JPH0348824A - Production of mim type nonlinear switching element - Google Patents

Production of mim type nonlinear switching element

Info

Publication number
JPH0348824A
JPH0348824A JP1185335A JP18533589A JPH0348824A JP H0348824 A JPH0348824 A JP H0348824A JP 1185335 A JP1185335 A JP 1185335A JP 18533589 A JP18533589 A JP 18533589A JP H0348824 A JPH0348824 A JP H0348824A
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
entire surface
metal
glass substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1185335A
Other languages
Japanese (ja)
Inventor
Koichi Hoshino
浩一 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP1185335A priority Critical patent/JPH0348824A/en
Publication of JPH0348824A publication Critical patent/JPH0348824A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obviate the defect in the tight adhesion of an insulating film and a transparent conductive film and of a glass substrate and the transparent conductive film by subjecting the insulating film to an acid cleaning treatment or sputter light etching treatment or to both of the sputter light etching treatment and the acid cleaning treatment. After the formation of an insulating film. CONSTITUTION:Ta is formed on a glass substrate 1 over the entire surface thereof and is photoetched to form patterning 2 consisting of the Ta. The Ta 2 is thereafter anodized or thermally oxidized to form tantalum oxide as an insulator 3. The substrate is then immersed into acid soln. and is cleaned or is subjected to the sputter light etching treatment in a vacuum chamber. Finally, ITO is formed as the transparent conductive film 4 over the entire surface in order to form transparent picture element electrodes and is patterned by a photoetching method, by which the MIM element is obtd. The tight adhesion between the glass substrate 1 and the transparent conductive film 4 and between the insulating film 3 and the transparent conductive film 4 is improved in this way and the fluctuation in the element area of the MIM element is lessened.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、液晶表示装置に設置されるスイッチング素子
のうち、金属−絶縁体−金属の3層構造からなる素子(
Metal−Insulator−Metal、以下M
 I M素子と呼ぶ)の製造方法に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a switching element having a three-layer structure of metal-insulator-metal among switching elements installed in a liquid crystal display device (
Metal-Insulator-Metal, hereinafter M
The present invention relates to a method for manufacturing an IM element (referred to as an IM element).

〔従来の技術〕[Conventional technology]

MIM素子は、印加電圧が低い場合には高抵抗、印加電
圧が高い場合には低抵抗となる電気的特性を有し、ガラ
ス基板上にも容易に形成できるため、液晶表示装置のス
イッチング素子として利用することが提案されている。
MIM elements have electrical characteristics such as high resistance when the applied voltage is low and low resistance when the applied voltage is high, and can be easily formed on glass substrates, so they are used as switching elements in liquid crystal display devices. It is proposed to use.

従来例におけるこのM I M素子の製造方法を第3図
を用いて説明する。
A conventional method of manufacturing this MIM element will be explained with reference to FIG.

まずガラス基板1上の全面に金属2を形成する。First, metal 2 is formed on the entire surface of glass substrate 1.

その後全面に感光性樹脂を形成し、マスクを用いて露光
現像を行ないこの感光性樹脂をバターニングし、このバ
ターニングした感光性樹脂をエツチングマスクにして金
属2をエツチングする、いわゆるフォトエツチングによ
り金属2をエツチングする。
After that, a photosensitive resin is formed on the entire surface, and this photosensitive resin is patterned by exposure and development using a mask.The metal 2 is etched using the patterned photosensitive resin as an etching mask. Etch 2.

次にこの金属2上に陽極酸化法や熱酸化法等を用いて絶
縁体6を形成する。
Next, an insulator 6 is formed on this metal 2 using an anodic oxidation method, a thermal oxidation method, or the like.

その後基板上に全面に透明導電膜4を形成しフォトエツ
チングを用いてこの透明画素電極をパタニングして、M
IM素子を製造している。
After that, a transparent conductive film 4 is formed on the entire surface of the substrate, and this transparent pixel electrode is patterned using photoetching.
Manufactures IM devices.

(特開昭57−196290号報) 〔発明が解決しようとする課題〕 しかしながら前述したMIM素子の製造方法においては
、下記のような課題を有している。
(Unexamined Japanese Patent Publication No. 57-196290) [Problems to be Solved by the Invention] However, the method for manufacturing the MIM element described above has the following problems.

(イ)絶縁体6と透明導電膜4、およびガラス基板1と
透明導電膜4との密着に問題がある。
(a) There is a problem in the close contact between the insulator 6 and the transparent conductive film 4, and between the glass substrate 1 and the transparent conductive film 4.

(ロ)第3図の内部10に示したような、前述の密着性
に起因する金属20段差破覆部において透明導電膜4の
サイドエツチングが発生し、断線が多発する。
(b) As shown in the interior 10 of FIG. 3, side etching of the transparent conductive film 4 occurs at the broken portion of the metal 20 step caused by the above-mentioned adhesion, resulting in frequent disconnections.

e→ 同様に前述の密着性に起因する透明導電膜4のパ
ターニング時の寸法バラツキが大きいためMIM素子の
面積バラツキが大きい。
e→ Similarly, since there are large dimensional variations during patterning of the transparent conductive film 4 due to the above-mentioned adhesion, there are large area variations of the MIM element.

巨)前述の素子面積バラツキに起因するM I M素子
の電流−電圧特性、特に高電圧側でのバラツキが大きい
Large) The current-voltage characteristics of the MIM element, particularly on the high voltage side, are highly variable due to the above-mentioned variation in device area.

(ホ)前述の電流−電圧特性のバラツキに起因する電流
−電圧特性の安定性、再現性が著しく低下する。
(e) The stability and reproducibility of the current-voltage characteristics are significantly reduced due to the above-mentioned variations in the current-voltage characteristics.

本発明の目的は、絶縁膜と透明導電膜との密着不良、お
よびガラス基板と透明導電膜との密着不良を解決し、透
明導電膜のサイドエッチをなくし、第1の金属の段差被
覆部における透明導電膜の断線を防止でき、MIM素子
の電流−電圧特性のバラツキをなくシ、従ってこの電流
−電圧特性の再現性、安定性を向上させる事のできるM
 I M素子の製造方法を提供するものである。
The purpose of the present invention is to solve the problems of poor adhesion between an insulating film and a transparent conductive film, and between a glass substrate and a transparent conductive film, to eliminate side etching of a transparent conductive film, and to eliminate the problem of poor adhesion between an insulating film and a transparent conductive film, and to eliminate side etching of a transparent conductive film. M that can prevent disconnection of the transparent conductive film, eliminate variations in the current-voltage characteristics of the MIM element, and improve the reproducibility and stability of the current-voltage characteristics.
A method for manufacturing an IM element is provided.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明のMIM素子の製造
方法においては、絶縁膜形成後に酸洗浄処理を施すか、
スパッタライトエツチング処理を施すか、またはスパッ
タライトエツチング処理と酸洗浄処理の両方を施すこと
を特徴とする。
In order to achieve the above object, in the method for manufacturing an MIM element of the present invention, acid cleaning treatment is performed after forming an insulating film,
It is characterized by performing sputter light etching treatment or by performing both sputter light etching treatment and acid cleaning treatment.

〔実施例1〕 以下、本発明の実施例を図面に基づいて詳述する。[Example 1] Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

第1図は本発明の一実施例におけるMIM素子の製造方
法を工程順に示す断面図であり、第2図は本発明のMI
M素子を示す平面図である。以下第1図と第2図とを参
照して説明する。
FIG. 1 is a cross-sectional view showing the manufacturing method of an MIM device according to an embodiment of the present invention in the order of steps, and FIG.
FIG. 3 is a plan view showing an M element. This will be explained below with reference to FIGS. 1 and 2.

まず第1図(a)に示すように、金属2としてガラス基
板1上にスパッタリング法や蒸着法等を用いてタンタル
(Ta )を100 nm〜500 n、mの厚さで形
成し、第1図(b)に示すように、フォトエツチングを
用いて金属2をバターニングする。
First, as shown in FIG. 1(a), tantalum (Ta) is formed as a metal 2 on a glass substrate 1 to a thickness of 100 nm to 500 nm by using a sputtering method or a vapor deposition method. As shown in Figure (b), the metal 2 is patterned using photoetching.

その後第1図(c)に示すように絶縁体6を得るために
、金属2であるタンタルを0.5g/’l〜50 g/
11のクエン酸溶液中における陽極酸化法を行う。ある
いはこの陽極酸化法の代わりに、温度200°C〜45
0℃の酸素雰囲気中で熱処理するいわゆる熱酸化法を行
なう。陽極酸化あるいは熱酸化にて形成する絶縁体3と
しての酸化タンタルは5nm〜IQOnmの厚さで形成
する。または、スパッタリング法や蒸着法や化学気相成
長法等を用いて酸化タンタル、酸化硅素、窒化硅素等を
5nm〜1100n全面に形成する。
Thereafter, in order to obtain the insulator 6 as shown in FIG.
The anodic oxidation method in citric acid solution of No. 11 is carried out. Alternatively, instead of this anodizing method, a temperature of 200°C to 45°C can be used.
A so-called thermal oxidation method in which heat treatment is performed in an oxygen atmosphere at 0° C. is performed. Tantalum oxide as the insulator 3 is formed by anodic oxidation or thermal oxidation to a thickness of 5 nm to IQOnm. Alternatively, tantalum oxide, silicon oxide, silicon nitride, or the like is formed over the entire surface to a thickness of 5 nm to 1100 nm using a sputtering method, a vapor deposition method, a chemical vapor deposition method, or the like.

その後1%〜38%の塩酸溶液中に浸して洗浄を行なう
。上記の塩酸の代わりに塩酸、硫酸、硝酸、酢酸、リン
酸のうちの1種類、もしくは少なくとも2種類以上の混
合液、もしくはこれらに過酸化水素水、及び水のうちど
ちらか一方もしくは両方を加えた溶液を用いて行なって
も同様の効果を得ることが可能である。
Thereafter, it is washed by immersing it in a 1% to 38% hydrochloric acid solution. Instead of the above hydrochloric acid, add one or both of hydrochloric acid, sulfuric acid, nitric acid, acetic acid, and phosphoric acid, or a mixture of at least two of these, or hydrogen peroxide and water. A similar effect can be obtained by using a different solution.

最後に、第1図((1)に示すように、透明画素電極を
形成するために、透明導電膜4として例えばI TO(
I n2 o3 a S not )を50nm〜50
0nmの厚さスパッタリング法や蒸着法等を用いて形成
し、フォトエツチング法によりバターニングして当該へ
・iIM素子を得る。このM I M素子の平面図を第
2図に示す。
Finally, as shown in FIG. 1 ((1), in order to form a transparent pixel electrode, for example, ITO (
I n2 o3 a S not ) from 50 nm to 50
It is formed to a thickness of 0 nm using a sputtering method, a vapor deposition method, etc., and is patterned by a photoetching method to obtain the iIM element. A plan view of this MIM element is shown in FIG.

〔実施例2〕 実施例1に述べた方法を用いて金属2をバターニングし
絶縁体6を形成する。
[Example 2] Using the method described in Example 1, the metal 2 is buttered to form the insulator 6.

その後、第4図に示すようなアルゴンガスを導入した真
空槽61内において圧力O】〜50Pa、投入電力密度
01〜10 W / at:、処理時間10砂〜30分
の範囲でスパッタライトエツチング処理をガラス基板1
の全面に施す。アルゴンガスの代わりにネオン(Ne)
、クリプトン(Kr )等の不活性ガスを用いても同様
の効果を得られる。
Thereafter, sputter light etching is carried out in a vacuum chamber 61 into which argon gas is introduced as shown in FIG. Glass substrate 1
Apply to the entire surface. Neon (Ne) instead of argon gas
A similar effect can be obtained by using an inert gas such as , krypton (Kr), or the like.

尚、前述のスパッタライトエツチング処理を施す際に、
基板ホルダー64として例えばアルミナ、酸化硅素、炭
素、硅素、チタン等の低スパツタ率の物質でできたもの
や、もしくはこれらの物質で覆われたものを用いると、
基板の汚染を効果的に防ぐことができる。さらに基板を
50℃〜400°Cの間で加熱しながら行なったり、第
5図に示すように投入する高周波電力66に−10〜−
100OVO間で直流成分67を印加したり、高周波電
力66として例えばマイクロ波を用いろと、スパッタエ
ツチング速度が大きくなるので、より効果的にスパッタ
ライトエツチング処理を行なうことが可能である。
In addition, when performing the sputter light etching treatment mentioned above,
If the substrate holder 64 is made of a material with a low spatter rate, such as alumina, silicon oxide, carbon, silicon, or titanium, or is covered with one of these materials,
Contamination of the substrate can be effectively prevented. Further, the substrate is heated between 50° C. and 400° C., and the high frequency power 66 applied as shown in FIG.
By applying the DC component 67 between 100 OVO or by using microwaves as the high frequency power 66, for example, the sputter etching speed increases and it is possible to perform the sputter light etching process more effectively.

最後に、実施例1で述べた方法で透明導電膜4を形成し
て当該MIM素子を得る。
Finally, the transparent conductive film 4 is formed by the method described in Example 1 to obtain the MIM element.

〔実施例3〕 実施例1で述べた方法で第1の金属2をバターニングし
た後、絶縁体6を形成する。
[Example 3] After the first metal 2 is patterned by the method described in Example 1, the insulator 6 is formed.

その後、実施例2で述べた方法でスパッタライトエツチ
ング処理を施す。
Thereafter, sputter light etching treatment is performed using the method described in Example 2.

その後、実施例1で述べた方法で酸洗浄処理を施す。Thereafter, acid cleaning treatment is performed using the method described in Example 1.

最後に、実施例1で述べた方法で透明導電膜4を形成し
て当該MIM素子を得る。
Finally, the transparent conductive film 4 is formed by the method described in Example 1 to obtain the MIM element.

尚、酸洗浄処理を施した後にスパッタライトエツチング
処理を施しても同様の効果が得られる。
Note that the same effect can be obtained even if the sputtering light etching treatment is performed after the acid cleaning treatment.

〔発明の効果〕〔Effect of the invention〕

以」二の説明で明らかなように、本発明によればガラス
基板と透明導電膜、及び絶縁膜3と透明導電膜の密着が
良好で、M I M素子の素子面積バラツキもなく、段
差被覆部分におけるサイドエッチも発生せず、断線を防
止し電流−電圧特性のバラツキがなく安定性、再現性を
著しく向上させたM、 I M素子の製造が可能となる
。本発明を液晶表示装置の製造等に応用すれば、その効
果は絶大である。
As is clear from the following explanation, according to the present invention, there is good adhesion between the glass substrate and the transparent conductive film, and between the insulating film 3 and the transparent conductive film, there is no variation in the element area of the MIM element, and there is no difference in step coverage. It is possible to manufacture M and IM elements that do not cause side etching in portions, prevent disconnection, have uniform current-voltage characteristics, and have significantly improved stability and reproducibility. If the present invention is applied to the manufacture of liquid crystal display devices, the effects will be tremendous.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a、)〜(d)は本発明の一実施例におけるM
 I M素子の製造方法を工程順に示す断面図、第2図
は本発明の一実施例におけるMIM素子の平面図、第3
図は従来例によるMIM素子の斜視図、第4図は本発明
の実施例におけるスパッタライトエツチング処理を行な
うときの状態を表す模式図、第5図は本発明の実施例中
における高周波電力に直流成分を印加しスパッタエツチ
ング処理を行なうときの状態を表す模式図である。 1・・・・・・ガラス基板、 2・・・・・・金属、 6・・・・・・絶縁体、 4・・・・・・透明導電膜。 第2図 第3図
FIGS. 1(a,) to (d) show M in an embodiment of the present invention.
FIG. 2 is a plan view of an MIM device according to an embodiment of the present invention; FIG.
The figure is a perspective view of an MIM element according to a conventional example, FIG. 4 is a schematic diagram showing the state when performing sputter light etching processing in an embodiment of the present invention, and FIG. FIG. 2 is a schematic diagram showing a state when applying components and performing sputter etching processing. 1...Glass substrate, 2...Metal, 6...Insulator, 4...Transparent conductive film. Figure 2 Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)ガラス基板上の全面に金属を形成し第1番目のフ
ォトエッチングにより該金属をパターニングする工程と
、前記金属の表面に絶縁体を形成する工程と、全面に酸
洗浄処理を施す工程と、全面に透明導電膜を形成し第2
番目のフォトエッチングにより該透明導電膜を透明画素
電極の形状にパターニングする工程とを有することを特
徴とするMIM型非線形スイッチング素子の製造方法。
(1) A step of forming a metal on the entire surface of the glass substrate and patterning the metal by first photo-etching, a step of forming an insulator on the surface of the metal, and a step of performing acid cleaning treatment on the entire surface. , a transparent conductive film is formed on the entire surface, and the second
A method for manufacturing an MIM type nonlinear switching element, comprising the step of patterning the transparent conductive film in the shape of a transparent pixel electrode by photo-etching.
(2)ガラス基板上の全面に金属を形成し第1番目のフ
ォトエッチングにより該金属をパターニングする工程と
、前記金属の表面に絶縁体を形成する工程と、全面にス
パッタライトエッチング処理を施す工程と、全面に透明
導電膜を形成し第2番目のフォトエッチングにより該透
明導電膜を透明画素電極の形状にパターニングする工程
とを有することを特徴とするMIM型非線形スイッチン
グ素子の製造方法。
(2) A step of forming metal on the entire surface of the glass substrate and patterning the metal by first photo-etching, a step of forming an insulator on the surface of the metal, and a step of performing sputter light etching treatment on the entire surface. A method for manufacturing an MIM type nonlinear switching element, comprising the steps of: forming a transparent conductive film on the entire surface and patterning the transparent conductive film in the shape of a transparent pixel electrode by a second photo-etching.
(3)ガラス基板上の全面に金属を形成し第1番目のフ
ォトエッチングにより該金属をパターニングする工程と
、前記金属の表面に絶縁体を形成する工程と、全面に酸
洗浄処理とスパッタライトエッチング処理とを施す工程
と、全面に透明導電膜を形成し第2番目のフォトエッチ
ングにより該透明導電膜を透明画素電極の形状にパター
ニングする工程とを有することを特徴とするMIM型非
線形スイッチング素子の製造方法。
(3) A step of forming metal on the entire surface of the glass substrate and patterning the metal by first photo-etching, a step of forming an insulator on the surface of the metal, and acid cleaning treatment and sputter light etching on the entire surface. an MIM type nonlinear switching element characterized by comprising the steps of: forming a transparent conductive film on the entire surface and patterning the transparent conductive film in the shape of a transparent pixel electrode by a second photo-etching process; Production method.
JP1185335A 1989-07-18 1989-07-18 Production of mim type nonlinear switching element Pending JPH0348824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1185335A JPH0348824A (en) 1989-07-18 1989-07-18 Production of mim type nonlinear switching element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1185335A JPH0348824A (en) 1989-07-18 1989-07-18 Production of mim type nonlinear switching element

Publications (1)

Publication Number Publication Date
JPH0348824A true JPH0348824A (en) 1991-03-01

Family

ID=16169006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1185335A Pending JPH0348824A (en) 1989-07-18 1989-07-18 Production of mim type nonlinear switching element

Country Status (1)

Country Link
JP (1) JPH0348824A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008112671A (en) * 2006-10-31 2008-05-15 Omron Corp Switch

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008112671A (en) * 2006-10-31 2008-05-15 Omron Corp Switch

Similar Documents

Publication Publication Date Title
JPS58100461A (en) Manufacture of thin-film transistor
JPH03190141A (en) Thin-film transistor for plate display and manufacture thereof
JPH0348824A (en) Production of mim type nonlinear switching element
JPH05165059A (en) Manufacture of thin film transistor
JPS63166236A (en) Electronic device
JP2795883B2 (en) Nonlinear element in liquid crystal display
JP3175225B2 (en) Method for manufacturing thin film transistor
JPS59149060A (en) Manufacture of thin-film transistor
JPH0351823A (en) Production of mim type nonlinear switching element
JPH0348822A (en) Production of mim type nonlinear switching element
JPH06151460A (en) Manufacture of inverted stagger type tft
JPH0348826A (en) Production of mim type nonlinear switching element
JP2989286B2 (en) Electrode forming method and electrode structure in liquid crystal display device
JP3341346B2 (en) Manufacturing method of nonlinear element
KR970006253B1 (en) Fabrication method of tft
JPH0351822A (en) Production of nonlinear element
JPH07311393A (en) Liquid crystal display device using nonlinear driving element
JPH0346633A (en) Production of nonlinear element
JPH0351821A (en) Production of mim type nonlinear switching element
JP3285383B2 (en) Liquid crystal display device and manufacturing method thereof
JPH0342631A (en) Production of mim type nonlinear switching element
JPH06196700A (en) Electronic device
JPH0466919A (en) Production of liquid crystal display device
JPH01120025A (en) Manufacture of thin film transistor
JPH0352276A (en) Manufacture of min type nonlinear switching element