JPH03274885A - White balance adjusting device - Google Patents

White balance adjusting device

Info

Publication number
JPH03274885A
JPH03274885A JP2074402A JP7440290A JPH03274885A JP H03274885 A JPH03274885 A JP H03274885A JP 2074402 A JP2074402 A JP 2074402A JP 7440290 A JP7440290 A JP 7440290A JP H03274885 A JPH03274885 A JP H03274885A
Authority
JP
Japan
Prior art keywords
color
screen
signal
value
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2074402A
Other languages
Japanese (ja)
Other versions
JP2523038B2 (en
Inventor
Toshinobu Haruki
春木 俊宣
Kenichi Kikuchi
健一 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2074402A priority Critical patent/JP2523038B2/en
Priority to US07/612,836 priority patent/US5282022A/en
Priority to DE69028973T priority patent/DE69028973T2/en
Priority to CA002030144A priority patent/CA2030144C/en
Priority to KR1019900018625A priority patent/KR100193974B1/en
Priority to EP90121972A priority patent/EP0429992B1/en
Publication of JPH03274885A publication Critical patent/JPH03274885A/en
Application granted granted Critical
Publication of JP2523038B2 publication Critical patent/JP2523038B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Color Television Image Signal Generators (AREA)
  • Processing Of Color Television Signals (AREA)

Abstract

PURPOSE:To prevent the shift of white balance adjustment even against an object whose luminance is extremely low by limiting or inhibiting the gain control, when a luminance level of the object is under a prescribed value. CONSTITUTION:A luminance signal (Y) generated by a camera process and a matrix circuit 6 is sent to an integration circuit 19 in the same way as each red and blue color difference signal (R-Y), (B-Y), and an upper limit value setting circuit 20 by which the luminance signal of a one-screen portion is integrated limits the maximum controlled variable of gain control circuits 13, 14. The device is provided with a monotone increase straight line which is fixed to a zero level in the case an integral value is remarkably small, and whose upper limit value also becomes large in proportion to the integral value as the integral value becomes large. When a luminance level of a screen is small, the integral value of the luminance also becomes small and the upper limit value falls and is limited, and especially, in the case the screen is remarkably dark, the upper limit value becomes zero and a gain control signal becomes zero together, and the gain control is inhibited substantially.

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は、撮像素子から得られる撮像映像信号を基に、
白バランスの制御を行うカラービデオカメラの自動白バ
ランス調整装置に関する。
[Detailed description of the invention] (a) Industrial application field The present invention is based on a captured video signal obtained from an image sensor.
The present invention relates to an automatic white balance adjustment device for a color video camera that controls white balance.

(ロ) 従来の技術 カラービデオカメラに於いては、光源による光の波長分
布の違いを補正するtコめに、臼バランスの制御を行う
必要がある。
(b) Conventional technology In a color video camera, it is necessary to control the mill balance to compensate for differences in the wavelength distribution of light due to the light source.

この制御は、赤(以下R)、青(以下B)、緑(以下G
)の三原色信号の比が、 : 1 : ’1となるよう
に、各色信号の利得を調整することで行われる。一般に
は、例えば特開昭62−35792号公報(HO4N9
/73)に示される様に、画面の色差信号R−Y、B−
Yの積分値が零になるように利得を調節する方式が用い
られている。
This control includes red (hereinafter referred to as R), blue (hereinafter referred to as B), green (hereinafter referred to as G).
) is performed by adjusting the gain of each color signal so that the ratio of the three primary color signals becomes: 1: '1. In general, for example, Japanese Patent Application Laid-Open No. 62-35792 (HO4N9
/73), the screen color difference signals R-Y, B-
A method is used in which the gain is adjusted so that the integral value of Y becomes zero.

第2図は、この方式を用いた白バランス回路のブロック
図である。
FIG. 2 is a block diagram of a white balance circuit using this method.

レンズ(1)を通過した光は、撮像素子(CCD)(2
)で光電変換された後、色分離回路(3で、R,G、B
の3原色信号として取り出され、Gの色信号は直接、R
及びBの色信号はR増幅回路(4)、B増幅回路(5)
を経て、カラープロセス及びマトリクス回路(6)に入
力され、輝度信号Y、赤及び青それぞれの色差信号R−
Y、B−Yが作られて、ビデオ回路へ送られる。
The light that has passed through the lens (1) is transferred to an imaging device (CCD) (2).
), the color separation circuit (3, R, G, B
are extracted as three primary color signals, and the G color signal is directly extracted as the R color signal.
and B color signals are sent to the R amplification circuit (4) and the B amplification circuit (5).
The luminance signal Y and the red and blue color difference signals R- are then input to the color process and matrix circuit (6).
Y, B-Y are created and sent to the video circuit.

同時に、二つの色差信号は、それぞれ積分回路(17)
  (1g)で、所定期間積分され、その結果が零にな
るように、利得制御回路(13)、(14)が利得制御
信号(Gr)  (Gb)をR,B各々の利得可変な増
幅回路(4)、(5)に発し、増幅回路の利得が調節さ
れる。
At the same time, the two color difference signals are respectively sent to the integrating circuit (17).
(1g), the gain control circuits (13) and (14) pass the gain control signal (Gr) (Gb) to the R and B variable gain amplifier circuits so that the result is zero after being integrated for a predetermined period. (4) and (5), the gain of the amplifier circuit is adjusted.

尚、色差信号(R−Y)(B−Y)の基準レベル即ち零
レベルは、完全に白色の無彩色の画面が得られるときの
値に予め設定されており、また各増幅回路の利得は、利
得制御信号のレベル、即ち制御量に比例する。
The reference level, or zero level, of the color difference signals (R-Y) (B-Y) is preset to a value at which a completely white achromatic screen is obtained, and the gain of each amplifier circuit is , is proportional to the level of the gain control signal, that is, the control amount.

(ハ) 発明が解決しようとする課題 前述の方式は、ビデオカメラにより撮影される画面の、
様々な色分布に対して、積分回路(17(18)の時定
数を長くする等の工夫を施して、これらの色分布を平均
化すれば、色分布を構成する各色成分が打ち消し合い、
略白い画面状態に近似できることを前提としている。
(c) Problems to be Solved by the Invention The above-mentioned method solves the problem of the screen photographed by a video camera.
If we take measures such as increasing the time constant of the integration circuit (17 (18)) for various color distributions and average these color distributions, each color component that makes up the color distribution will cancel each other out,
It is assumed that a substantially white screen state can be approximated.

ところが、被写体の輝度が極端に低いと、RlG、Hの
各出力レベルが低くなり、バランスの崩れを生じ、無彩
色(黒)であるにも関わらず、色差信号が出てしまい易
い。
However, if the brightness of the subject is extremely low, the output levels of RlG and H will be low, resulting in imbalance, and color difference signals are likely to be output even though the subject is an achromatic color (black).

従来の方式では、この色ずれを打ち消す方向に利得が変
化して臼バランスがその補色側にずれてしまうという欠
点を有している。
The conventional method has the disadvantage that the gain changes in a direction that cancels out this color shift, causing the mill balance to shift toward the complementary color side.

(ニ)  課題を解決するための手段 本発明は、撮像映像信号中の色情報信号を基に各色信号
の利得を制御する白バランス調整装置であり、被写体の
輝度レベルが所定の値に満たないときは、利得制御を制
限あるいは禁止することを特徴とする。また、より具体
的には、撮像画面を分割して設定された複数の領域毎の
色情報信号レベルを各色の色評価値として得る色評価値
検出手段と、前記各領域の色評価値に各領域毎の重み付
け量にて重み付けを行い、この重み付け後の色評価値よ
り画面全体についての色評価値を画面色評価値として算
出する画面色評価値算出手段と、該画面色評価値をもと
に各色信号の増幅利得を制御する利得制御手段を備え、
分割された各領域毎に輝度レベルを検出し、各輝度レベ
ルが所定の値に満たないときは、これらの領域に対する
重み付け量を他の領域に比べて小さくすることを特徴と
する。
(d) Means for Solving the Problems The present invention is a white balance adjustment device that controls the gain of each color signal based on the color information signal in the captured video signal. The present invention is characterized by limiting or prohibiting gain control. More specifically, the color evaluation value detecting means obtains the color information signal level for each of a plurality of regions set by dividing the imaging screen as the color evaluation value of each color, and A screen color evaluation value calculating means that performs weighting using a weighting amount for each area, and calculates a color evaluation value for the entire screen as a screen color evaluation value from the weighted color evaluation value; is equipped with gain control means for controlling the amplification gain of each color signal,
The brightness level is detected for each divided area, and when each brightness level is less than a predetermined value, the weighting amount for these areas is made smaller than for other areas.

(ホ) 作用 本発明は、上述の如く構成したので、輝度の極端に低い
被写体に対しても、白バランス調整のずれを防ぐことが
可能となる。
(E) Function Since the present invention is configured as described above, it is possible to prevent deviations in white balance adjustment even for subjects with extremely low brightness.

(へ) 実施例 以下、図面に従い本発明の実施例について説明する。(f) Examples Embodiments of the present invention will be described below with reference to the drawings.

第1図は第1実施例に係わる自動白バランス回路の回路
ブロック図である。 尚、従来例の図面と同一部分には
同一符号を付して説明を割愛するカメラプロセス及びマ
トリクス回路(6)で作られた輝度信号(Y)は、赤及
び青各々の色差信号(R−y)(B−Y)と同様に、積
分回路(19)に送られ、1画面分の輝度信号が積分さ
れる上限値設定回路(2のは、この積分値より、利得制
御回路(13)  (14)の制御量の最大を制限する
FIG. 1 is a circuit block diagram of an automatic white balance circuit according to a first embodiment. Incidentally, the luminance signal (Y) generated by the camera process and matrix circuit (6), whose explanations are omitted and where the same reference numerals are given to the same parts as in the drawings of the conventional example, is a red and blue color difference signal (R- y) Similarly to (B-Y), the upper limit value setting circuit where the luminance signal for one screen is sent to the integrating circuit (19) and integrated (the second one is the gain control circuit (13) based on this integrated value) Limit the maximum control amount in (14).

第3図は、この上限値設定回路(2o)での上限値設定
動作における輝度の積分値と利得制御量の上限値(HJ
)の関係を示し、積分値が著しく小さい場合に零レベル
に固定され、積分値が大きくなるにつれて、上限値(H
J)もこれに比例して大きくなる単調増加直線を有する
FIG. 3 shows the integrated value of luminance and the upper limit value of the gain control amount (HJ
) is fixed at zero level when the integral value is extremely small, and as the integral value increases, the upper limit value (H
J) also has a monotonically increasing straight line that increases in proportion to this.

この第3図より、入力された輝度の積分値に対する利得
制御量の上限値()IJ)を求め、この上限値(HJ)
が各利得制限回路(51)<52)に入力される。
From this Fig. 3, the upper limit value ()IJ) of the gain control amount for the integral value of the input luminance is determined, and this upper limit value (HJ)
is input to each gain limiting circuit (51)<52).

利得制限回路(51)(52)は、利得の制御量に相当
する各利得制御信号(Gr)  (Gb)のレベルを常
に監視し、上限値設定回路(2のにて設定された上限値
(HJ)以下の場合にはそのまま出力し、上限値を越え
る場合には信号に制限を加え上限値自身を出力する。従
って、画面の輝度レベルが小さい時には、輝度の積分値
も小さくなって上限値も下がって制限され、特に画面が
著しく暗い場合には、上限値は零となって利得制御信号
(Gr)  (Gb)も共に零となり、実質的に利得制
御は禁止されることになる。
The gain limiting circuits (51) and (52) constantly monitor the level of each gain control signal (Gr) (Gb) corresponding to the gain control amount, and set the upper limit value (2) in the upper limit setting circuit (2). HJ) In the following cases, the signal is output as is, and when it exceeds the upper limit, the signal is limited and the upper limit itself is output. Therefore, when the brightness level of the screen is small, the integrated value of brightness also becomes small and the upper limit is exceeded. Particularly when the screen is extremely dark, the upper limit value becomes zero and both the gain control signals (Gr) and (Gb) also become zero, and gain control is essentially prohibited.

次に、第4図を参照にして第2実施例について説明する
Next, a second embodiment will be described with reference to FIG.

前記第1実施例と同様に、レンズ(1)を通過した光は
、CCD (2)上に結像されて光電変換された後、色
分離回路(3)にて、R,G、 Bの3原色信号として
取り出される。これら3原色信号の中のR及びB信号は
、夫々R及びB増幅回路(4)(5’)を経て、G信号
と共にカメラプロセス及びマトリクス回路(6)に入力
され、これらを基に輝度信号(Y)及び赤、青火々の色
差信号(R−Y)、(B −Y )が作成されて、ビデ
オ回路(7)に供給され周知の処理が施される。また(
1  (R−Y)(B−Y)の各信号は、同時に選択回
路(21)にも供給される。
Similar to the first embodiment, the light that has passed through the lens (1) is imaged on the CCD (2) and photoelectrically converted, and then is separated into R, G, and B by the color separation circuit (3). It is extracted as three primary color signals. The R and B signals among these three primary color signals are input to the camera process and matrix circuit (6) together with the G signal through R and B amplifier circuits (4) (5'), respectively, and a luminance signal is generated based on these signals. (Y) and color difference signals (R-Y) and (B-Y) of red and blue sparks are created and supplied to a video circuit (7) where they are subjected to well-known processing. Also(
1 (RY) (B-Y) are simultaneously supplied to the selection circuit (21).

選択回路(21)は、タイミング回路(25)からの選
択信号(Sl)により、輝度信号(Y)または色差信号
(R−Y)  (B−y)の3つの信号の中の1つを1
フイールド毎に順次選択するもので、CY)→(R−Y
)→(B−Y)→(Y)→・・と1フイールド毎に後段
のA/D変換器(22)に出力される。尚、選択信号(
Sl)は後述の如く同期分離回路(24)から得られる
垂直同期信号に基づいて作成される。
The selection circuit (21) selects one of the three signals, the luminance signal (Y) or the color difference signal (R-Y) (B-y), according to the selection signal (Sl) from the timing circuit (25).
The selection is made sequentially for each field, CY) → (RY
) → (B-Y) → (Y) → . . . are output to the subsequent A/D converter (22) field by field. In addition, the selection signal (
Sl) is created based on the vertical synchronization signal obtained from the synchronization separation circuit (24) as described later.

A 、/’ D変換器(22)は、所定のサンプリング
周期で選択回路(21)にて選択された信号(Y(R−
Y)(B−Y)の何れかをサンプリングしてディジタル
値に変換し、この値を積分器(23に出力する。ところ
で、タイミング回路(25)はカメラプロセス及びマト
リクス回路(6ンから垂直、水平同期信号及びCCD 
(2)を駆動する固定の発振器出力に基づいて、撮像画
面を第3図に示す8×8の64個の同一面積の長方形の
領域(Aij)(i、j=1〜8の整数)に分割して、
各領域毎にこれらの領域内の選択回路(21)出力を時
分割で取り出すための切換信号(S2)を積分器(23
)に出力する。
The A,/'D converter (22) converts the signal (Y(R-
Y) (B-Y), converts it into a digital value, and outputs this value to the integrator (23).By the way, the timing circuit (25) is connected to the camera process and the matrix circuit (vertical, Horizontal synchronization signal and CCD
(2) Based on the fixed oscillator output that drives Divide and
For each region, a switching signal (S2) for time-divisionally extracting the output of the selection circuit (21) in these regions is sent to an integrator (23).
).

積分器(23)は切換信号(S2)を受けて、選択回路
(21)出力のA/D変換値を領域毎に1フイ一ルド期
間にわたって加算し、即ち64個の領域毎にディジタル
積分する。
The integrator (23) receives the switching signal (S2) and adds the A/D converted values of the output of the selection circuit (21) for each region over one field period, that is, digitally integrates each of the 64 regions. .

第6図は、この積分器(23)の内部構造を更に詳細に
示す。各A/D変換データは、切換回路(61)に供給
される。この切換回路(61)は切換信号(S2)を受
けて、各A/D変換値を領域毎に用意された加算器(F
ll)(F12)(F88)の中で該当データのサンフ
′リング点が存在する領域用の加算器に供給する役割を
有する。即ち、ある任意のデータのサンプリング点が領
域(All)内に含まれているならば、このデータを領
域(、A11)用の加算器<Fll)に供給する。尚、
以下、同様に加算器(Fij)(i)=1〜8)は領域
(Aij)用に設定され、全部で64個の加算器が用意
されている。各加算器の後段には、保持回路(Qij)
がそれぞれ配設され、各加算値は各保持回路に一旦保持
される。
FIG. 6 shows the internal structure of this integrator (23) in more detail. Each A/D converted data is supplied to a switching circuit (61). This switching circuit (61) receives the switching signal (S2) and converts each A/D conversion value into an adder (F
11) It has the role of supplying data to the adder for the area where the sampling point of the corresponding data exists in (F12) and (F88). That is, if a sampling point of some arbitrary data is included in the area (All), this data is supplied to the adder for the area (A11<Fll). still,
Hereinafter, adders (Fij) (i)=1 to 8) are similarly set for the area (Aij), and a total of 64 adders are prepared. A holding circuit (Qij) is provided after each adder.
are respectively arranged, and each added value is temporarily held in each holding circuit.

各保持回路の保持データは、再び加算器に入力されて、
次に入力されるデータと加算される。また各保持回路は
、垂直同期信号に基ずいて1フイールド毎にリセットさ
れ、このリセット直前の保持データのみがメモリ(26
)に供給される。従って、1組の加算器及び保持回路に
て1個のディジタル積分回路が構成され、合計64個の
積分回路が積分器(23)を構成することになり、lフ
ィールド毎に各保持回路から64個の領域毎にディジタ
ル積分値がメモリ(26)に入力される。
The data held in each holding circuit is input to the adder again, and
It is added to the next input data. In addition, each holding circuit is reset for each field based on the vertical synchronization signal, and only the held data immediately before this reset is stored in the memory (26
). Therefore, one set of adder and holding circuit constitutes one digital integrating circuit, and a total of 64 integrating circuits constitute the integrator (23). Digital integral values are input to the memory (26) for each region.

このIフィールド分の積分が完了すると、この積分値は
輝度評価値または色評価値としてメモリ(26)に保持
される。この結果、ある任意のフィールドで64個の領
域内に対応する輝度信号(Y )の領域毎のディジタル
積分値が6・1個の輝度評価値(yij)として得られ
る。更に次のフィールドでは選択回路(21)にて色差
信号(R−Y)が選択されているので、積分器(23)
の積分の結果、色差信号(R−Y)の領域毎のディジタ
ル積分値が64個の色評価値(rij)として得られ、
同様に次のフィールドでは色差信号(B−Y) の色評
価1tz (b i j ) カWjtうhる。こうし
て、輝度信号CY )及び色差信号(R−Y)  (B
−Y)の3フイールドの積算が終了した時点で、輝度評
価値(yij)及び色評価値(rij)(bij)がメ
モリ(26)に保持されることになる。これ以降、上述
と同様の動作が繰り返さt′t、輝度評価値(yij)
、色評価値(rij)(bij)と順次更新される。
When the integration for the I field is completed, this integrated value is held in the memory (26) as a brightness evaluation value or color evaluation value. As a result, the digital integral value for each region of the luminance signal (Y) corresponding to 64 regions in a certain arbitrary field is obtained as 6.1 luminance evaluation values (yij). Furthermore, in the next field, the color difference signal (R-Y) is selected by the selection circuit (21), so the integrator (23)
As a result of the integration, digital integral values for each region of the color difference signal (R-Y) are obtained as 64 color evaluation values (rij),
Similarly, in the next field, the color evaluation of the color difference signal (B-Y) is performed. In this way, the luminance signal CY) and the color difference signal (RY) (B
-Y), the luminance evaluation value (yij) and color evaluation value (rij) (bij) are held in the memory (26). After this, the same operation as above is repeated t't, the brightness evaluation value (yij)
, color evaluation value (rij) (bij).

この様にして得られた最新の輝度評価値(ylJ)は重
み付け量決定回路(27)に、また色評価値fr i 
j)  (b i j)は、画面評価回路(28)に供
給される。
The latest luminance evaluation value (ylJ) obtained in this way is sent to the weighting amount determination circuit (27) and the color evaluation value fr i
j) (b i j) is supplied to the screen evaluation circuit (28).

尚、A 、/ D変換!(22)に入力される両色差信
号の基準レベル即ち零レベルは、完全な無彩色面を撮影
したときに得られるレベルに予め設定されており、従っ
て、各A /’ D変換値は正の値だけでなく、負の値
もとりうろことは言うまて゛もない重み付け量決定回路
(27)は、64個の領域の中で輝度評価値が所定値(
T)に満たない領域を検出し、この判断結果に基づいて
各領域の重み付け量(wij)を決定するものである。
In addition, A, / D conversion! The reference level, that is, the zero level, of both color difference signals input to (22) is preset to the level obtained when photographing a completely achromatic surface, and therefore each A/'D conversion value is a positive one. It goes without saying that the weighting amount determination circuit (27) can accept not only values but also negative values.
The weighting amount (wij) of each area is determined based on the result of this determination.

即ち、輝度評価値が所定値(T)以上の領域の重み付け
量(wij)を1に、所定fit (T)以下の領域の
重み付け量(wij)を1/2に設定する尚、前記所定
値(T)は全領域の1み付け量が一定である場合に、臼
バランスが崩れ始めたと認識できる程に低輝度状態にな
ったときの輝度評価値で、予め実測値にて設定されてい
る。
That is, the weighting amount (wij) of the area where the brightness evaluation value is above the predetermined value (T) is set to 1, and the weighting amount (wij) of the area where the brightness evaluation value is below the predetermined fit (T) is set to 1/2. (T) is the brightness evaluation value when the brightness becomes low enough to recognize that the mortar balance has begun to collapse when the amount of 1-graining in the entire area is constant, and is set in advance as an actual value. .

画面評価回路(28)は、重み付け量決定回路(27)
で設定された各領域毎の重み付け量(Wij)を用いて
、次式(])(2)に基づいて、色差信号(R−Y)(
B−Y)の各々の画面全体についての色評価値が画面色
評価値(V’r)(\・′b)として算出される。
The screen evaluation circuit (28) is a weighting amount determination circuit (27)
Using the weighting amount (Wij) for each region set in , the color difference signal (R-Y) (
The color evaluation value for each entire screen of B-Y) is calculated as the screen color evaluation value (V'r) (\·'b).

i=1 j=]       ド1j:1ここで、」1
式について簡単に説明する。
i=1 j=] do1j:1 where, ``1
Let's briefly explain the formula.

式(1)において、 値に対応する重み付け量(wij)を乗算して重み付け
し、たーEで64個の領域分会ての総和を求め、 総和で割算して重み付け量にて正規化することにより、
面積的な要因を排除して、色差信号の色評価値(rij
)を重み付け量(wij)で画面全体にわたって加重積
算した画面色評価値(Vr)が導出されることになる。
In Equation (1), the value is weighted by multiplying it by the corresponding weighting amount (wij), the sum of the 64 area divisions is determined by t, and the sum is divided by the sum and normalized by the weighting amount. By this,
The color evaluation value (rij
) is weighted and integrated over the entire screen using a weighting amount (wij) to derive a screen color evaluation value (Vr).

尚、式(2)についても同様である。Note that the same applies to equation (2).

利得制御回路(29)(3のは画面全体の色評価値であ
る画面色評価a、(Vr)(Vb)が共に零となる様に
、R及びB増幅回路(4)(5)に利得制御信号(Gr
)(Gb)を供給して、両増幅回路の各々の利得を制御
している。こうして画面色評価値(Vr)(Vb)が零
になれば、臼バランス調整が完了したことになる。
Gain control circuit (29) (No. 3 is the color evaluation value of the entire screen, and the gain is set in the R and B amplifier circuits (4) and (5) so that the screen color evaluation a, (Vr) and (Vb) are both zero. Control signal (Gr
) (Gb) to control the gains of both amplifier circuits. When the screen color evaluation values (Vr) (Vb) become zero in this way, it means that the mill balance adjustment is completed.

以上のように、輝度の低い被写体に対しては、その白バ
ランス調整に対する寄与を制限してやることにより、輝
度の極端に低い被写体に対しても白バランスのずれが最
小限に抑えられる。
As described above, by limiting the contribution of objects with low brightness to white balance adjustment, deviations in white balance can be minimized even for objects with extremely low brightness.

ところで、前記第1実施例では、利得の制御量の上限値
を制限したが、この他にも、利得変化の時定数を長くし
、あるいは利得制御自体を停止させる手法も考えられる
Incidentally, in the first embodiment, the upper limit value of the gain control amount is limited, but other methods may be considered, such as increasing the time constant of gain change or stopping the gain control itself.

また、第1実施例の積分器(19)の構成として、第2
実施例に示すディジタル積分器を用い積分器(19)出
力として64個の領域の輝度評価値の平均値を用いるこ
とも可能である。
Furthermore, as the configuration of the integrator (19) of the first embodiment, the second
It is also possible to use the digital integrator shown in the embodiment and use the average value of the luminance evaluation values of 64 areas as the output of the integrator (19).

尚、前記第2実施例では、A/D変換器(22及び積分
器(23)を、輝度信号(Y)、色差信号(RY)(B
  Y)の3信号の領域毎のデジタル積分のために共用
しており、各信号の積分値は3フイ一ルド周期での更新
しかできなかったがA/D変換器及び積分器を各々の信
号用に1個づつ専用に設ければ、各信号の積分値がいず
れも1フイールド毎に更新可能となることはいうまでも
ない。
In the second embodiment, the A/D converter (22) and the integrator (23) are used for the luminance signal (Y), the color difference signal (RY) (B
The A/D converter and integrator are shared for the digital integration of each region of the three signals of Y), and the integrated value of each signal can only be updated in three field periods, but the A/D converter and integrator are It goes without saying that if one is provided exclusively for each signal, the integral value of each signal can be updated for each field.

また、第2実施例では、重み付け量としてlと1/2の
2値のいずれかを選択したが、これに代えて、予め実測
値にて設定された第7図のグラフより、輝度評価値に応
じて連続的に変化する重み付け量から最適値を選択する
ことも可能である。
In addition, in the second embodiment, either one of the two values of l and 1/2 was selected as the weighting amount, but instead of this, the luminance evaluation value is determined from the graph of FIG. It is also possible to select the optimum value from weighting amounts that continuously change according to the weighting amount.

更に、重み付け量決定回路(27)及び画面評価回路(
28)の動作をマイクロコンピュータを用いてソフトウ
ェア的に処理することも可能で・あン、また、この処理
自身があいまいさを含んでいることを考慮して、ファジ
ィ推論を用いた制御も可能である。
Furthermore, a weighting amount determination circuit (27) and a screen evaluation circuit (
It is also possible to process the operation of 28) in software using a microcomputer.Also, considering that this process itself contains ambiguity, it is also possible to control it using fuzzy inference. be.

(ト)  発明の効果 上述のごとく本発明によれば、極端に輝度の低い被写体
を含む画面でも、白バランスのずれを最小限に抑えるこ
とができる。
(G) Effects of the Invention As described above, according to the present invention, deviations in white balance can be minimized even on a screen including a subject with extremely low brightness.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例の回路ブロック図第3図は
輝度の積分値に対する制御量の上限値を示す図、第4図
は第2実施例の回路ブロック図、第5図は領域分割の説
明図、第6図は第4図の要部回路ブロック図、第7図は
輝度評価値と重み付け量の関係図である。また第2図は
従来例の回路ブロック図である。 (2の・上限値設定回路、 (51)(52)・・・利得制限回路、(27)・・・
重み付け量決定回路、 (28)−・画面評価回路、 (13)(] 4)(29)(3の  利得制御回路、
(4)(5)  ・R,B増幅回路
FIG. 1 is a circuit block diagram of the first embodiment of the present invention. FIG. 3 is a diagram showing the upper limit of the control amount for the integral value of luminance. FIG. 4 is a circuit block diagram of the second embodiment. An explanatory diagram of area division, FIG. 6 is a block diagram of the main circuit of FIG. 4, and FIG. 7 is a diagram of the relationship between luminance evaluation value and weighting amount. Further, FIG. 2 is a circuit block diagram of a conventional example. (2. Upper limit setting circuit, (51) (52)...gain limiting circuit, (27)...
Weighting amount determination circuit, (28)--Screen evaluation circuit, (13) (] 4) (29) (3) gain control circuit,
(4) (5) ・R, B amplifier circuit

Claims (3)

【特許請求の範囲】[Claims] (1)撮像映像信号中の色情報信号を基に、各色信号の
利得を制御する白バランス調整装置に於て、 被写体の輝度レベルが、所定の値に満たないときは、利
得制御を制限することを特徴とする白バランス調整装置
(1) In a white balance adjustment device that controls the gain of each color signal based on the color information signal in the captured video signal, the gain control is limited when the brightness level of the subject is less than a predetermined value. A white balance adjustment device characterized by:
(2)撮像映像信号中の色情報信号を基に、各色信号の
利得を制御する白バランス調整装置に於て、 被写体の輝度レベルが、所定の値に満たないときは、利
得制御を禁止することを特徴とする白バランス調整装置
(2) In a white balance adjustment device that controls the gain of each color signal based on the color information signal in the captured video signal, gain control is prohibited when the brightness level of the subject is less than a predetermined value. A white balance adjustment device characterized by:
(3)撮像画面を分割して設定された複数の領域毎の色
情報信号レベルを各色の色評価値として得る色評価値検
出手段と、 前記各領域の色評価値に各領域毎の重み付け量にて重み
付けを行い、この重み付け後の色評価値より画面全体に
ついての色評価値を画面色評価値として算出する画面色
評価値算出手段と、 該画面色評価値を基に各色信号の増幅利得を制御する利
得制御手段を備え、 分割された各領域毎に輝度レベルを検出し、各輝度レベ
ルが所定の値に満たないときは、これらの領域に対する
重み付け量を他の領域に比べて小さくすることを特徴と
する白バランス調整装置。
(3) color evaluation value detection means for obtaining color information signal levels for each of a plurality of areas set by dividing the imaging screen as color evaluation values for each color; and weighting amounts for each area on the color evaluation values for each of the areas. a screen color evaluation value calculating means for calculating a color evaluation value for the entire screen as a screen color evaluation value from the weighted color evaluation value; and an amplification gain of each color signal based on the screen color evaluation value. Detects the brightness level of each divided area, and when each brightness level is less than a predetermined value, the weighting amount for these areas is made smaller than for other areas. A white balance adjustment device characterized by:
JP2074402A 1989-11-17 1990-03-23 Color video camera Expired - Fee Related JP2523038B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2074402A JP2523038B2 (en) 1990-03-23 1990-03-23 Color video camera
US07/612,836 US5282022A (en) 1989-11-17 1990-11-13 White balance adjusting apparatus for automatically adjusting white balance in response to luminance information signal and color information signal obtained from image sensing device
DE69028973T DE69028973T2 (en) 1989-11-17 1990-11-16 White balance adjustment device for automatic adjustment of the white balance depending on the luminance information signal and color information signal from an image recording device
CA002030144A CA2030144C (en) 1989-11-17 1990-11-16 White balance adjusting apparatus for automatically adjusting white balance in response to luminance information signal and color information signal obtained from image sensing device
KR1019900018625A KR100193974B1 (en) 1989-11-17 1990-11-16 A white balance adjustment device for automatically performing white balance adjustment based on the luminance information signal and the color information signal obtained from the image pickup device
EP90121972A EP0429992B1 (en) 1989-11-17 1990-11-16 A white balance adjusting apparatus for automatically adjusting white balance in response to luminance information signal and color information signal obtained from image sensing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2074402A JP2523038B2 (en) 1990-03-23 1990-03-23 Color video camera

Publications (2)

Publication Number Publication Date
JPH03274885A true JPH03274885A (en) 1991-12-05
JP2523038B2 JP2523038B2 (en) 1996-08-07

Family

ID=13546161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2074402A Expired - Fee Related JP2523038B2 (en) 1989-11-17 1990-03-23 Color video camera

Country Status (1)

Country Link
JP (1) JP2523038B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011040856A (en) * 2009-08-07 2011-02-24 Sharp Corp Image processng apparatus, image processing method, and image processing program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62159083U (en) * 1986-03-31 1987-10-08
JPS63234689A (en) * 1987-03-23 1988-09-29 Hitachi Ltd Signal processing unit for video camera
JPS6425278U (en) * 1987-07-20 1989-02-13

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62159083U (en) * 1986-03-31 1987-10-08
JPS63234689A (en) * 1987-03-23 1988-09-29 Hitachi Ltd Signal processing unit for video camera
JPS6425278U (en) * 1987-07-20 1989-02-13

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011040856A (en) * 2009-08-07 2011-02-24 Sharp Corp Image processng apparatus, image processing method, and image processing program

Also Published As

Publication number Publication date
JP2523038B2 (en) 1996-08-07

Similar Documents

Publication Publication Date Title
KR100199322B1 (en) White balance adjusting apparatus automatically adjusting white balance on the basis of color information signal obttained from image sensing device
JP2003259189A (en) Imaging device and image processing method
JP2523036B2 (en) Color video camera
JPH03274885A (en) White balance adjusting device
JP2002185977A (en) Video signal processor and recording medium with video signal processing program recorded thereon
JP2532962B2 (en) Color video camera
JP2532975B2 (en) Color video camera
JPH03274884A (en) White balance control circuit
JPH03289793A (en) White balance adjusting device
JP2614542B2 (en) White balance adjustment device
JP3754425B2 (en) Video camera
JPH0448032B2 (en)
JP2532956B2 (en) Color video camera
JP3075888B2 (en) White balance adjustment device
JPH03148987A (en) Exposure controller for electronic image pickup equipment
JPH03219790A (en) White balance adjustment device
JPH0693781B2 (en) Automatic white balance control circuit
JP2614543B2 (en) White balance adjustment device
JP2523040B2 (en) Color video camera
JP3096605B2 (en) Color video camera
JPH03160891A (en) White balance adjusting device
JP2523034B2 (en) White balance adjustment device
JP2521832B2 (en) Color video camera
JP2584358B2 (en) White balance adjustment device
JPH04989A (en) White balance adjusting device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080531

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees