JPH03259224A - Formation of insulating film of mim element - Google Patents

Formation of insulating film of mim element

Info

Publication number
JPH03259224A
JPH03259224A JP2058338A JP5833890A JPH03259224A JP H03259224 A JPH03259224 A JP H03259224A JP 2058338 A JP2058338 A JP 2058338A JP 5833890 A JP5833890 A JP 5833890A JP H03259224 A JPH03259224 A JP H03259224A
Authority
JP
Japan
Prior art keywords
insulating film
plasma
high frequency
substrate
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2058338A
Other languages
Japanese (ja)
Inventor
Hisashi Nobunaga
延永 尚志
Yoshiaki Mori
義明 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2058338A priority Critical patent/JPH03259224A/en
Publication of JPH03259224A publication Critical patent/JPH03259224A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To preclude the surface of metal from being contaminated by carrying out the plasma anodic oxidation of the metal surface with active particles in gaseous oxygen plasma. CONSTITUTION:After a container 1 is evacuated, high-purity oxygen is admitted through an intake 10 and a vacuum is produced. In this state, high frequency electric power is supplied to an electrode 4 by a high frequency power source 7 to generate oxygen plasma. Then the Ta pattern part of a substrate 3 is applied with a bias voltage from a DC power source 5 to perform the plasma anodic oxidation, thereby forming a tantalum oxide insulating film. Consequently, the insulating film which is hundreds of Angstrom thickness can be formed at low temperature with good controllability and problems such as surface contamination, staining in substrate drying, and waste liquid treatment are eliminated.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はMIM素子の絶縁膜形成法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for forming an insulating film of an MIM element.

[従来の技術] 従来のMEIM素子の絶縁膜形成法はデータ線のタンタ
ルを弱酸性クエン酸浴中で20〜50■の陽極酸化電圧
で陽極酸化して、MIM素子の絶縁体である酸化タンタ
ル表面層を形成するものであった。
[Prior art] The conventional method for forming an insulating film of an MEIM element is to anodize the tantalum of the data line in a weakly acidic citric acid bath at an anodic oxidation voltage of 20 to 50 μm to form tantalum oxide, which is the insulator of the MIM element. It formed a surface layer.

また別の方法としては、スパッタ法、熱酸化法OVD法
等を用いて絶縁体を形成する方法があった。
Another method is to form an insulator using a sputtering method, a thermal oxidation method, an OVD method, or the like.

[発明が解決しようとする課題] しかし、前述の従来技術では、陽極酸化の場合溶液を使
うウェット手法であるため、溶液からの表面汚染、基板
乾燥時のシミの発生、排液処理等の問題があった。
[Problems to be Solved by the Invention] However, in the above-mentioned conventional technology, since anodization is a wet method using a solution, problems such as surface contamination from the solution, generation of stains when the substrate dries, and drainage treatment occur. was there.

さらに、スパッタ法、熱酸化法、OVD法の場合、数百
大の絶縁膜を大面積にわたって均一に形成することが困
難であるという問題点を有する。
Furthermore, the sputtering method, thermal oxidation method, and OVD method have a problem in that it is difficult to uniformly form hundreds of insulating films over a large area.

そこで本発明はこのような問題点を解決するもので、そ
の目的とするところは、MIM素子の絶縁膜をプラズマ
陽極酸化法で形成し、ウェットの陽極酸化にみられる表
面汚染等の問題を解決し、さらに基板への正のバイアス
電圧の開用により膜厚をコントロールし大面積にわたっ
て均一な絶縁膜を形成することのできるMIM素子の絶
縁膜形威法を提供するところにある。
Therefore, the present invention is intended to solve these problems.The purpose of the present invention is to form the insulating film of the MIM element by plasma anodic oxidation, thereby solving problems such as surface contamination seen in wet anodic oxidation. Furthermore, it is an object of the present invention to provide a method for forming an insulating film of an MIM element, which can control the film thickness by applying a positive bias voltage to the substrate and form a uniform insulating film over a large area.

[課題を解決するための手段] 本発明のMIM素子の絶縁膜形戊法は、液晶パネルのア
クティブマトリクス用金属(I)−絶縁膜−金属(I[
) (MIM)素子の絶縁膜形戊法にあって、前記金属
(I)表面を酸素ガスプラズマ中で発生する活性粒子に
よってプラズマ陽極酸化することを特徴とする。
[Means for Solving the Problems] The insulating film forming method of the MIM element of the present invention is based on the metal (I)-insulating film-metal (I[
) (MIM) A method for forming an insulating film of an element, characterized in that the surface of the metal (I) is subjected to plasma anodization using active particles generated in oxygen gas plasma.

[実施例] 以下、本発明の実施例を図面に基づいて説明する。第1
図は本発明に用いる装置の実施例の概略図であって、図
中1は真空容器、2は基板ホルダ3は基板、4は高周波
電極、5はバイアス用定電圧電源で高周波成分をカット
するローパスフィルタ6を介して接続されている。7は
高周波電源8はマツチング回路で高周波電力の印加によ
り負にセルフバイアスされた高周波電極4の直流成分を
フィル9によりゼロにし、電極4のスパッタを抑制する
ように配慮されている。また、10はガス導入口、11
はガス排気口である。
[Example] Hereinafter, an example of the present invention will be described based on the drawings. 1st
The figure is a schematic diagram of an embodiment of the apparatus used in the present invention, in which 1 is a vacuum container, 2 is a substrate holder, 3 is a substrate, 4 is a high frequency electrode, and 5 is a bias constant voltage power supply that cuts high frequency components. They are connected via a low-pass filter 6. Reference numeral 7 denotes a high frequency power source 8, which is a matching circuit designed to reduce the direct current component of the high frequency electrode 4, which has been negatively self-biased by the application of high frequency power, to zero by means of a filter 9, thereby suppressing sputtering of the electrode 4. In addition, 10 is a gas inlet port, 11
is the gas exhaust port.

この装置を用いたMIM素子の絶縁膜形戊法を以下に説
明する。
A method of forming an insulating film of an MIM element using this device will be described below.

まず、ガラス基板上にパターニングされたタンタル基板
3を基板ホルダ2に設置し、排気口11に連結した排気
装置によって、容器1内を〜1O−6TOrrに排気し
た後、導入口10より高純度酸素を導入し、真空度0.
5 T Or rとなるように設定した。この状態で、
高周波電源7によって電極4に高周波電力(200W)
を供給し、酸素プラズマを発生させた。基板3のTaパ
ターン部に直流電源5によりバイアス電圧(35v)を
印加しプラズマ陽極酸化を行ない、約600Xの酸化タ
ンタル絶縁膜を形成させた。
First, a tantalum substrate 3 patterned on a glass substrate is placed on the substrate holder 2, and the inside of the container 1 is evacuated to ~1O-6 TOrr by an exhaust device connected to the exhaust port 11, and then high-purity oxygen is was introduced, and the degree of vacuum was 0.
It was set to be 5 T or r. In this state,
High frequency power (200W) is applied to the electrode 4 by the high frequency power source 7.
was supplied to generate oxygen plasma. A bias voltage (35 V) was applied to the Ta pattern portion of the substrate 3 from the DC power supply 5 to perform plasma anodic oxidation to form a tantalum oxide insulating film of approximately 600×.

この膜をMIM素子の絶縁膜としてMIM素子のスイッ
チング特性を評価したところ、今回使用した基板(2D
 0m角)全面で同じニーV特性を示し、面内で均一な
絶縁膜が得られていることがわかった。
When we evaluated the switching characteristics of the MIM element using this film as an insulating film of the MIM element, we found that the substrate used this time (2D
It was found that the same knee V characteristics were exhibited over the entire surface (0 m square), and that an insulating film that was uniform within the surface was obtained.

さらに本発明の方法を用いると、従来の陽極酸化法に比
べて非線形性の強いニーV特性が得られMIM素子の絶
縁膜として顕著な特性改善が図られていることがわかっ
た。
Furthermore, it has been found that when the method of the present invention is used, a knee V characteristic with stronger nonlinearity can be obtained compared to the conventional anodic oxidation method, and the characteristics of the insulating film of an MIM element are significantly improved.

[発明の効果] 以上述べたように本発明によれば、MIM素子の絶縁膜
を酸素ガスプラズマ中での金属表面のプラズマ陽極酸化
で形成することにより、低温で数百Xの膜厚の絶縁膜を
制御性良く形成することができる。またウェット方式の
陽極酸化のような溶液からの表面汚染、基板乾燥時のシ
ミの発生、排液処理等の問題がなく液晶パネルのアクテ
ィブマトリクス用非線形2端子素子の絶縁膜が得られる
ことが可能である。さらに絶縁膜をサンドイッチする上
下の金属の皮膜法を真空装置で行なうと、MIM3層を
すべて真空プロセスで行なうことが可能となり、基板表
面の清浄さが保たれ易く、ピンホールの減少をより効果
的になし得ることが可能となる。
[Effects of the Invention] As described above, according to the present invention, the insulating film of the MIM element is formed by plasma anodic oxidation of the metal surface in oxygen gas plasma. A film can be formed with good controllability. In addition, it is possible to obtain an insulating film for a nonlinear two-terminal element for an active matrix of a liquid crystal panel without problems such as surface contamination from a solution, staining when the substrate dries, and drainage treatment, as in wet anodizing. It is. Furthermore, if the upper and lower metal coating method that sandwiches the insulating film is performed using a vacuum device, it becomes possible to perform all three MIM layers in a vacuum process, making it easier to maintain the cleanliness of the substrate surface and reducing pinholes more effectively. It becomes possible to do what is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に使用するプラズマ放電装置の概略構成
を示す断面図。 1・・・・・・・・・真空容器 2・・・・・・・・・基板ホルダ 3・・・・・・・・・基 板 4・・・・・・・・・高周波電極 5・・・・・・・・・バイアス用定電圧電源6・・・・
・・・・・ローパスフィルタ7・・・・・・・・・高周
波電源 8・・・・・・・・・マツチング回路 09・・・・・・・・・コイル 10・・・・・・・・・ガス導入口 11・・・・・・・・・ガス排気口 以上
FIG. 1 is a sectional view showing a schematic configuration of a plasma discharge device used in the present invention. 1... Vacuum container 2... Substrate holder 3... Substrate 4... High frequency electrode 5. ...... Constant voltage power supply for bias 6...
・・・・・・Low pass filter 7・・・・・・High frequency power supply 8・・・・・・Matching circuit 09・・・・・・・・・Coil 10・・・・・・・・・・・Gas inlet port 11・・・・・・・・・More than gas exhaust port

Claims (1)

【特許請求の範囲】[Claims]  液晶パネルのアクティブマトリクス用金属( I )−
絶縁膜−金属(II)(MIM)素子の絶縁膜形成法にあ
って、前記金属( I )表面を酸素ガスプラズマ中で発
生する活性粒子によってプラズマ陽極酸化することを特
徴とするMIM素子の絶縁膜形成法。
Metal for active matrix of liquid crystal panel (I) −
Insulating film - A method for forming an insulating film of a metal (II) (MIM) element, characterized in that the metal (I) surface is plasma anodized with active particles generated in oxygen gas plasma. Film formation method.
JP2058338A 1990-03-09 1990-03-09 Formation of insulating film of mim element Pending JPH03259224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2058338A JPH03259224A (en) 1990-03-09 1990-03-09 Formation of insulating film of mim element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2058338A JPH03259224A (en) 1990-03-09 1990-03-09 Formation of insulating film of mim element

Publications (1)

Publication Number Publication Date
JPH03259224A true JPH03259224A (en) 1991-11-19

Family

ID=13081534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2058338A Pending JPH03259224A (en) 1990-03-09 1990-03-09 Formation of insulating film of mim element

Country Status (1)

Country Link
JP (1) JPH03259224A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108565132A (en) * 2018-05-15 2018-09-21 中国科学院深圳先进技术研究院 A kind of fibrous material and preparation method thereof with metal oxide nanostructure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108565132A (en) * 2018-05-15 2018-09-21 中国科学院深圳先进技术研究院 A kind of fibrous material and preparation method thereof with metal oxide nanostructure
CN108565132B (en) * 2018-05-15 2019-09-27 中国科学院深圳先进技术研究院 A kind of fibrous material and preparation method thereof with metal oxide nanostructure

Similar Documents

Publication Publication Date Title
JP4833429B2 (en) Dielectric deposition method
JPH03259225A (en) Formation of insulating film of mim element
JPH03259224A (en) Formation of insulating film of mim element
JPH03259226A (en) Formation of insulating film of mim element
JPH02303371A (en) Formation of electrode pattern on piezoelectric element for ultrasonic motor
JPH06291064A (en) Plasma treatment device
JPS59149060A (en) Manufacture of thin-film transistor
JPS62130524A (en) Plasma processing apparatus
US3671823A (en) Thin film capacitor including an aluminum underlay
JPH03260051A (en) Plasma oxidation method
JPH03260050A (en) Plasma anode oxidation device
Jiang et al. Fabrication of precision integrated capacitors
JPH06112488A (en) Manufacture of insulating film and thin film transistor element provided therewith
JPH051072Y2 (en)
JPH06338492A (en) Method of forming insulation film and method of manufacturing gate insulation film for thin film transistor
JP5856303B2 (en) Thin film transistor and manufacturing method thereof
JPH09266201A (en) Plasma cvd apparatus
JPH0348824A (en) Production of mim type nonlinear switching element
JPH0463323A (en) Treatment of orienting liquid crystal
JPS6024374A (en) Film forming device for amorphous semiconductor
JPH03260049A (en) Plasma anodization device
JPH03260052A (en) Plasma anode oxidation device
JPH0348826A (en) Production of mim type nonlinear switching element
JPS62241350A (en) Treatment of thin-film
JPH0355551B2 (en)