JPH03219680A - Manufacture of josephson junction - Google Patents

Manufacture of josephson junction

Info

Publication number
JPH03219680A
JPH03219680A JP2014694A JP1469490A JPH03219680A JP H03219680 A JPH03219680 A JP H03219680A JP 2014694 A JP2014694 A JP 2014694A JP 1469490 A JP1469490 A JP 1469490A JP H03219680 A JPH03219680 A JP H03219680A
Authority
JP
Japan
Prior art keywords
film
deposited
thickness
josephson junction
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014694A
Other languages
Japanese (ja)
Inventor
Hirosane Hoko
鉾 宏真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2014694A priority Critical patent/JPH03219680A/en
Priority to DE69026339T priority patent/DE69026339T2/en
Priority to EP90312322A priority patent/EP0428357B1/en
Priority to US07/611,789 priority patent/US5131976A/en
Priority to KR1019900018344A priority patent/KR940006778B1/en
Publication of JPH03219680A publication Critical patent/JPH03219680A/en
Priority to US08/227,698 priority patent/US5436471A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To prevent swelling of a film due to penetration of water and an organic solvent by producing a protection film on both surfaces on a functional macromolecular film. CONSTITUTION:An SiO film 4 as a protection film is deposited to a thickness of 300nm by a vacuum pressure of 1X10<-4>Torr within oxygen gas environment on the surface of a polyimide film 3 as a functional macromolecule. Then, the SiO film 4 as a protection film is deposited to a thickness of 300nm on the rear surface of the film in the similar manner. Then, an Nb 5 as a lower electrode is deposited to a thickness of 200nm on the polyimide film 3 by an argon(Ar) gas pressure of 10mmTorr by using the sputter method, an Al film is deposited to a thickness of 5nm by an Ar gas pressure of 10mmTorr, 10% O2 gas is introduced, for example, into Ar, it is oxidized for one hour by 0.7Torr, an AlOx film 6 is formed as a barrier layer, an Nb film 7 as an upper electrode is deposited to a thickness of 150nm in the similar manner as that described in the above, and an Nb/AlOx/Nb layer Josephson junction 8 is formed.

Description

【発明の詳細な説明】 〔概要〕 本発明は、非常に薄い機能性高分子フィルム上のジョセ
フソン接合素子の作製方法に関L5゜基板となる機能性
高分子フィルムの膨潤を防ぐことを目的とし。
[Detailed Description of the Invention] [Summary] The present invention relates to a method for manufacturing a Josephson junction element on a very thin functional polymer film, and its purpose is to prevent swelling of the functional polymer film serving as the L5° substrate. year.

機能性高分子フィルム上にジョセフソン接合素子を作製
する前に、あらかじめ、該機能性高分子フィルムの両面
に、水や有機溶剤による膨潤を防ぐ為の保護膜を被覆す
るように構成する。
Before fabricating a Josephson junction element on a functional polymer film, both sides of the functional polymer film are coated with a protective film to prevent swelling due to water or organic solvents.

〔産業上の利用分野) 本発明は、非常に薄い機能性高分子フィルム上のジョセ
フソン接合素子の作製方法に関する。
INDUSTRIAL APPLICATION FIELD OF THE INVENTION The present invention relates to a method for making Josephson junction devices on very thin functional polymer films.

ジョセフソン接合素子は、高速、低消費電力のスイッチ
ング素子であると同時に、非常に高感度の磁気センサー
としての特性を有する。
A Josephson junction device is a high-speed, low-power switching device, and at the same time has the characteristics of a highly sensitive magnetic sensor.

しかも、特にNb/A 10x/Nb接合では、スパッ
タ法で作製するため2種々の物質を基板として、その上
に作製が可能となる。
Moreover, especially in the case of Nb/A 10x/Nb junctions, since they are manufactured by sputtering, they can be formed on two different materials as substrates.

機能性高分子フィルム上にも作製が可能であるが9機能
性高分子フィルムは非常に柔らかいので容易に曲げられ
る。その為、従来のシリコン基板のような硬い基板上に
作製した場合に比べて、平坦な面取外の1例えば曲面等
にも容易に実装できる。
It can also be produced on a functional polymer film, but the 9-functional polymer film is very soft and can be easily bent. Therefore, compared to the case where it is fabricated on a hard substrate such as a conventional silicon substrate, it can be easily mounted on a flat surface, such as a curved surface.

従って、特に高感度の磁気センサー(SQUID)とし
て使用すれば1人体の計測などを行うのに有効となる。
Therefore, if used as a particularly highly sensitive magnetic sensor (SQUID), it will be effective for measuring a single human body.

磁気センサーは特に人体の発生する微弱な磁気を捉える
ことが可能であり9人体の測定を行うには1人体の表面
になるべく近づけて測定しなければならず1人体の表面
に沿って曲面上に磁気センサーを実装することが肝要で
あり、従って。
Magnetic sensors are particularly capable of capturing the weak magnetism generated by the human body, and in order to measure the human body, they must be placed as close to the surface of the human body as possible. It is therefore vital to implement a magnetic sensor.

ジョセフソン接合を薄い機能性高分子フィルム上に形成
することが望まれている。
It is desirable to form Josephson junctions on thin functional polymer films.

その際、感度をより向上させるためには、接合の寸法を
小さくする必要があり、そのためにはフィルムの寸法安
定性が重要となる。
At this time, in order to further improve the sensitivity, it is necessary to reduce the bonding dimensions, and for this purpose, the dimensional stability of the film is important.

〔従来の技術〕[Conventional technology]

第3図、第4図は従来例の説明図である。 FIGS. 3 and 4 are explanatory diagrams of conventional examples.

図において、16は機能性高分子フィルム、 17はN
b膜、18はAfOxlll、 t9はNb膜、20は
ジョセフソン接合、 21は第1のレジスト、22は第
2のレジスト、23はSiO膜、24は第3のレジスト
、25は窓。
In the figure, 16 is a functional polymer film, 17 is N
b film, 18 AfOxIII, t9 Nb film, 20 Josephson junction, 21 first resist, 22 second resist, 23 SiO film, 24 third resist, 25 window.

2GはNb配線、27は第4のレジストである。2G is an Nb wiring, and 27 is a fourth resist.

従来、薄い機能性高分子フィルム上にジョセフソン接合
を作製する場合には、第3図(a)に示すように、直接
9機能性高分子フィルム16上にNb/A I Ox/
Nb層からなるジョセフソン接合20を形成していた。
Conventionally, when creating a Josephson junction on a thin functional polymer film, as shown in FIG. 3(a), Nb/A I Ox/
A Josephson junction 20 made of an Nb layer was formed.

第3図(b)に示すように、 Nb/八NへOx/Nb
層を堆積後、第1のレジスト21によるパターニングを
行い9反応性イオンエツチング(RIE)により加工を
行って、上部電極のニオブ(Nb)膜19.バリア層の
アルミニウム酸化膜(A I Ox) 18を順次エツ
チングした後、第3図(C)に示すように、第2のレジ
ストによるパターニングを行って、下部電極のNb1l
17をエツチングする。次に、第3図(d)に示すよう
に、酸素(Ol)雰囲気中で酸化シリコン膜(Sin)
23を蒸着して絶縁膜を形成した後、第3図(e)に示
すように、 SiOM23上に第3のレジスト24をマ
スクとして窓25を開口し、第3図(f)に示すように
、 Nb膜を被覆後、第4のレジスト27をマスクとし
て、 Nb配線26を形成して、ジョセフソン接合を得
ていた。
As shown in Figure 3(b), Ox/Nb to Nb/8N
After depositing the layer, it is patterned using a first resist 21 and processed by reactive ion etching (RIE) to form a niobium (Nb) film 19 for the upper electrode. After sequentially etching the aluminum oxide film (A I Ox) 18 of the barrier layer, patterning is performed using a second resist as shown in FIG.
Etch 17. Next, as shown in FIG. 3(d), a silicon oxide film (Sin) is formed in an oxygen (Ol) atmosphere.
After forming an insulating film by vapor-depositing SiOM 23, a window 25 is opened on the SiOM 23 using the third resist 24 as a mask, as shown in FIG. 3(e), and a window 25 is opened as shown in FIG. 3(f). After coating with the Nb film, an Nb wiring 26 was formed using the fourth resist 27 as a mask to obtain a Josephson junction.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、前述のように、ジョセフソン接合。 However, as mentioned above, it is a Josephson junction.

作製プロセスにおいて、特に、4回ものレジストパター
ンの形成、或いは、エツチング後のレジスト除去に、水
やアセトン、アルコール等の有機溶剤を使用することが
多い。そのために、基板となる機能性高分子フィルム自
体は、他の高分子膜に比べて、水や有機溶剤に対しては
安定で溶解したりはしないが、フィルム内に水や有機溶
剤が浸透して、フィルムが膨潤し、第4図(a)に示す
ように、最初平坦で寸法が正しい機能性高分子フィルム
16が膨潤により、第4図(b)或いは(C)のように
、伸びてしまい、且つ9反りが生じて。
In the manufacturing process, organic solvents such as water, acetone, alcohol, etc. are often used, particularly in forming a resist pattern four times or removing the resist after etching. For this reason, the functional polymer film itself that serves as the substrate is more stable and does not dissolve in water or organic solvents than other polymer films, but water and organic solvents do not penetrate into the film. As shown in FIG. 4(a), the functional polymer film 16, which is initially flat and has the correct dimensions, expands as shown in FIG. 4(b) or (C). It got stuck and a 9-degree warpage occurred.

接合パターンの寸法安定性が低下してしまうという問題
があった。
There was a problem in that the dimensional stability of the bonding pattern deteriorated.

特に、高感度の磁気センサーでは、微細な接合とパター
ン形状が必要であり9寸法安定性の劣化は大きな障害と
なる。
In particular, high-sensitivity magnetic sensors require fine bonding and pattern shapes, and deterioration in dimensional stability becomes a major obstacle.

本発明は、この機能性高分子フィルムの膨潤を防止する
ことを目的として提供されるものである。
The present invention is provided for the purpose of preventing this functional polymer film from swelling.

(課題を解決するための手段〕 第1図は本発明の原理説明図である。(Means for solving problems) FIG. 1 is a diagram explaining the principle of the present invention.

図において、1は機能性高分子フィルム、2は保護膜で
ある。
In the figure, 1 is a functional polymer film and 2 is a protective film.

先の問題点を解決するには、フィルムが直接。To solve the above problems, the film is directly used.

プロセスを経る過程において、水や有機溶剤に直接接触
しないようにすることが肝要である。
It is important to avoid direct contact with water or organic solvents during the process.

そのため、第1図に示すように、ジョセフソン接合を作
製する前に2機能性高分子フィルム1の両面に絶縁膜等
を蒸着法、スパッタ法、或いはCVD法等により堆積し
て、フィルム表面に酸化シリコン等の水や有機溶剤によ
ってフィルムが膨潤することを防ぐ為の保護膜2を形成
する。
Therefore, as shown in FIG. 1, before fabricating the Josephson junction, an insulating film or the like is deposited on both sides of the bifunctional polymer film 1 by vapor deposition, sputtering, or CVD, and then the surface of the film is coated. A protective film 2 is formed to prevent the film from swelling due to water or organic solvents such as silicon oxide.

この際、保護膜2は機能性高分子フィルム1の表裏両面
に堆積することが必要であり1片面では反りが却って酷
くなる場合がある。
At this time, it is necessary that the protective film 2 be deposited on both the front and back surfaces of the functional polymer film 1, and if only one surface is used, the warpage may become worse.

〔作用〕[Effect]

本発明では、保護膜を機能性高分子フィルム上の両面に
作製することによって、ジョセフソン接合の作製プロセ
スにおいて、フィルムは常に水や有機溶剤に触れること
がな(なり、従つ工、水や有機溶剤の浸透によるフィル
ムの膨潤を防ぐことが可能となった。これにより2寸法
安定性が低下−tqず、微細な接合の形成においてもパ
ターンの信頼性が向上する。
In the present invention, by forming protective films on both sides of the functional polymer film, the film does not always come into contact with water or organic solvents during the Josephson junction fabrication process. It has become possible to prevent the film from swelling due to the penetration of organic solvents.This prevents the two-dimensional stability from decreasing -tq and improves the reliability of the pattern even in the formation of fine junctions.

〔実施例) 第2図は本発明の一実施例の工程順模式断面図である。〔Example) FIG. 2 is a schematic cross-sectional view of an embodiment of the present invention in the order of steps.

図において、3はポリイミドフィルム、4はSiOp、
  5はNb膜、6はAj!Ox膜、7はNb膜、8は
ジョセフソン接合、9は第1のレジスト、10は第2の
レジスト、11はSiO膜、12は第3のレジスト、1
3は開口部、14はNb配線、15は第4のレジストで
ある。
In the figure, 3 is a polyimide film, 4 is SiOp,
5 is Nb film, 6 is Aj! Ox film, 7 Nb film, 8 Josephson junction, 9 first resist, 10 second resist, 11 SiO film, 12 third resist, 1
3 is an opening, 14 is an Nb wiring, and 15 is a fourth resist.

ここでは、50μmの厚さのポリイミドフィルム3を基
板として、 Nb/A I Ox/Nb層のジョセフソ
ン接合8を形成する一実施例について2第2図の工程順
模式断面図により説明する。
Here, an example of forming a Josephson junction 8 of Nb/AI Ox/Nb layers using a polyimide film 3 with a thickness of 50 μm as a substrate will be described with reference to the schematic cross-sectional views of the process order in FIG. 2.

しかるのちに、エツチングマスクとして使用し先ず、第
2図(a)に示すように9機能性高分子としてのポリイ
ミドフィルム3の表面上に、酸素ガス雰囲気中で、  
I Xl0−’Torrの真空圧で、保護膜としてのS
iO膜4を300nmの厚さに蒸着する。
Thereafter, using it as an etching mask, first, as shown in FIG. 2(a), on the surface of the polyimide film 3 as a 9-functional polymer, in an oxygen gas atmosphere,
At a vacuum pressure of I Xl0-'Torr, S as a protective film
An iO film 4 is deposited to a thickness of 300 nm.

続いて、フィルムの裏面にも同様な方法で、保護膜とし
てのSiO膜4を300ns+の厚さに蒸着する。
Subsequently, a SiO film 4 as a protective film is vapor-deposited to a thickness of 300 ns+ on the back surface of the film in the same manner.

次に、ポリイミドフィルム3上に下部電極としてのNb
5をアルゴン(Ar)ガス圧力10smTorrで20
0naの厚さにスパッタ法で堆積し、続いてi膜をAr
ガス圧力10+++mTorrで5n−の厚さに堆積後
1例えば、 Arに10%0□ガスを導入して、 0.
7Torrで1時間酸化し、バリア層としてA I O
x膜6を形成し。
Next, Nb as a lower electrode is placed on the polyimide film 3.
5 at argon (Ar) gas pressure of 10 smTorr for 20
The i film was deposited by sputtering to a thickness of 0na, and then Ar
After deposition to a thickness of 5n- at a gas pressure of 10+++ mTorr, for example, by introducing 10% 0□ gas into Ar, 0.
Oxidize at 7 Torr for 1 hour and use AIO as a barrier layer.
x film 6 is formed.

更に前述と同様の方法で5上部電極としてのNb膜7を
1501−の厚さに堆積して、 Nb/A I Ox/
Nb層のジョセフソン接合8を形成する。
Further, in the same manner as described above, an Nb film 7 as an upper electrode is deposited to a thickness of 1501-100 nm to form a Nb/A I Ox/
A Josephson junction 8 of the Nb layer is formed.

第2図(C)に示すように、第1のレジスト9をマスク
として上部電極のNb膜7をパターニングし、余分のN
bを例えば、四弗化炭素(CF4) −5%02ガスに
より+ 50mrmTorrで50Wの出力を加えて。
As shown in FIG. 2(C), the Nb film 7 of the upper electrode is patterned using the first resist 9 as a mask, and excess Nb is removed.
b, for example, by carbon tetrafluoride (CF4) -5%02 gas with +50 W of power applied at 50 mrmTorr.

1?IE法により除去する。1? Remove by IE method.

続いて、第1のレジスト9を除去後、AfOx膜6のバ
リア層をArガス中でスパッタエツチングにより除去す
る。
Subsequently, after removing the first resist 9, the barrier layer of the AfOx film 6 is removed by sputter etching in Ar gas.

第2図(d)に示すように、第2のレジスト10をマス
クとして、 Nb膜5をRIE法により前述と同様の方
法でエツチングして、下部電極を形成する。
As shown in FIG. 2(d), using the second resist 10 as a mask, the Nb film 5 is etched by RIE in the same manner as described above to form a lower electrode.

次に1第2図(e)に示すように、酸素雰囲気中で9例
えば1 x 10−’TorrでSiO膜11を350
nmの厚さに蒸着後、第2図(f)に示すように、第3
のレジストをマスクとしてコンタクト用のパターンを形
成した後、 SiO膜11を三弗化メタン(Ctl F
 3)−20%0!ガスで、 RIE法により5例えば
2QnuaTorr。
Next, as shown in FIG. 2(e), the SiO film 11 is heated to 350 m
After deposition to a thickness of nm, the third layer is deposited as shown in Figure 2(f).
After forming a contact pattern using the resist as a mask, the SiO film 11 is coated with methane trifluoride (CtlF).
3) -20%0! gas, for example 2QnuaTorr, by RIE method.

100Wの出力で除去して、開口部13を形成する。The opening 13 is formed by removing with a power of 100W.

最後に、第2図(g)に示すように、 Nb配線14を
前述と同様の方法で被膜し、第4のレジス目5をマスク
として、エツチングによりNb配線14を形成して完成
する。
Finally, as shown in FIG. 2(g), the Nb wiring 14 is coated in the same manner as described above, and is completed by etching using the fourth resist pattern 5 as a mask.

以上の実施例では、11能性高分子フィルムとして、ポ
リイミドフィルムを使用したが、他に実用できる機能性
高分子フィルムとしては、アラミドフィルム、ポリエチ
レンテレフタレートフィルム。
In the above examples, a polyimide film was used as the 11-functional polymer film, but other functional polymer films that can be used include aramid film and polyethylene terephthalate film.

ポリエーテル・エーテルケトンフィルムなどがある。Examples include polyether and etherketone films.

〔発明の効果〕〔Effect of the invention〕

以上説明したように2本発明によれば2機能性高分子フ
ィルムをジョセフソン接合素子の基板とした場合に、フ
ィルム上に前もって保護膜を作製しておくことで、プロ
セスにおいての、何回も使用される水や有機溶剤による
フィルムの膨潤が防止でき、フィルムの寸法安定性を向
上させることが可能となる。これにより、高分子フィル
ム上に微細なジョセフソン接合をパターンの寸法ずれも
なく作製することが可能となり、信転性の向上に寄与す
るところが大きい。
As explained above, according to the present invention, when a bifunctional polymer film is used as the substrate of a Josephson junction element, by preparing a protective film on the film in advance, it is possible to reduce the number of times during the process. Swelling of the film due to the water and organic solvent used can be prevented, and the dimensional stability of the film can be improved. This makes it possible to fabricate fine Josephson junctions on a polymer film without any deviation in pattern size, which greatly contributes to improving reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理説明図。 第2図は本発明の一実施例の工程順模式断面図。 第3図、第4図は従来例の説明図である。 図において。 1は機能性高分子フィルム。 2は保護膜、     3はポリイミドフィルム。 4はSiO膜、     5はNb膜。 6はAlOx膜、    7はNb膜。 8はジョセフソン接合。 9は第1のレジスト、10は第2のレジスト。 11はSiO膜、12は第3のレジスト。 13は開口部、14はNb配線。 15は第4のレジスト 本発明の原理tjl明図 第1図 本発明の一実施例の工程p唄項戎断面図男2図 FIG. 1 is a diagram explaining the principle of the present invention. FIG. 2 is a schematic cross-sectional view of an embodiment of the present invention in the order of steps. FIGS. 3 and 4 are explanatory diagrams of conventional examples. In fig. 1 is a functional polymer film. 2 is a protective film, 3 is a polyimide film. 4 is a SiO film, 5 is a Nb film. 6 is an AlOx film, 7 is an Nb film. 8 is a Josephson junction. 9 is a first resist, and 10 is a second resist. 11 is a SiO film, and 12 is a third resist. 13 is an opening, and 14 is Nb wiring. 15 is the fourth resist Principle of the present invention Figure 1 A cross-sectional diagram of the process of an embodiment of the present invention, Figure 2.

Claims (1)

【特許請求の範囲】[Claims] 機能性高分子フィルム上にジョセフソン接合素子を作製
する前に、あらかじめ、該機能性高分子フィルムの両面
に、水や有機溶剤による膨潤を防ぐ為の保護膜を被覆す
ることを特徴とするジョセフソン接合の作製方法。
Before fabricating the Josephson junction device on a functional polymer film, both sides of the functional polymer film are coated with a protective film to prevent swelling due to water or organic solvents. How to make a Son junction.
JP2014694A 1989-11-13 1990-01-24 Manufacture of josephson junction Pending JPH03219680A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2014694A JPH03219680A (en) 1990-01-24 1990-01-24 Manufacture of josephson junction
DE69026339T DE69026339T2 (en) 1989-11-13 1990-11-12 Josephson Transition Apparatus
EP90312322A EP0428357B1 (en) 1989-11-13 1990-11-12 Josephson junction apparatus
US07/611,789 US5131976A (en) 1989-11-13 1990-11-13 Josephson junction apparatus formed on flexible polymeric film and producing method thereof
KR1019900018344A KR940006778B1 (en) 1989-11-13 1990-11-13 Josephson junction apparatus
US08/227,698 US5436471A (en) 1989-11-13 1994-04-14 Josephson junction apparatus formed on flexible polymeric film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014694A JPH03219680A (en) 1990-01-24 1990-01-24 Manufacture of josephson junction

Publications (1)

Publication Number Publication Date
JPH03219680A true JPH03219680A (en) 1991-09-27

Family

ID=11868299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014694A Pending JPH03219680A (en) 1989-11-13 1990-01-24 Manufacture of josephson junction

Country Status (1)

Country Link
JP (1) JPH03219680A (en)

Similar Documents

Publication Publication Date Title
US5131976A (en) Josephson junction apparatus formed on flexible polymeric film and producing method thereof
JPS58200586A (en) Josephson tunnel junction device of niob-insultor-niob and method of producing same
JPH03219680A (en) Manufacture of josephson junction
CN113659067A (en) Superconducting transition edge sensor, preparation method and micro energy device
JPS5978585A (en) Josephson integrated circuit
JPS60208873A (en) Manufacture of josephson junction element
JPH045873A (en) Manufacture of superconducting contact and superconducting circuit
JP3084043B2 (en) Elements using superconductivity
JP2966378B2 (en) Method for producing Ba-K-Bi-O-based superconducting thin film
JPH05198851A (en) Resistor for josephson integrated circuit and its manufacture
JP2535539B2 (en) Josephson circuit manufacturing method
JP2691175B2 (en) Patterned oxide superconducting film formation method
JPS6256676B2 (en)
JPS60208874A (en) Manufacture of josephson junction element
JPS6396973A (en) Manufacture of josephson junction element
JP3267353B2 (en) Manufacturing method of weak junction type Josephson device using edge junction of submicron area
JPH04287382A (en) Mask material for forming oxide thin film, forming method for pattern of oxide thin film using same, and manufacture of superconducting element
JPH07240542A (en) Mask material for superconductive thin film
JPH0661535A (en) Manufacture of josephson circuit
JPH07193286A (en) Squid magnetic sensor
JPH077189A (en) Josephson junction element
JPH0355551B2 (en)
JPS63205974A (en) Manufacture of josephson junction
JPS6167975A (en) Manufacture of josephson junction element
JPS6147679A (en) Production of josephson junction element