux to the surface of the material to be inspected from two directions, one along and perpendicular to the surface, a magnetic field perpendicular to the surface of the material to be inspected is formed, and the magnetic flux in the direction along the surface generates a magnetic field. After detecting the composite magnetic field of the leakage magnetic field from the surface flaw caused by the surface flaw and the magnetic field caused by the disturbance of the eddy current due to the surface flaw, which is obtained by magnetic flux perpendicular to the surface, with one magnetic field detector, the magnetic field detector A method for detecting surface flaws in metal materials, characterized in that the output of the is differentiated into signals corresponding to an excitation magnetic field, and the surface flaw detection is evaluated using these signals. (3) an alternating current magnetic field generator consisting of a first magnetic field generator that generates magnetic flux in a direction along the surface of the material to be inspected, and a second magnetic field generator that generates magnetic flux in a direction perpendicular to the surface of the material to be inspected; , a magnetic field detector that detects a perpendicular magnetic field of the orthogonal magnetic field near the surface of the inspected material formed by the alternating current magnetic field generator;
The detected value by the magnetic field detector is a magnetic field in the direction along the surface,
Discrimination between magnetic field changes in the direction perpendicular to the surface, and these discrimination 1-
1. A surface flaw detection device for metal materials, comprising: a processing device for processing each value. 3. Detailed Description of the Invention The present invention relates to a method and apparatus for detecting surface flaws in metal materials. At present, various non-destructive inspection methods have been put into practical use as surface flaw detection methods for metal materials, and one or more methods are applied depending on the defects expected to exist. For example, to detect a crack-like defect when the expected direction of the defect is determined to some extent, a leakage magnetic flux flaw detection method or an ultrasonic flaw detection method using surface waves is employed. And no direction.
Eddy current flaw detection is applied to detect pit-like defects. By the way, among these methods, the characteristics of the leakage magnetic flux flaw detection method and the eddy current flaw detection method are described below. The former magnetic flaw detection method is generally excellent in detecting surface defects in ferromagnetic materials such as steel materials. ■Defects such as ground scratches without open cracks can be detected. However, on the other hand, it also has the disadvantage that it is difficult to detect even steel materials like austenitic stainless steel. It can be obtained as an output ■Testing speed is fast using a non-contact method. The 0■ signal, which is suitable for detecting surface defects and has a wide range of applications such as defects, material changes, and dimensional changes, has a substantially proportional relationship with the defect volume. However, it also has the following disadvantages. ■Difficult to apply unless the material shape is simple. 0 Defects located deep below the surface cannot be detected. ■Noise is often caused by the influence of material factors other than the test object. In addition, the magnetic flaw detection method described above is effective when magnetized in a direction perpendicular to the defect, but if it is magnetized in a direction parallel to the defect, no magnetic pole is generated at the defect, making it impossible to detect the flaw. However, it has now become possible to detect defects regardless of their direction using the method described below. For example, if the axial defect and defect in the steel bar (1) are (a) and the circumferential defect is (b), the power source (4) is used to remove the steel bar (1).
A method in which the steel bar (1) is magnetized in the circumferential direction by the axial energization method, and the steel bar (1) is magnetized in the axial direction by the coil method using the power source), and defects m (a), (b) and v are detected using these respective magnetizations. (see Fig. 1) or a flat plate-shaped object (2) such as a slab, the coils (C) and ff) are arranged in a 3'fr cross pattern, and these coils (Q and 0 are used to detect longitudinal defects).
A method of continuously detecting defects in the width direction (a) and width direction defects (b) (second method)
(see figure (a)), and furthermore, in the case of pipe material (1), this pipe material (1
) is penetrated by a magnetizing coil ■ml and a pair of magnetizing magnets ■ which magnetize this tube material (1) from the diametrical direction are arranged in tandem, respectively, and these magnetizing coils (E) (E5 and magnetizing magnets) (1=) are arranged in tandem. A method of continuously detecting directional defects (&) and circular defects (b) (Fig. 2 (tl), etc.) On the other hand, flaws that occur on the surface of metal materials include hole-like defects in addition to crack-like defects. It is well known that it is difficult to detect bit defects using normal magnetic flaw detection.Therefore, with the flaw detection methods currently in use, it is difficult to detect all types of flaws with one type of flaw detection method. Taking round steel bars as an example, crack-like defects can be easily detected using magnetic particle testing, which is one of the magnetic testing methods.
Furthermore, bit-shaped flaws can be detected well by the eddy current flaw detection method, so the current situation is that the best flaw detection method is usually selected and used depending on the inspection purpose. For this reason, depending on the nature of the flaw, if only one type of flaw detection is used, the detection ability is reduced, so there is a problem that several types of flaw detection must be used in combination. The present invention has been made in view of the above problems, and includes:
- Provide a method and device for detecting surface flaws in metal materials that are unaffected by the nature of the defect and the type of material to be detected (magnetic or non-magnetic material) and have good detection ability in multiple flaw detections. That is. In other words, the feature of the present invention is to form a magnetic field perpendicular to the surface of the material to be inspected by simultaneously applying a magnetic field to the surface of the material to be inspected in two directions: along the surface of the material to be inspected and in a direction perpendicular to the surface of the material to be inspected. Hereinafter, the present invention will be described below with a method and apparatus for obtaining information on the existence of defects by measuring the composite magnetic field of the leakage magnetic field from the surface flaw and the magnetic field caused by the disturbance of the eddy current induced on the surface by the surface flaw. An explanation will be given based on an embodiment shown in the accompanying drawings from FIG. 3 onwards. The present invention includes a first magnetic field generator Q21 that generates a magnetic field in a direction along the surface of a dependent material αυ, and a material to be inspected (1υ surface).
A second magnetic field generator a9 that generates a magnetic field in a direction perpendicular to one surface; A second magnetic field (b) perpendicular to the surface of the roofing material to be inspected (a) which is orthogonal to the surface of the roofing material to be inspected is applied at the same time to the surface of the material to be inspected (01) as shown in an example in Figure 8. When a composite magnetic field whose direction changes is formed, defects existing on the inspected material 01) cause magnetic field turbulence due to eddy current disturbance as time passes in the composite magnetic field, and a composite magnetic field of the leakage magnetic field. By detecting this composite magnetic field with a magnetic field detector α placed close to the surface of the test material, the test material becomes zero.
This is used to detect surface flaws on υ, and signal processing changes depending on the shape, direction, etc. of the defect being inspected. For example, a magnetic field detector is placed close to the surface of the material to be inspected.
When detecting a magnetic field perpendicular to the surface and targeting a square groove defect as shown in Fig. 9 (a), the output of the magnetic field detector is set so that the magnetic field direction of the excitation composite magnetic field is on the surface of the material to be inspected (11). By scattering the output at the moment when it becomes parallel to , it is possible to obtain a defect signal with high accuracy. In addition, when targeting a V-groove defect such as shown in Figure 9 (El), the accuracy can be improved by taking the output of the magnetic field detector at the moment when the magnetic field direction of the excitation composite magnetic field becomes perpendicular to the surface of the roofing material αυ to be inspected. A defect signal can be obtained well.Furthermore, in the case of a defect with an inclination as shown in Fig. 9 (c), the moment when the magnetic field direction of the excitation composite magnetic field, whose direction similarly changes over time, becomes perpendicular to the defect. A defect signal can be obtained with high precision by extracting the output of In the first embodiment shown in Fig. 4, a magnetic field detector αQ is used to detect the perpendicular magnetic flux generated on the surface of the material to be inspected (11).
is provided directly below the second magnetic field generator a (to). In addition, in FIG. 5, the first magnetic field generator H is screwed onto a screw shaft (27) having left and right opposite threads so as to correspond to the size of the inspected material aυ.
4, and is configured to move toward and away from the inspected material αυ by rotating the screw shaft (27) in forward and reverse directions. FIG. 6 is a first block diagram showing the configuration of a processing device in the surface flaw detection apparatus according to the present invention, and further explanation will be given based on this first block diagram. First, a horizontal magnetic field magnet l (frequency i
ωt) and vertical magnetic field coil (17) (frequency i(ω
t+ψ))f to form orthogonal magnetic fields. Here, if a defect exists in the material to be inspected (1υ), this defect generates a composite magnetic field of the leakage magnetic field and the magnetic field caused by the disturbance of the eddy current. The magnetic field detector detects this composite magnetic field, and the detected values are sent to the sample and hold circuits. o supply to barrel aj, each recorder 0
3 (Id and i device (sent to Yuki, said recorder H (
At the same time, it is recorded at the comparator (21) and compared with a preset signal level determined to be a harmful defect, and is further sent to each counter (21) and marker (22) ryi to count the number of defects. In order to form the above-mentioned orthogonal magnetic fields on the surface of the material to be inspected α1), the alternating current generated by the first and second oscillators (231124), which are synchronized with a phase shift of ψ, is applied. ,
It is sufficient to flow it to the respective power amplifiers (25) (through two horizontal magnetic field magnets) (16) and the vertical magnetic field filter aD. The reason for shifting the phase in this way is that in the method of the present invention, the magnetic field that acts on the defect is a combination of a horizontal magnetic field and a vertical magnetic field, so by shifting the phase, the angle that the composite magnetic field can take is changed from vertical to horizontal. This is possible because it is possible to obtain a constant disturbance of the magnetic field regardless of the angle of the defect. is a block diagram, in this case a magnetic field detector -
The detection values detected simultaneously by the two tuned amplifiers
Sent to 0. Here is this tuning amplifier CI! 6) (26
) is the tuning frequency of the horizontal magnetic field magnet (16), respectively.
and the same frequency as the current supplied to the vertical magnetic field coil αη. The outputs of the tuning amplifiers (26)- are detected in synchronization with the currents supplied to the horizontal magnetic field magnets (+61, vertical magnetic field coils 117), and the defective signals are demodulated and sent to the respective comparators (2ω In the case of this second block diagram, an alternating current oscillator (2I C The phases of ?4) may be the same.This is because by passing currents of the same phase through the coil and magnet, a 9po phase difference is generated in the respective magnetic fields.As described above, according to the present invention, the conventional flaw detection Unlike the method, there is no need to perform several types of flaw detection, but with only - times of flaw detection,
This is a great invention that will benefit the industry by allowing highly accurate flaw detection to be performed on both non-magnetic and magnetic materials and without being affected by the nature of defects. 4. Brief description of the drawings Figures 1 and 2 are explanatory diagrams of the magnetic particle flaw detection method, Figure 3 is a conceptual diagram of the method of the present invention, and Figure 4 is a schematic explanatory diagram showing the first embodiment of the apparatus of the present invention. , FIG. 5 is a front view showing the second embodiment, FIG. 6 is a first block diagram showing the configuration of the processing device in the apparatus of the present invention, FIG. 7 is a second block diagram, and FIG. 8 is a vertical view. A diagram of the relationship between the magnetic field (iωt), the horizontal magnetic field (噌ωt), and the excitation composite magnetic field, FIG. 9 shows the extraction of the excitation composite magnetic field at each defect. This figure (A) shows a square groove defect, the figure (→ shows a V-groove 1 defect, and the figure (・ shows a defect with an inclination). αD is the material to be inspected, +12 ) is the first magnetic field generator, α is the second magnetic field generator, (14+ is the alternating current magnetic field generator, (I
Q is a magnetic field detector. Patent applicant: Sumitomo Metal Industries, Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)、被検査材表面に、これに沿う方向と垂直方向の
二方向から同時に磁束を与えることにより、被検査材表
面付近に直交する磁場を形成せしめ、前記表面に沿う方
向の磁束によって得られる表面疵からの漏洩磁束と、表
面に垂直方向の磁束によって得られる渦電流の表面疵に
よる乱れに起因する磁束変化とを測定した後、これを2
種類に弁別し、これら各測定値により表面疵の探傷を行
なうことを特徴とする金属材料の表面疵探傷方法。
(1) By simultaneously applying magnetic flux to the surface of the material to be inspected from two directions, one along and perpendicular to the surface, a magnetic field perpendicular to the surface of the material to be inspected is formed, and the magnetic flux in the direction along the surface produces a magnetic field. After measuring the leakage magnetic flux from the surface flaws caused by the surface flaws and the change in magnetic flux caused by the disturbance of the eddy current due to the surface flaws due to the magnetic flux perpendicular to the surface,
A method for detecting surface flaws on metal materials, characterized in that the surface flaws are detected by differentiating the types and using these measured values.
(2)、被検査材表面に沿う方向の磁束を発生させる第
1の磁場発生器と、被検査材表面に垂直方向の磁束を発
生させる第2の磁場発生器とから成る交流磁場発生器と
、該交流磁場発生器によシ形成される被検査材表面付近
の直交磁場の垂直方向の磁束を検出する磁場検出器と、
該磁場検出器での検出値を、表面に沿う方向の漏洩磁束
と、表面に垂直方向の磁束変化とに弁別し、これら弁別
した夫々の値を処理する処理装置とを具備して成ること
を特徴とする金属材料の表面疵探傷装置。
(2) an alternating current magnetic field generator consisting of a first magnetic field generator that generates magnetic flux in a direction along the surface of the material to be inspected, and a second magnetic field generator that generates magnetic flux in a direction perpendicular to the surface of the material to be inspected; , a magnetic field detector that detects the vertical magnetic flux of the orthogonal magnetic field near the surface of the inspected material formed by the alternating current magnetic field generator;
A processing device is provided for discriminating the detected value by the magnetic field detector into a leakage magnetic flux in a direction along the surface and a change in magnetic flux in a direction perpendicular to the surface, and processing each of these discriminated values. Features: Surface flaw detection equipment for metal materials.
JP57102600A 1982-06-14 1982-06-14 Method and apparatus for testing surface flaw of metallic material Granted JPS58218644A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP57102600A JPS58218644A (en) 1982-06-14 1982-06-14 Method and apparatus for testing surface flaw of metallic material
US06/502,547 US4602212A (en) 1982-06-14 1983-06-09 Method and apparatus including a flux leakage and eddy current sensor for detecting surface flaws in metal products
DE19833321375 DE3321375A1 (en) 1982-06-14 1983-06-14 Method and device for measuring surface defects on metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57102600A JPS58218644A (en) 1982-06-14 1982-06-14 Method and apparatus for testing surface flaw of metallic material

Publications (2)

Publication Number Publication Date
JPS58218644A true JPS58218644A (en) 1983-12-19
JPH0335624B2 JPH0335624B2 (en) 1991-05-28

Family

ID=14331724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57102600A Granted JPS58218644A (en) 1982-06-14 1982-06-14 Method and apparatus for testing surface flaw of metallic material

Country Status (2)

Country Link
JP (1) JPS58218644A (en)
DE (1) DE3321375A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60230054A (en) * 1984-04-11 1985-11-15 ピ−エ− インコ−ポレイテイド Device and method of detecting defect of tubular string
JPS61104250A (en) * 1984-10-26 1986-05-22 Kawasaki Steel Corp Hot eddy current flaw detection apparatus
JPS63221239A (en) * 1987-03-10 1988-09-14 Sumitomo Metal Ind Ltd Leak magnetic flux flaw detecting method
JPS63250558A (en) * 1987-04-07 1988-10-18 Nkk Corp Magnetic powder flaw detection device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3937261C2 (en) * 1989-11-09 1996-04-11 Foerster Inst Dr Friedrich Rotating head for scanning metallic test material
DE9011477U1 (en) * 1990-08-07 1990-12-20 Nukem GmbH, 63755 Alzenau Arrangement for non-destructive material testing
DE9011478U1 (en) * 1990-08-07 1990-12-20 Nukem GmbH, 63755 Alzenau Arrangement for non-destructive material testing
DE102008020194A1 (en) * 2008-04-16 2009-10-22 Institut Dr. Foerster Gmbh & Co. Kg Method and device for detecting near-surface defects by means of leakage flux measurement
JP7007700B2 (en) * 2017-03-30 2022-01-25 国立大学法人東海国立大学機構 Magnetic measuring device
DE102022213259A1 (en) 2022-12-08 2024-06-13 Zf Friedrichshafen Ag Test bench for measuring eddy current losses in a permanent magnetic specimen

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5667747A (en) * 1979-11-08 1981-06-08 Denshi Jiki Kogyo Kk Magnetic powder flaw detector for steel pipe

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4439730A (en) * 1981-05-08 1984-03-27 Amf Inc. Nondestructive inspection apparatus and method utilizing combined inspection signals obtained from orthogonal magnetic fields

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5667747A (en) * 1979-11-08 1981-06-08 Denshi Jiki Kogyo Kk Magnetic powder flaw detector for steel pipe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60230054A (en) * 1984-04-11 1985-11-15 ピ−エ− インコ−ポレイテイド Device and method of detecting defect of tubular string
JPS61104250A (en) * 1984-10-26 1986-05-22 Kawasaki Steel Corp Hot eddy current flaw detection apparatus
JPS63221239A (en) * 1987-03-10 1988-09-14 Sumitomo Metal Ind Ltd Leak magnetic flux flaw detecting method
JPS63250558A (en) * 1987-04-07 1988-10-18 Nkk Corp Magnetic powder flaw detection device

Also Published As

Publication number Publication date
JPH0335624B2 (en) 1991-05-28
DE3321375C2 (en) 1987-04-02
DE3321375A1 (en) 1983-12-22

Similar Documents

Publication Publication Date Title
US4107605A (en) Eddy current flaw detector utilizing plural sets of four planar coils, with the plural sets disposed in a common bridge
RU2342653C2 (en) Method for nondestructive testing of pipes and device for its realisation
US3693075A (en) Eddy current system for testing tubes for defects,eccentricity,and wall thickness
Jiles Review of magnetic methods for nondestructive evaluation (Part 2)
US20040041560A1 (en) Method, system and apparatus for ferromagnetic wall monitoring
US3538433A (en) Apparatus for discriminating between inside and outside defects using a combined leakage field and eddy current test system
JPS58218644A (en) Method and apparatus for testing surface flaw of metallic material
GB1567166A (en) Apparatus and method for the non-destructive testing of ferromagnetic material
US3582772A (en) Method of calibrating eddy current flaw detection equipment utilizing attachable slugs to simulate flaws
US3588683A (en) Method and apparatus for nondestructive testing of ferromagnetic articles,to determine the location,orientation and depth of defects in such articles utilizing the barkhausen effect
US2758276A (en) Apparatus for the non-destructive testing of magnetizable objects
JPH0711508B2 (en) Leakage magnetic flux flaw detection method
RU2133032C1 (en) Process of magnetic field testing and device to implement it
JP3307220B2 (en) Method and apparatus for flaw detection of magnetic metal body
JPS57128842A (en) Method and device for discrimination of dissimilar material in eddy current flaw detection
JP2016197085A (en) Magnetic flaw detection method
JP2855186B2 (en) Non-destructive measurement method of surface flaw by multi-frequency magnetization
JPS63311165A (en) Method and apparatus for finding flaw with magnetism
Förster New results of ndt by the magnetic leakage field method
JP4349012B2 (en) Magnetic flaw detection method for ferromagnetic materials
RU2229707C1 (en) Method of magnetic inspection of pipe-lines
JPH09166582A (en) Electromagnetic flaw detection method
RU2095804C1 (en) Device for magnetic flaw detection
Fukuoka et al. Flaw detection for microcrack in spring steel and estimation of crack shape with eddy current testing
JPS60125560A (en) Method for inspecting metal surface