JPS61256565A - Enclosed clad lead storage battery - Google Patents

Enclosed clad lead storage battery

Info

Publication number
JPS61256565A
JPS61256565A JP60098653A JP9865385A JPS61256565A JP S61256565 A JPS61256565 A JP S61256565A JP 60098653 A JP60098653 A JP 60098653A JP 9865385 A JP9865385 A JP 9865385A JP S61256565 A JPS61256565 A JP S61256565A
Authority
JP
Japan
Prior art keywords
tube
water
electrical resistance
gel
clad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60098653A
Other languages
Japanese (ja)
Other versions
JPH0332180B2 (en
Inventor
Kunio Yonezu
米津 邦雄
Katsuto Takahashi
克仁 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP60098653A priority Critical patent/JPS61256565A/en
Publication of JPS61256565A publication Critical patent/JPS61256565A/en
Publication of JPH0332180B2 publication Critical patent/JPH0332180B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/76Containers for holding the active material, e.g. tubes, capsules
    • H01M4/765Tubular type or pencil type electrodes; tubular or multitubular sheaths or covers of insulating material for said tubular-type electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To improve the discharge capacity thus to improve the service life by employing a tube of thin composition thereby realizing the electrical resistance or the quantity f water supply suitable for electrolyte gel. CONSTITUTION:A tube 2 having thin composition is employed to prevent separation of gel at the tube section thus to improve the discharge performance of an enclosed clad lead storage battery employing a lead alloy core metal 1 which will never lower the hydrogen overvoltage considerably. The tube has the electrical resistance in dilute sulfric acid having the specific gravity of 1.200 under the temperature of 25 deg.C lower than 0.002 ohm.dm<2> and the water pass quantity in the water under the pressure of 10cm water pole higher than 200cc/min.cm<2>. Consequently, the discharge performance is never damaged while the active material is never softened nor dropped resulting in improvement of the service life.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はゲル状電解液を用いたクラッド式密閉鉛蓄電池
の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION The present invention relates to an improvement in a clad-type sealed lead acid battery using a gel electrolyte.

従来の技術とその問題点 電解液をゲル状とした密閉鉛蓄電池は通常ベースト式電
池に限られている。これはクラッド式電池ではチューブ
でゲルが分離され、正極板の放電性能が損われるためで
ある。しかしペースト式密閉鉛M雷池では、格子に鉛−
カルシウム合金などの水素過電圧を著しくは低下させな
い合金を用いるために、深い充放電で格子の腐食や伸び
、さらに活物質の軟化、脱落で寿命性能が劣るという問
題点があった。
Conventional technology and its problems Sealed lead-acid batteries using a gel electrolyte are usually limited to base type batteries. This is because in clad batteries, the gel separates in the tube, impairing the discharge performance of the positive electrode plate. However, in paste-type sealed lead M lightning ponds, the grid is lead-free.
Since an alloy such as a calcium alloy that does not significantly reduce the hydrogen overvoltage is used, there is a problem in that the lattice corrodes and stretches during deep charging and discharging, and the active material softens and falls off, resulting in poor life performance.

問題点を解決するための手段 本発明はチューブの組織を疎にしてチューブ部でのゲル
の分離を防ぐことにより、水素過電圧を著しくは低下さ
せない鉛合金芯金を用いたクラッド式密閉鉛蓄電池の放
電性能を高めたものであり、25℃において比重1,2
()0の希硫酸中における電気抵抗が0.002Ω−d
i”以下であり、とくに通水量が水中で10CIl+水
柱の圧力によって200cc /rain ・−以上の
チューブであることが望ましい。
Means for Solving the Problems The present invention provides a clad sealed lead-acid battery using a lead alloy core that does not significantly reduce hydrogen overvoltage by making the structure of the tube sparse to prevent gel separation in the tube portion. It has improved discharge performance and has a specific gravity of 1.2 at 25℃.
()0 electrical resistance in dilute sulfuric acid is 0.002Ω-d
It is particularly desirable that the tube has a water flow rate of 200 cc/rain ·- or more based on the pressure of 10 Cl+ water column in water.

作用 通常の液式電池では正極活物質の軟化、脱落を防ぐため
にチューブの組織を密にする必要があった。このものの
電気抵抗は通常0.003Ω・di2.以上であり、通
水量は150cc以下である。このような密な組織のチ
ューブであっても電解液が液状の通常の電池ではチュー
ブで電解液が分離されることはなく、充分な放電性能が
得られ問題はない。
Function: In conventional liquid batteries, the structure of the tube needs to be made dense to prevent the positive electrode active material from softening and falling off. The electrical resistance of this product is usually 0.003Ω・di2. This is the above, and the water flow rate is 150 cc or less. Even if the tube has such a dense structure, in a normal battery in which the electrolyte is in a liquid state, the electrolyte will not be separated by the tube, and sufficient discharge performance can be obtained without any problems.

しかし、電解液をゲル状とした場合には、チューブでゲ
ルが分離され、放電性能が損われる。
However, when the electrolyte is in a gel state, the gel separates in the tube, impairing discharge performance.

本発明はチューブの組織を疎にしているのでチューブ部
でのゲルの分離が防止され放電性能が損われることがな
い。また、電解液をゲル状とした場合には、電解液が活
物質を保持するn能を有するために、活物質の軟化、脱
落が無く、チューブの組織を疎にしても寿命に悪影響を
及ぼすようなことはない。
In the present invention, since the structure of the tube is made sparse, separation of the gel in the tube portion is prevented and the discharge performance is not impaired. In addition, when the electrolyte is in gel form, the electrolyte has the ability to retain the active material, so the active material does not soften or fall off, and even if the structure of the tube is made loose, it will have a negative effect on the lifespan. There is no such thing.

実施例 本発明になる鉛M電池の一実施例を第1図に示す。図に
おいて、1は鉛合金芯金で、鉛−カルシウム−すずのよ
うに水素過電圧を著しくは低下させない合金からなる。
Embodiment An embodiment of the lead M battery according to the present invention is shown in FIG. In the figure, 1 is a lead alloy core metal, which is made of an alloy such as lead-calcium-tin that does not significantly reduce the hydrogen overvoltage.

2はチューブで、耐酸、耐酸化性材料、例えば含アルカ
リガラス、ポリエステル、ポリアクリルニトリル、親水
性ポリエチレンなどからなる繊維を編組または結着して
不織布としたものである。このチューブは25℃におい
て比重1.200の希硫酸中における電気抵抗が0.0
02Ω・6m2以下である。と(に水中で10cm水柱
の圧力によって200cc/ min −4以上の通水
量であることが望ましい。3は正極活物質、4は上部鉛
合金連座、5は下部連座でプラスチックからなる。
Reference numeral 2 denotes a tube, which is made into a nonwoven fabric by braiding or binding fibers made of acid-resistant and oxidation-resistant materials such as alkali-containing glass, polyester, polyacrylonitrile, and hydrophilic polyethylene. This tube has an electrical resistance of 0.0 in dilute sulfuric acid with a specific gravity of 1.200 at 25°C.
02Ω・6m2 or less. It is desirable that the water flow rate be 200cc/min-4 or more under the pressure of a 10cm water column in water. 3 is a positive electrode active material, 4 is an upper lead alloy joint, and 5 is a lower joint made of plastic.

6は負極板で、正極板と同様に水素過電圧を著しくは低
下させない鉛合金が好ましい。7はセパレータ、8は電
槽、9はゲル状電解液で、例えば希硫酸とシリカ粒子と
の混合物である。10は弁機能を有する排気部、11は
正極端子、12は負極端子である。
6 is a negative electrode plate, and like the positive electrode plate, it is preferably made of a lead alloy that does not significantly reduce hydrogen overvoltage. 7 is a separator, 8 is a battery container, and 9 is a gel electrolyte, for example, a mixture of dilute sulfuric acid and silica particles. 10 is an exhaust section having a valve function, 11 is a positive terminal, and 12 is a negative terminal.

グル9は電槽の空隙を埋めるだけでなく、セパレータ7
およびチューブ2の多孔性空隙をも埋めている。このゲ
ルはシリカ粒子と硫酸および水とが弱い結合で準固態状
のゲルとなっており、活物質表面を抑圧、支持して軟化
、脱落を防いでいる。
Glue 9 not only fills the void in the battery case, but also fills in the separator 7.
and also fills the porous voids in tube 2. This gel is a semi-solid gel due to weak bonds between silica particles, sulfuric acid, and water, and suppresses and supports the surface of the active material to prevent it from softening and falling off.

活物質は鉛イオンの溶解、析出で充放電を繰返すと形態
変化や結合の切断を生じるが、電解液がゲル状であると
この鉛イオンの溶解、析出を抑える効果もある。
When the active material is repeatedly charged and discharged due to the dissolution and precipitation of lead ions, its shape changes and bonds break, but a gel-like electrolyte has the effect of suppressing the dissolution and precipitation of lead ions.

つぎにコロイダルシリカと希tiIItsとを混合して
シリカを7重量%ととしたゲル状電解液を有するクラッ
ド式密閉鉛蓄電池について、チューブ内容を種々変えて
電池を試作し放電性能を調べた。初期、10HR電流で
100H過充電後、および放電深さ60%の充放電50
0サイクル後について、それぞれ5HR放電容量を求め
、第1表に示す。なお容量は通常のチューブを用いた電
池のそれを100とする比率で表した。
Next, regarding a clad sealed lead-acid battery having a gel electrolyte containing 7% by weight of silica by mixing colloidal silica and dilute tiIIIts, prototype batteries were fabricated with various tube contents and the discharge performance was investigated. Initial, after 100H overcharging with 10HR current, and 50% charge/discharge with 60% discharge depth
After 0 cycles, the 5HR discharge capacity was determined and shown in Table 1. The capacity is expressed as a ratio of 100 to that of a battery using a normal tube.

第1表 放電容量は初期にはチューブの電気抵抗や通水&が大幅
に異なってもあまり差はないが、過充電後とくに充放電
サイクル後には容量に著しい差を生じる。容量低下は主
としてチューブの電気抵抗に左右されるが、電気抵抗が
同じ場合にはチューブの通水量が大きいほうが少なくて
好ましい。
Table 1: Initially, there is not much difference in discharge capacity even if the electric resistance and water flow rate of the tube are significantly different, but after overcharging, especially after a charge/discharge cycle, a significant difference in capacity occurs. The decrease in capacity mainly depends on the electrical resistance of the tube, but when the electrical resistance is the same, it is preferable that the amount of water flowing through the tube is larger as it is smaller.

チューブは一般的には電気抵抗の小さなものほど通水量
が大きい傾向がある。しかし例えば編組式チューブでは
撚りを多くした糸を用いると糸そのものの多孔度が小さ
くなって通水量が同じでも電気抵抗は大きくなる。
In general, the smaller the electrical resistance of a tube, the greater the amount of water that can pass through it. However, for example, in a braided tube, if a thread with a large number of twists is used, the porosity of the thread itself becomes small, and the electrical resistance increases even though the amount of water passing through is the same.

発明の効果 本発明はデユープの組織を疎にして、ゲル状電解液に適
した電気抵抗または通水量とすることにより、クラッド
式密閉鉛蓄電池の放電容量を改善して、深い充放電にお
ける寿命性能の優れた密m電池を可能にしたものである
Effects of the Invention The present invention improves the discharge capacity of clad-type sealed lead-acid batteries by making the structure of the duplex sparse and making the electrical resistance or water flow rate suitable for gel electrolytes, thereby improving the life performance in deep charging and discharging. This made it possible to create an excellent dense m-cell battery.

【図面の簡単な説明】 第1図は本発明になるクラッド式密閉鉛蓄電池を示す要
部縦断面図である。 1・・・芯金、2・・・チコーブ、3・・・正極活物質
、6・・・負極板、7・・・セパレータ、9・・・ゲル
状電解液、10・・・排気部 ff1   回
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a longitudinal cross-sectional view of a main part of a clad-type sealed lead-acid battery according to the present invention. DESCRIPTION OF SYMBOLS 1... Core bar, 2... Chicove, 3... Positive electrode active material, 6... Negative electrode plate, 7... Separator, 9... Gel electrolyte, 10... Exhaust part ff1 times

Claims (1)

【特許請求の範囲】 1、25℃において比重1.200の希硫酸中における
電気抵抗が0.002Ω・dm^2以下のチューブと、
水素過電圧を著しくは低下させない鉛合金芯金と、弁機
能を有する排気部と、ゲル状電解液とを用いたクラッド
式密閉鉛蓄電池。 2、チューブが水中で10cm水柱の圧力によって20
0cc/min・cm^2以上の通水量を示すものであ
る特許請求の範囲第1項記載のクラッド式密閉鉛蓄電池
[Claims] A tube whose electrical resistance in dilute sulfuric acid with a specific gravity of 1.200 at 1.25° C. is 0.002 Ω·dm^2 or less;
A clad-type sealed lead-acid battery that uses a lead alloy core that does not significantly reduce hydrogen overvoltage, an exhaust section with a valve function, and a gel electrolyte. 2. The tube is immersed in water for 20 cm due to the pressure of a 10 cm water column.
The clad sealed lead-acid battery according to claim 1, which exhibits a water flow rate of 0 cc/min·cm^2 or more.
JP60098653A 1985-05-08 1985-05-08 Enclosed clad lead storage battery Granted JPS61256565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60098653A JPS61256565A (en) 1985-05-08 1985-05-08 Enclosed clad lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60098653A JPS61256565A (en) 1985-05-08 1985-05-08 Enclosed clad lead storage battery

Publications (2)

Publication Number Publication Date
JPS61256565A true JPS61256565A (en) 1986-11-14
JPH0332180B2 JPH0332180B2 (en) 1991-05-10

Family

ID=14225464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60098653A Granted JPS61256565A (en) 1985-05-08 1985-05-08 Enclosed clad lead storage battery

Country Status (1)

Country Link
JP (1) JPS61256565A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05121090A (en) * 1991-10-25 1993-05-18 Wan Riankisan Large-capacity colloidal storage battery, colloidal electrolyte used for said storage battery and manufacture thereof
WO2021059533A1 (en) * 2019-09-27 2021-04-01 昭和電工マテリアルズ株式会社 Active material holding member, electrode and lead acid storage battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05121090A (en) * 1991-10-25 1993-05-18 Wan Riankisan Large-capacity colloidal storage battery, colloidal electrolyte used for said storage battery and manufacture thereof
WO2021059533A1 (en) * 2019-09-27 2021-04-01 昭和電工マテリアルズ株式会社 Active material holding member, electrode and lead acid storage battery

Also Published As

Publication number Publication date
JPH0332180B2 (en) 1991-05-10

Similar Documents

Publication Publication Date Title
JPWO2019087686A1 (en) Lead-acid battery
JP3366037B2 (en) Sealed lead battery
JP2847761B2 (en) Sealed lead-acid battery and method of manufacturing the same
JPS5835877A (en) Closed type lead battery and its production method
JPH08264202A (en) Lead-acid battery
JPS61256565A (en) Enclosed clad lead storage battery
JPWO2019087680A1 (en) Lead-acid battery
JP2001102027A (en) Enclosed lead battery
JPH08329975A (en) Sealed lead-acid battery
JPS63221565A (en) Sealed lead-acid battery
JPS601757A (en) Manufacture of sealed lead storage battery
JPH02177260A (en) Closed type lead accumulator
JPH0233859A (en) Lead-acid battery
JPH034458A (en) Sealed lead storage battery
JPH1173985A (en) Lead-acid battery
JP2001126752A (en) Paste-type sealed lead-acid battery and manufacturing method therefor
JPH0246653A (en) Lead-acid battery
JPS61256566A (en) Enclosed clad lead storage battery
JPH04149968A (en) Sealed-type lead secondary battery
JPS61264675A (en) Positive plate of clad type lead-acid battery
JPH0244647A (en) Lead-acid battery
JPS63221564A (en) Sealed lead-acid battery
JPS5945183B2 (en) Manufacturing method for paste electrodes for lead-acid batteries
JPS62170173A (en) Sealed lead-acid battery
JPH0413829B2 (en)