JPS5919964B2 - Method for producing ferromagnetic metal powder - Google Patents

Method for producing ferromagnetic metal powder

Info

Publication number
JPS5919964B2
JPS5919964B2 JP56045434A JP4543481A JPS5919964B2 JP S5919964 B2 JPS5919964 B2 JP S5919964B2 JP 56045434 A JP56045434 A JP 56045434A JP 4543481 A JP4543481 A JP 4543481A JP S5919964 B2 JPS5919964 B2 JP S5919964B2
Authority
JP
Japan
Prior art keywords
powder
naphthenate
magnetic
coercive force
metal powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56045434A
Other languages
Japanese (ja)
Other versions
JPS57161006A (en
Inventor
鉄洲 宮原
香子 河田
和男 木村
義 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP56045434A priority Critical patent/JPS5919964B2/en
Publication of JPS57161006A publication Critical patent/JPS57161006A/en
Publication of JPS5919964B2 publication Critical patent/JPS5919964B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal

Description

【発明の詳細な説明】 この発明は、磁気テープ、磁気カード、磁気ディスクな
どに有用な、磁気記録用、強磁性金属粉末の製造方法に
関するものであり、詳細には高密度磁気記録媒体に好適
な高い保磁力と高い飽和磁気量をもつ強磁性金属または
合金粉末を製造する方法にに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing ferromagnetic metal powder for magnetic recording, which is useful for magnetic tapes, magnetic cards, magnetic disks, etc., and is particularly suitable for high-density magnetic recording media. The present invention relates to a method for producing ferromagnetic metal or alloy powder having a high coercive force and a high saturation magnetic content.

(尚、この明細書において特段の記載がない場合には金
属とは純金属および合金を意味する。
(In this specification, unless otherwise specified, metal means pure metal and alloy.

)近年、磁気記録の高密度化に伴い、高保磁力および高
飽和磁気量をもつ磁性金属粉が金属酸化物粉末の代わり
に磁気記録体の記録素子に使用されつつあるが、更にそ
れらの性能向上が望まれている。この磁性金属粉を製造
する方法として、従来より酸化鉄又はオキシ水酸化鉄あ
るいはこれらに他の金属(Co、Niなど)を含有せし
めたものを還元性気体で加熱還元する方法が知られてい
る(例えば、特公昭35−3862号、特公昭53−1
1512号、特公昭54−22838号、特開昭54−
122663号の各公報所載)。
) In recent years, with the increase in the density of magnetic recording, magnetic metal powders with high coercive force and high saturation magnetic content are being used in the recording elements of magnetic recording media instead of metal oxide powders, but further improvements in their performance are required. is desired. As a method for manufacturing this magnetic metal powder, a method is conventionally known in which iron oxide, iron oxyhydroxide, or a mixture of these containing other metals (Co, Ni, etc.) is heated and reduced using a reducing gas. (For example, Special Publication No. 35-3862, Special Publication No. 53-1
No. 1512, Japanese Patent Publication No. 1983-22838, Japanese Patent Publication No. 1983-
Publication No. 122663).

しかしながら、この方法は還元時に粉末粒子間で焼結し
て形状変化が生じ、保磁力が低下するという欠点がある
。このため、これら粉末の表面にあらかじめ硅素化合物
またはアルミ化合物の被膜を形成した後、加熱還元する
方法が知られているが、これら粉末と硅素化合物または
アルミ化合物との親和性が低いために、被着量が少いと
被膜が粒子全体で均一とならず、このため十分な焼結防
止を達成出来ず、また、被着量が多いと原料粉末の還元
が不十分となり、飽和磁気量および保磁力が低下すると
いう欠点がある。本発明者らはホウ酸エステルおよびシ
リコーンワニスを被還元物に被着後、加熱還元すると上
述の欠点を克服し、すぐれた磁気特性の強磁性金属粉末
が得られることを既に見出したが、更に検討を重ねた結
果、これら粉末粒子表面にMg) Ca)Br、、Ba
などの元素を含むナフテン酸塩とホウ酸エステルとの混
合物を被着させた後加熱還元すると、保磁力と飽和磁気
量の双方共に高い強磁性金属粉末が容易に得られること
が判り、本発明をなしたものである。
However, this method has the disadvantage that during reduction, the powder particles are sintered and their shape changes, resulting in a decrease in coercive force. For this reason, a method is known in which a film of a silicon compound or aluminum compound is formed on the surface of these powders in advance and then thermally reduced, but since the affinity between these powders and the silicon compound or aluminum compound is low, If the coating amount is small, the coating will not be uniform over the entire particle, and therefore sufficient prevention of sintering will not be achieved.If the coating amount is large, the reduction of the raw material powder will be insufficient, and the saturation magnetic amount and coercive force will decrease. It has the disadvantage that it decreases. The present inventors have already found that by applying boric acid ester and silicone varnish to the object to be reduced and then reducing it by heating, the above-mentioned drawbacks can be overcome and a ferromagnetic metal powder with excellent magnetic properties can be obtained. As a result of repeated studies, we found that the surface of these powder particles contains Mg)Ca)Br,,Ba
It has been found that a ferromagnetic metal powder with both high coercive force and saturation magnetism can be easily obtained by depositing a mixture of naphthenate and boric acid ester containing elements such as and then heating and reducing the mixture. This is what was done.

以下に更に詳細に本発明を説明する。The present invention will be explained in more detail below.

本発明で使用される原料粉末としてはα一FeOOHな
どのオキシ水酸化鉄もしくは、α一Fe2O3などの酸
化鉄またはそれらに従来法と同様にCO,.Niなどの
他の金属を含有せしめたものが挙げられるが、これらの
粉末は高保磁力を得るために針伏のものが適当である。
The raw material powders used in the present invention include iron oxyhydroxides such as α-FeOOH, iron oxides such as α-Fe2O3, and CO and . Examples include powders containing other metals such as Ni, but these powders are suitably needle-resistant in order to obtain a high coercive force.

上記原料粉末に付着処理するナフテン酸塩としては、M
g,.Ca,.SrおよびBa原子のいずれか1種を含
むものまたはその様なナフテン酸塩の2種以上の混合物
があげられる。
The naphthenate to be attached to the raw material powder is M
g,. Ca,. Examples include those containing either one of Sr and Ba atoms, or a mixture of two or more such naphthenates.

ナフテン酸塩の使用量は、原料オキシ水酸化物または酸
化物中の金属原子に対してMg,.Ca,.Srおよび
Ba等の原子数が0.1〜10at%となる範囲が好適
である。付着量が少いと粒子間の焼結を十分抑えること
が出来ず、多すぎると還元が不十分となり、保磁力が低
下することになる。原料粉末にナフテン酸塩と共に付着
処理するホウ酸エステルとしてはホウ酸トリメチル、ホ
ウ酸トリエチル、ホウ酸トリブチル、ホウ酸トリフエニ
ル、ホウ酸トリ−n−オクタデシル、ホウ酸トリ一0−
トリル等が好適なものとして挙げられ、その他にも適宜
選択可能である。
The amount of naphthenate used is Mg, . Ca,. A range in which the number of atoms of Sr, Ba, etc. is 0.1 to 10 at% is suitable. If the amount of adhesion is small, sintering between particles cannot be sufficiently suppressed, and if it is too large, reduction will be insufficient and the coercive force will decrease. The boric acid esters to be attached to the raw material powder together with the naphthenate include trimethyl borate, triethyl borate, tributyl borate, triphenyl borate, tri-n-octadecyl borate, and tri-0-borate.
Trill and the like are preferred, and others can be selected as appropriate.

これらホウ酸工スチルの使用量は被還元物中の金属原子
に対してホウ素原子0.1〜5at%となる範囲が好適
である。使用量が少いとホウ酸エステルの添加効果はほ
とんどみられず、多すぎると還元が不十分となり保磁力
が低下することになる。本発明の粉末を製造するには前
記特定のナフテン酸塩とホウ酸エステルとを適当な有機
溶媒に溶解し、その溶液を用いて原料粉末を湿潤または
浸漬し、次いで、溶媒を蒸散もしくは済過した後、還元
性ガス雰囲気中で加熱還元すれば良い。
The amount of these still boric acids used is preferably in the range of 0.1 to 5 at% of boron atoms based on the metal atoms in the product to be reduced. If the amount used is too small, the effect of adding boric acid ester will hardly be seen, and if it is too large, the reduction will be insufficient and the coercive force will decrease. To produce the powder of the present invention, the specific naphthenate and boric acid ester are dissolved in a suitable organic solvent, the raw material powder is wetted or immersed in the solution, and then the solvent is evaporated or evaporated. After that, heating and reduction may be performed in a reducing gas atmosphere.

ナフテン酸塩およびホウ酸エステルを共に溶解する適当
な有機溶媒としては、トルエン、キシレン、トリクロル
エタン等の溶媒が挙げられる。溶媒を加熱蒸散させる場
合の温度は溶媒の種類によつて異なるが、50〜100
℃の範囲が好ましい。以上のようにしてMg,.Ca,
.Sr,.Ba等のナフテン酸塩とホウ酸エステルとを
付着処理した被還元物を加熱還元する温度範囲は300
〜500℃が好適であり、還元温度が低すぎるξ還元時
間を長時間必要とするだけでなく、還元が不十分となり
、飽和磁気量および保磁力が低下する。還元温度が高す
ぎると粒子間で焼結して保磁力が低下する。本発明方法
は以上の如きもので、A族に属するMg.Ca,.Sr
,.Ba等の元素を含む化合物のうち特にナフテン酸塩
と、ホウ酸を含む化合物のうちの特にホウ酸エステルと
を組合せて併用することによつて、保磁力および飽和磁
気量の双方が共に高い値を示す強磁性金属粉末を製造す
ることに成功した。
Suitable organic solvents that dissolve both the naphthenate and the borate include toluene, xylene, trichloroethane, and the like. The temperature when heating and evaporating the solvent varies depending on the type of solvent, but is 50 to 100 ℃.
A range of 0.degree. C. is preferred. As described above, Mg, . Ca,
.. Sr. The temperature range for heating and reducing the reductant treated with naphthenic acid salts such as Ba and boric acid ester is 300°C.
~500° C. is preferable, and the reduction temperature is too low. ξ Not only does the reduction require a long time, but the reduction becomes insufficient and the saturation magnetic amount and coercive force decrease. If the reduction temperature is too high, particles will sinter and the coercive force will decrease. The method of the present invention is as described above. Ca,. Sr.
、. By using a combination of compounds containing elements such as Ba, especially naphthenates, and compounds containing boric acid, especially boric acid esters, both coercive force and saturation magnetism can both be high. We succeeded in producing ferromagnetic metal powder that exhibits

従来、特開昭51−25454、同51一25455、
同53−1101001同55−154501号公報等
にA族元素を含む化合物によつて還元時の焼結防止を図
る技術が開示され、また特開昭52−72354号公報
にホウ酸またはホウ酸塩によつて同様の焼結防止を図る
ことが開示されている。
Previously, JP-A No. 51-25454, JP-A No. 51-25455,
No. 53-1101001, No. 55-154501, etc. disclose a technique for preventing sintering during reduction using a compound containing a group A element, and Japanese Patent Application Laid-Open No. 52-72354 discloses a technique for preventing sintering during reduction using a compound containing a group A element. discloses similar measures to prevent sintering.

しかし、これらの技術では、磁性金属に対するA族元素
またはホウ素の付着量を増加すると、その原子比(At
%)である程度の高さまでの増加では、得られた金属粉
末の保磁力(Hc)は次第に高まるものの、飽和磁気量
(σm)は低下してしまい、しかも付着量がある程度以
上では保磁力の増加は頭打ちとなつて、飽和磁気量の低
下のみとなる。この点は、本発明のナフテン酸塩または
ホウ酸エステルの個々の場合にも共通する。これに対し
て、両者を組合せて併用した場合には、夫々の一方の単
用では頭打ちとなつた磁気特性が、他方を併用すること
によつて顕著に向上される。
However, in these techniques, when the amount of group A elements or boron attached to the magnetic metal is increased, the atomic ratio (At
%), the coercive force (Hc) of the obtained metal powder gradually increases, but the saturation magnetic quantity (σm) decreases, and if the amount of adhesion exceeds a certain level, the coercive force increases. reaches a plateau, and only the saturation magnetic quantity decreases. This point is common to each naphthenate or boric acid ester of the present invention. On the other hand, when both are used in combination, the magnetic properties, which reach a plateau when one of them is used alone, are significantly improved by using the other in combination.

付着量が少い場合には併用しても付着量の和に相当する
程度の改善しか認められないことから判断すると、この
現象は驚くべき予想外のことであつて、磁気特性の改善
策としては極めて効果的である。この現象がどの様な理
由によつて生じるかは必ずしも明白ではないが、金属粉
末粒子の表面被覆が多成分セラミツク被膜となることに
よつて性質が一変し、金属粉末粒子の針状形を極めて良
好のものとすると推測される。
Judging from the fact that when the amount of adhesion is small, even when used together, the improvement is only equivalent to the sum of the amounts of adhesion, this phenomenon is surprising and unexpected. is extremely effective. It is not necessarily clear why this phenomenon occurs, but when the surface coating of the metal powder particles becomes a multi-component ceramic coating, the properties change completely and the acicular shape of the metal powder particles becomes extremely large. It is presumed to be in good condition.

また本発明はMg,.Ca,.Sr,.Ba等のナフテ
ン酸塩およびホウ酸エステルが共に有機溶媒に可溶であ
ることに基き、オキシ水酸化鉄または酸化鉄の粉末を両
成分の混合有機溶液で一度に処理可能なため極めて簡単
である。
Further, the present invention relates to Mg, . Ca,. Sr. Based on the fact that naphthenates such as Ba and borate esters are both soluble in organic solvents, iron oxyhydroxide or iron oxide powder can be treated at once with a mixed organic solution of both components, making it extremely simple. .

しかも、水系処理とは無縁であるから、溶媒を蒸散して
乾燥した後の粉末の2次粒子間における凝集力が水系処
理のものに比して小さいので、かさ密度が小さくまた粒
子に作用する歪力が小さい。このため還元時において還
元性ガスが2次粒子間の間隙を通過し易く、その結果還
元効率が良好で粒子間焼結が少くなり、また粒子形状の
崩れも防止される。従つて元の粉末粒子形伏や粒度分布
がそのまま金属粉末の粒子形伏および粒度分布として維
持されると共に均一な還元ができる。本発明方法によつ
て製造された金属粉末の磁気特性が従来のものに比して
優れている点は、この様な理由からも首肯され、この様
な磁性粉末を用いて製造した磁気記録テープは、高出力
、高SN比の優れたものとなる。
Moreover, since it is not related to water-based processing, the cohesive force between the secondary particles of the powder after evaporating the solvent and drying is smaller than that of water-based processing, so the bulk density is small and it acts on the particles. Low strain force. Therefore, during reduction, the reducing gas easily passes through the gaps between the secondary particles, resulting in good reduction efficiency, less interparticle sintering, and prevention of deformation of particle shape. Therefore, the original powder particle shape and particle size distribution can be maintained as they are as the particle shape and particle size distribution of the metal powder, and uniform reduction can be achieved. For these reasons, it is accepted that the magnetic properties of the metal powder produced by the method of the present invention are superior to conventional ones, and the magnetic recording tape produced using such magnetic powder is This results in excellent high output and high signal-to-noise ratio.

なお、本発明と同様な効果をもたらすA族元素を含む化
合物としては2−エチルヘキサン酸、P−アミノサリチ
ル酸、ステアリン酸等の塩も挙げ得るが、本発明のナフ
テン酸塩は、工業的に入手容易でありまた取扱いにも問
題がないので、とりわけ有効である。
Note that salts of 2-ethylhexanoic acid, P-aminosalicylic acid, stearic acid, etc. can also be mentioned as compounds containing Group A elements that produce effects similar to those of the present invention; It is particularly effective because it is easy to obtain and there are no problems in handling.

以下に実施例等をもつて本発明を具体的に説明する。The present invention will be specifically described below with reference to Examples.

参考例 1 長軸約0.6μm1軸比:長軸/短軸−10/1の針状
ゲータイト(α−FeOOH)109をゲータイト中の
Fe原子数に対して0.5〜4原子パーセントのA族元
素(Ca,.Sr,.Ba等)を含むナフテン酸カルシ
ウムその他のナフテン酸塩の種々のトルエン溶液にけん
だくし、撹拌機でよく分散した後、約80℃の温度で溶
媒を蒸散し、川A族元素を含むナフテン酸塩が付着した
粉末を得た。
Reference example 1 Acicular goethite (α-FeOOH) 109 with a major axis of approximately 0.6 μm and a uniaxial ratio of major axis/minor axis of −10/1 is mixed with A of 0.5 to 4 atomic percent based on the number of Fe atoms in the goethite. After suspending calcium naphthenate and other naphthenate salts containing group elements (Ca, .Sr, .Ba, etc.) in various toluene solutions and thoroughly dispersing them with a stirrer, the solvent is evaporated at a temperature of about 80°C. , a powder to which naphthenate containing group A elements was attached was obtained.

この粉末をニツケル製ボートに入れ、管伏電気炉に装置
した。次いで、窒素ガスで空気を置換後、流量41/M
inの水素ガス中で温度を上昇し、400′Cで2時間
の還元を行なつて金属鉄粉末とした。これを室温に下げ
、窒素ガス雰囲気下でトルエン中に浸漬した。次いでろ
過法でトルエンを取り除いた後、風乾して金属鉄粉末を
空気中に取出した。この様にして得た各種の金属鉄粉末
の特性を第1表に示す。参考例 2 参考例1においてA族元素を含むナフテン酸塩のトルエ
ン溶液の代わりに、ゲータイト中のFe原子数に対して
0.4〜3原子パーセントのB元素を含むホウ酸トリエ
チルのトルエン溶液を用いた以外は参考例1と同様な方
法で金属鉄粉末を作製した。
This powder was placed in a nickel boat and placed in a tube electric furnace. Then, after replacing the air with nitrogen gas, the flow rate was 41/M.
The temperature was raised in a hydrogen gas atmosphere of 400° C., and reduction was performed at 400'C for 2 hours to obtain metallic iron powder. This was cooled to room temperature and immersed in toluene under a nitrogen gas atmosphere. Next, toluene was removed by filtration, followed by air drying and the metal iron powder was taken out into the air. Table 1 shows the properties of the various metallic iron powders obtained in this way. Reference Example 2 In Reference Example 1, instead of the toluene solution of naphthenate containing Group A elements, a toluene solution of triethyl borate containing 0.4 to 3 atomic percent of B element based on the number of Fe atoms in goethite was used. Metallic iron powder was produced in the same manner as in Reference Example 1 except that the powder was used.

得られた各種の金属鉄粉末の特性を第1表に示す。比較
例 1 実施例1においてA族元素を含むナフテン酸塩の代わり
にゲータイト中のFe原子数に対して2〜4原子パーセ
ントのCO元素を含むナフテン酸コバルトを用いた以外
は実施例1と同様な方法で金属鉄粉末を作製した。
Table 1 shows the properties of the various metallic iron powders obtained. Comparative Example 1 Same as Example 1 except that cobalt naphthenate containing 2 to 4 atomic percent of CO element based on the number of Fe atoms in goethite was used instead of naphthenate containing Group A elements in Example 1. Metallic iron powder was produced using a unique method.

得られた金属鉄粉末の特性を第1表に示す。比較例 2 実施例1においてゲータイトにA族元素を含むナフテン
酸塩を用いた表面処理を施さない以外は実施例1と同様
な方法によつて金属鉄粉末を得た。
Table 1 shows the properties of the obtained metallic iron powder. Comparative Example 2 Metallic iron powder was obtained in the same manner as in Example 1 except that goethite was not subjected to surface treatment using a naphthenate containing a Group A element.

得られた粉末の特性を第1表に示す。第1表は、上述の
参考例1、2および比較例1、2で得た金属鉄粉末を、
ゲータイトの表面処理で使用したナフテン酸金属塩また
はホウ酸エステルの種類と使用量により分類し、その各
金属鉄粉末の磁気特性即ち保磁力Hc、飽和磁化量σm
および角型比σr/σmを振動試料型磁力計を用いて最
大印加磁界10K0eで測定した結果を示したものであ
る。
The properties of the obtained powder are shown in Table 1. Table 1 shows the metallic iron powders obtained in Reference Examples 1 and 2 and Comparative Examples 1 and 2 mentioned above.
Classified according to the type and amount of naphthenic acid metal salt or boric acid ester used in the surface treatment of goethite, and the magnetic properties of each metal iron powder, namely coercive force Hc and saturation magnetization σm
The graph shows the results of measuring the squareness ratio σr/σm using a vibrating sample magnetometer at a maximum applied magnetic field of 10K0e.

実施例 1 参考例1において、A族元素を含むナフテン酸塩のトル
エン溶液の代わりにゲータイト中のFe原子数に対して
0.2〜4原子パーセントのA族元素を含むナフテン酸
塩と0.5〜1.5原子パーセントのホウ素原子を含む
ホウ酸エステルの種々の混合トルエン溶液を用いた以外
は、参考例1と同様な方法によつて種々の金属鉄粉末を
作製した。
Example 1 In Reference Example 1, instead of the toluene solution of a naphthenate containing a group A element, a naphthenate containing a group A element of 0.2 to 4 atomic percent based on the number of Fe atoms in goethite and a naphthenate containing a group A element of 0.2 to 4 atomic percent based on the number of Fe atoms in goethite were used. Various metallic iron powders were prepared in the same manner as in Reference Example 1, except that various mixed toluene solutions of boric acid esters containing 5 to 1.5 atomic percent of boron atoms were used.

得られた各粉末の特性を第2表に示す。比較例 3実施
例1においてA族元素を含むナフテン酸塩の代わりにゲ
ータイト中のFe原子数に対して2〜4原子パーセント
のCO,.Ni,.Zn,.PbおよびMnを夫々含む
ナフテン酸塩を用いた以外は実施例1と同様な方法で、
種々の金属鉄粉末を作製した。
Table 2 shows the characteristics of each powder obtained. Comparative Example 3 In place of the naphthenate containing Group A elements in Example 1, 2 to 4 atomic percent of CO, . Ni,. Zn,. In the same manner as in Example 1 except that naphthenic acid salts containing Pb and Mn were used,
Various metallic iron powders were prepared.

得られた各粉末の特性を第3表に示す。比較例 4参考
例1においてナフテン酸塩のトルエン溶液を用いず、ホ
ウ酸ナトリウムの水溶液のみを使用した以外は参考例1
と同様な方法で金属鉄粉末を作製した。
Table 3 shows the characteristics of each powder obtained. Comparative Example 4 Reference Example 1 except that the toluene solution of naphthenate was not used in Reference Example 1, and only an aqueous solution of sodium borate was used.
Metallic iron powder was prepared in the same manner as above.

その粉末の特性を第3表に示す。第2表および第3表は
、上述の実施例1および比較例3、4で得た各種金属鉄
粉末をゲータイトの表面処理剤の種類と使用量により分
類し、それらの磁気特性と併せて示したものである。ま
た、これら参考例1、2および実施例1で得られた金属
鉄粉末の持つ磁気特性のうち、保磁力(Hc)と飽和磁
気量(σm)の値を、夫々を縦横軸とする座標上にプロ
ツトしてグラフを書くと第1、2および3図の通りであ
る。
The properties of the powder are shown in Table 3. Tables 2 and 3 classify the various metallic iron powders obtained in Example 1 and Comparative Examples 3 and 4 above according to the type and amount of goethite surface treatment agent used, and show their magnetic properties. It is something that In addition, among the magnetic properties of the metallic iron powder obtained in Reference Examples 1 and 2 and Example 1, the values of coercive force (Hc) and saturation magnetic quantity (σm) are plotted on coordinates with the vertical and horizontal axes, respectively. Figures 1, 2 and 3 are plotted and graphed.

ナフテン酸塩の使用に着目する場合、それにホウ酸エス
テルを併用すると、得られた金属鉄粉末の磁気特性を矢
印方向に著しく向上することが示される。
When focusing on the use of naphthenic acid salts, it is shown that when used in combination with boric acid esters, the magnetic properties of the obtained metallic iron powder are significantly improved in the direction of the arrow.

以上の結果から明らかなように本発明による金属磁性粉
は、比較例のものに較べ著しく大きな保磁力を有し、な
おかつ優れた飽和磁気量を持つため、高密度磁気記録媒
体の記録素子として優れた特性を有する。
As is clear from the above results, the metal magnetic powder according to the present invention has a significantly larger coercive force than that of the comparative example, and has an excellent amount of saturation magnetism, so it is excellent as a recording element for high-density magnetic recording media. It has the following characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図および第3図は、参考例1、2および実
施例1で得られた金属鉄粉末の磁気特性を示すグラフで
、縦軸が保磁力H9(0e)を表わし、横軸が飽和磁気
量σm(Emu/9を表わす。
Figures 1, 2, and 3 are graphs showing the magnetic properties of the metallic iron powders obtained in Reference Examples 1 and 2 and Example 1, in which the vertical axis represents the coercive force H9 (0e), and the horizontal axis represents the coercive force H9 (0e). The axis represents the saturation magnetic quantity σm (Emu/9).

Claims (1)

【特許請求の範囲】[Claims] 1 オキシ水酸化鉄もしくは酸化鉄を主要成分とする粉
末を、Mg、Ca、SrおよびBaの少くとも1種から
なるナフテン酸塩とホウ酸エステルとが有機溶媒に溶解
された溶液で湿潤ないし浸漬させ、次いで溶媒を蒸散も
しくは濾過した後、還元性ガス雰囲気中で加熱還元する
ことを特徴とする、強磁性金属粉末の製造方法。
1 Wetting or immersing a powder containing iron oxyhydroxide or iron oxide as a main component in a solution in which a naphthenate and a boric acid ester consisting of at least one of Mg, Ca, Sr, and Ba are dissolved in an organic solvent. A method for producing a ferromagnetic metal powder, the method comprising: evaporating or filtering the solvent, and then reducing the powder by heating in a reducing gas atmosphere.
JP56045434A 1981-03-30 1981-03-30 Method for producing ferromagnetic metal powder Expired JPS5919964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56045434A JPS5919964B2 (en) 1981-03-30 1981-03-30 Method for producing ferromagnetic metal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56045434A JPS5919964B2 (en) 1981-03-30 1981-03-30 Method for producing ferromagnetic metal powder

Publications (2)

Publication Number Publication Date
JPS57161006A JPS57161006A (en) 1982-10-04
JPS5919964B2 true JPS5919964B2 (en) 1984-05-10

Family

ID=12719197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56045434A Expired JPS5919964B2 (en) 1981-03-30 1981-03-30 Method for producing ferromagnetic metal powder

Country Status (1)

Country Link
JP (1) JPS5919964B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157204A (en) * 1983-02-23 1984-09-06 Chisso Corp Manufacture of ferromagnetic metallic fine particle
JPS59227730A (en) * 1983-06-06 1984-12-21 Ube Ind Ltd Preparation of magnetic powder
JPH0831366B2 (en) * 1987-07-01 1996-03-27 花王株式会社 Ferromagnetic metal powder and method for producing the same
JPH07272913A (en) * 1994-03-30 1995-10-20 Kawasaki Teitoku Kk Permanent magnet material, and its manufacture and permanent magnet
US8911663B2 (en) 2009-03-05 2014-12-16 Quebec Metal Powders, Ltd. Insulated iron-base powder for soft magnetic applications

Also Published As

Publication number Publication date
JPS57161006A (en) 1982-10-04

Similar Documents

Publication Publication Date Title
US4475946A (en) Ferromagnetic metal particles of iron alloyed with Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Si, P, Mo, Sn, Sb and Ag coated with mono- or dialkoxysilanes
JPH0544162B2 (en)
US4318735A (en) Process for preparing magnetic particles with metallic region therein, and magnetic particles prepared by the process
JPS5919964B2 (en) Method for producing ferromagnetic metal powder
JPS608605B2 (en) Oxidation treatment method for metal magnetic powder for magnetic recording media
JPS6242337B2 (en)
US4369076A (en) Process for producing magnetic metal powder
US4604296A (en) Process for production of magnetic recording elements
JPS61196502A (en) Magnetic material and manufacture thereof
EP0433894B1 (en) Process for producing magnetic metal powder for magnetic recording
JP3337046B2 (en) Spindle-shaped metal magnetic particles containing cobalt and iron as main components and method for producing the same
US3830743A (en) Ceramic permanent magnet
US4497654A (en) Ferromagnetic metallic powders useful for magnetic recording and processes for producing said metallic powders
JPS61216306A (en) Magnetic metal powder and manufacture thereof
JP2008084418A (en) Magnetic recording medium and method for manufacturing the same
JPH0610865B2 (en) Magnetic recording medium
JPS5914085B2 (en) Method for producing ferromagnetic metal powder
JPH03253505A (en) Production of ferromagnetic metal powder
JPS5932881B2 (en) Method for producing ferromagnetic metal powder
JPH0623402B2 (en) Method for producing metallic iron particle powder or alloy magnetic particle powder mainly composed of iron
JP3242102B2 (en) Magnetic powder and method for producing the same
JPH02162703A (en) Manufacture of metallic magnetic powder
JPH0643601B2 (en) Method for producing metallic iron particle powder or alloy magnetic particle powder mainly composed of iron
JPH02205601A (en) Ferromagnetic metal powder
JPS62156209A (en) Ferromagnetic metallic powder