JPH03225983A - 半導体レーザ - Google Patents

半導体レーザ

Info

Publication number
JPH03225983A
JPH03225983A JP2077790A JP2077790A JPH03225983A JP H03225983 A JPH03225983 A JP H03225983A JP 2077790 A JP2077790 A JP 2077790A JP 2077790 A JP2077790 A JP 2077790A JP H03225983 A JPH03225983 A JP H03225983A
Authority
JP
Japan
Prior art keywords
layer
substrate
active layer
gap
lattice constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2077790A
Other languages
English (en)
Inventor
Isao Hino
日野 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2077790A priority Critical patent/JPH03225983A/ja
Publication of JPH03225983A publication Critical patent/JPH03225983A/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/021Silicon based substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32325Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm red laser based on InGaP

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は可視光半導体レーザに関するものであり、特に
発振波長の短波長化、低閾値化、温度特性の改善および
、レーザ駆動回路、受光素子、受光素子駆動回路の集積
化に関する。
(従来の技術) AllGaInP系可視光半導体レーザは、従来GaA
s基板上にダブルヘテロ構造が形成され、GaAs基板
と格子整合するする組成の(AN 。
G a +−u) o、s I no、s Pをクラッ
ド層、(AΩlG’a 1−+ ) o、s I n 
O,5Pを活性層(0≦taU≦1)としている(例え
ばアイ・イ・イー・イー ジャーナル・オブ・クアンタ
ムφエレクトロニクス(IEIIJ Journal 
ofQuantun+Electronics)第QE
−23巻 p704−711(1987)に構造が示さ
れている)。発振波長は、G ao、5 I no、5
 Pを活性層とした場合には660〜690nn+、活
性層を(AI + Cya r−+ ) o、5lno
5Pとした場合には580 nm程度迄の短波長化が期
待できる。
(発明が解決しようとする課題) 前述の従来技術では、発振波長の短波長化、低閾値化、
温度特性の改善を行うために活性層とクラッド層のエネ
ルギ・ギャップ差E、を増すとき、クラッド層のA、Q
組成を増さねばならない。A、Q組成を増すと、ドーピ
ング効率が低下し、クラッド層の低ドーピング濃度化、
高抵抗化につながり、温度特性の改善や低閾値化が難し
くなる。また、GaAs上にレーザを形成しているので
、電子回路や受光素子を集積化するときに、これらをG
aAs上に形成させねばならない。良好な特性の電子回
路や受光素子をGaAs上に形成することはさ程容易で
はなく、形成できても電子回路や受光素子の単価がSi
基板に形成したものより高くなる。このように、GaA
s基板上に形成する半導体レーザには、発振波長短波長
化、低閾値化、温度特性の改善ならびに電子回路および
受光素子の集積化の容易化に関し改善すべき課題があっ
た。
この発明はそれらの課題の解決を目的とする。
(課題を解決するための手段) この発明の要旨は、Si基板上に、(Ajll 。
Ga、−x ) y  I nl−y P (0≦x≦
1.0≦y≦1)を活性層、(l z Ga1−+ )
 w I nl−、p(0≦z≦1,0≦w≦1)をク
ラッド層とするダブルヘテロ構造(D H)を有する構
造により、前述の従来技術に残された課題を過解決する
ことにある。特に活性層をGav I J−vP (0
≦v≦1)、クラッド層をGaPとして、さらに活性層
厚を200A以下とすることにより、改善の効果が著し
い。また、Si基板とダブルヘテロ構造との間に、A、
71 、 Ga+−v P (0≦v≦1)の格子定数
の値から連続的に又は、段階的にクラッド層の格子定数
の値に近づける層を有することにより、本発明により生
じうる問題を除去する。
各層形成のための結晶成長方法には、有機金属熱分解気
相エビタクシャル法(MOVPE法)、分子ビームエピ
タクシャル法(MBE法)、液相エピタクシャル法(L
PE法)、ハロゲン輸送気相エビタクシャル法(HT−
VPE法)など各種の方法が適用でき、本発明は結晶の
成長方法に制限されることな〈実施できる。
(作用) 第4図に、(All ! Ga1−x ) y I n
l−y Pのエネルギギャップと格子定数の関数を示す
。実線で囲まれた領域で全組成範囲が示される。Stの
格子定数(a s、= 5.43A )も併せて示す。
図中斜線部は間接遷移領域で、無地の部分は直接遷移領
域である。図より、同じエネルギギャップ値でも格子定
数の小さいとき程へρ組成を減らすことのできることが
わかる。前述のようにドーピング特性はAβ組成の小さ
いことが望ましい。ところが、格子定数を小さくすると
、GaAsの格子定数からのずれが大きくなり、ミスフ
ィツト転位が発生し、結晶の品質を損う。ところで、S
tとGaPの格子定数を比較すると、Stが5.43A
、 G a Pが5.45Aなので、その格子不整合度
は3.7 Xl0−’と非常に小さい。そこで、Si基
板上にGaPをクラッド層、Gao、、 I no、5
 pを活性層とすれば、AIを用いずにダブルヘテロ構
造が形成され、発振波長も660〜690nI11のも
のが得られる。
また、GaPをクラッド層、G ao、6 I n、4
Pを活性層とすると発振波長620 nm程度のものが
、/lを用いずに得られる。レーザのDH(ダブルヘテ
ロ構造)の場合活性層厚は0.1μm以下と薄くするの
で、活性層のみ格子定数がずれていても、素子特性には
それ程の悪影響を及ぼさない。活性層厚を<200Aの
薄膜量子井戸構造とすると、格子不整合の影響がさらに
軽減される゛ことに加えて、量子効果が得られる。また
、Si基板とDHとの間に、GaPの格子定数から、格
子定数を連続的に或いは段階的に減じてゆけば、クラッ
ド層としてより活性層の格子定数に近い組成のものを用
いることがき、素子特性や信頼性は更に向上する。
(実施例) 第1図に本発明の第1の実施例を示す。この実施例の製
造においては半導体層の成長はMOVPE法により行な
った。n型Si基板1上に厚さ1μmのStドープn−
GaPクラッド層2、厚さ0.08μmのアンドープG
 a O6,I n o、4.P活性層3、厚さ1μm
のZnドープp−GaPクラッド層4をMOVPE法に
より成長よる。この上にSiO2膜5を形成し、電流注
入用ストライプ6を形成するために、フォトリソグラフ
ィ法などにより、ストライプ状にSiO2を選択的に除
去する。最後にp型用電極7としてAuZn合金などを
、n型用電極8としてAuGe合金などを、蒸着法等に
よりそれぞれ耐着させる。活性層の組成は所望のレーザ
発振波長に応じて変えられる。
第2の実施例は、第1の実施例と同じ組成であって、活
性層3の厚さを100A程度と薄くしたものである。
第3の実施例を第1図および第2図を参照して説明する
。第2図は第3の実施例における層の形成方向の格子定
数プロファイルを示す。第3の実施例の製造におい、n
−5t基板上に組成を連続的に変えた1μ市厚のn−G
a、In+□P層(O≦x≦1)を成長する。St基板
に接する部分をGaPとし、連続的にInの量を増し、
In組成1−x−0,1まで増やす。この上にGao7
Ino、3Pと格子整合するn−(AΩo2Gao、s
 ) 0.7 I no、g Pクラッド層を1μm成
長する。これは、Gao、7 I no、i Pよりも
約80 meVエネルギギャップが大きい。次に厚さ1
00 のアンドープ活性層Ga(1,5I no、5 
Pを成長する。さらにこの上にp−(A11o2Gao
、s ) 、、、 I n。、、 Pクラッド層を成長
させる。このあと、第1の実施例と同じ手順で第1図と
同様の素子構造をとる。
以下に述べた第1〜第3の実施例において、結晶成長は
MOVyPE以外の方法、MBE法、LPE法、HT−
VPE法でもよく、その方法によらず本発明は実現でき
る。また、各層の具体的な組成は、所望の発振波長に応
じて実施例の値に限らず各種の値にきめる。Aj?組成
の増加による結晶品質の劣化と、格子不整合による結晶
品質の劣化がともに著しくならない最適な組成がある。
第4の実施例を第3図に示す。第1〜第3の実施例によ
るレーザと受光素子および電気回路を集積化した模式的
平面図である。まず、n−8t基板9上に、5μm程度
の段差15をつけ、レーザ10を形成する領域のSt基
板表面をエツチングなどにより削る。レーザを形成する
ための成長を全面に行う。ドライエツチング法などによ
りレーザ端面、側面を形成し、第3図のようにレーザ部
10のみ残し、他を表面からとりさる。レーザの光が図
中矢印14の方向に出射するように電流注入ストライプ
を形成する。続いて、St基板上に受光素子となるpi
nフォトダイオード11、フォトダイオード駆動回路1
2、レーザ駆動回路13をイオン注入やフォトリングラ
フィ法を用いて形成する。こうして、ADGalnP系
レーザ並びにSi−受光素子および電気回路を1つのS
t基板9の上に集積できる。
(発明の効果) このように本発明の構造を採ることにより、ApGa 
I nP系材料において、高結晶品質を維持したまま、
低閾値でかつ良好な温度特性の可視光レーザが得られる
。特に発振波長が短くなったとき、この効果が大きい。
また、Siの受光素子および電子回路と、ApGaln
P系レーザとが容易な製造工程でモノリシックに集積で
きる点は本発明の構造の半導体レーザの大きな利点であ
る。
【図面の簡単な説明】
第1図は本発明の第1及び第2の実施例を示す模式的斜
視図、第2図は本発明の第3の実施例における層形成方
向の格子定数プロファイルを示す図、第3図は本発明の
第4の実施例を示す図、第4図はA11GaInP系半
導体の格子定数とエネルギギャップの関係を示す図であ
る。 1・・・n−8t基板、2・・・n−GaPクラッド層
、3・・・アンドープG a 0.55I n 0.4
SP活性層、4・・・p−GaPクラッド層、5・・・
5in2膜、6・・・電流注入ストライプ、7・・・p
電極、8・・・n電極。 0

Claims (4)

    【特許請求の範囲】
  1. (1)(Al_xGa_1_−_x)_yIn_1_−
    _yP(0≦x≦1、0≦y≦1)を活性層として、(
    Al_zGa_1_−_z)_wIn_1_−_wP(
    0≦z≦1、0≦w≦1)をクラッド層とするダブルヘ
    テロ構造がSi基板上に形成されてなることを特徴とす
    る半導体レーザ。
  2. (2)Ga_yIn_1_−_yP(0≦y≦1)を活
    性層とし、GaPをクラッド層とすることを特徴とする
    請求項1に記載の半導体レーザ。
  3. (3)活性層の厚さを200Å以下としたことを特徴と
    する請求項1又は2に記載の半導体レーザ。
  4. (4)Si基板とダブルヘテロ構造との間に、Al_v
    Ga_1_−_vP(0≦v≦1)の格子定数の値から
    連続的または段階的にクラッド層の格子定数の値に近づ
    ける層を有することを特徴とする請求項1乃至3に記載
    の半導体レーザ。
JP2077790A 1990-01-31 1990-01-31 半導体レーザ Pending JPH03225983A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2077790A JPH03225983A (ja) 1990-01-31 1990-01-31 半導体レーザ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2077790A JPH03225983A (ja) 1990-01-31 1990-01-31 半導体レーザ

Publications (1)

Publication Number Publication Date
JPH03225983A true JPH03225983A (ja) 1991-10-04

Family

ID=12036579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2077790A Pending JPH03225983A (ja) 1990-01-31 1990-01-31 半導体レーザ

Country Status (1)

Country Link
JP (1) JPH03225983A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0918087A (ja) * 1995-06-27 1997-01-17 Nec Corp マルチビーム半導体レーザ装置
JP2001127339A (ja) * 1999-10-25 2001-05-11 Kyocera Corp 半導体発光素子

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0918087A (ja) * 1995-06-27 1997-01-17 Nec Corp マルチビーム半導体レーザ装置
JP2001127339A (ja) * 1999-10-25 2001-05-11 Kyocera Corp 半導体発光素子

Similar Documents

Publication Publication Date Title
US5010556A (en) A stripe-shaped heterojunction laser with unique current confinement
EP0232431A1 (en) Semiconductor device
US4932033A (en) Semiconductor laser having a lateral p-n junction utilizing inclined surface and method of manufacturing same
JPS6384186A (ja) トランスバ−ス・ジャンクション・ストライプ・レ−ザ
JP2969979B2 (ja) オプトエレクトロニクス部品用の半導体構造
US5271028A (en) Semiconductor laser device
US20070053396A1 (en) Semiconductor lasers utilizing AlGaAsP
US6639926B1 (en) Semiconductor light-emitting device
JP2882335B2 (ja) 光半導体装置およびその製造方法
JPH0775265B2 (ja) 半導体レーザおよびその製造方法
US5585306A (en) Methods for producing compound semiconductor devices
JPH03225983A (ja) 半導体レーザ
US6411637B1 (en) Semiconductor laser and method of manufacturing the same
JPS6144485A (ja) 半導体レ−ザ装置およびその製造方法
JPH0233987A (ja) リブ導波路型発光半導体装置
GB2202371A (en) Molecular beam epitaxy
JP2001077465A (ja) 半導体レーザ及びその製造方法
JPH07120838B2 (ja) 半導体発光装置
JP2876543B2 (ja) 半導体装置及びその製造法
JP3033333B2 (ja) 半導体レーザ素子
US5151912A (en) Semiconductor laser
JP3451818B2 (ja) 半導体レーザー
EP0396704A1 (en) Semiconductor light-emitting devices
JP2554192B2 (ja) 半導体レーザの製造方法
JPH11340585A (ja) 半導体発光装置