JPH03217699A - Scroll structure of compressor - Google Patents

Scroll structure of compressor

Info

Publication number
JPH03217699A
JPH03217699A JP1179190A JP1179190A JPH03217699A JP H03217699 A JPH03217699 A JP H03217699A JP 1179190 A JP1179190 A JP 1179190A JP 1179190 A JP1179190 A JP 1179190A JP H03217699 A JPH03217699 A JP H03217699A
Authority
JP
Japan
Prior art keywords
scroll
outlet
flow path
flow passage
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1179190A
Other languages
Japanese (ja)
Inventor
Tosaku Takamura
東作 高村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP1179190A priority Critical patent/JPH03217699A/en
Publication of JPH03217699A publication Critical patent/JPH03217699A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To reduce pressure loss and to improve the engine output by providing a scroll flow passage and a linear outlet flow passage communicating with the scroll flow passage, to a scroll, and making the section area of the flow passage at the outlet of the outlet flow passage in a specific value. CONSTITUTION:A scroll 15 furnishes a scroll flow passage 17 and a linear outlet flow passage 21 linking to the scroll flow passage 17 at a linking part 19. The section area A2 of the outlet flow passage 21 at the outlet 25 is set at about 1.3 to 2 times the section area A1 of the flow passage at the linking part 19 between the scroll passage 17 and the outlet passage 21. A high flow speed of the air flow flowing through the scroll 15 is reduced when passing through the outlet passage 21 from near the linking part between the passages 17 and 21, and the dynamic pressure is reduced to convert to a static pressure. In such a constitution, the pressure loss during the flow from a turbocharger to an engine is reduced, and the engine output can be improved.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、ターボチャージャにおける遠心圧縮機のス
クロール構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) This invention relates to a scroll structure of a centrifugal compressor in a turbocharger.

(従来の技術) 従来の自動車用ターボチャージャの遠心圧縮機は、第6
図に示す実開昭60−107392号公報のように構成
されている。ターボチャージャのセンタハウジング10
1に軸支された回転軸103の左端部には、インベラ1
05がナット1o7にて締結され、このインペラ107
は圧縮機ハウジング109内に収納される。圧縮機ハウ
ジング109は、インペラ105を内包する筒状部11
1と、インペラ105の外周側に位置する渦巻状に形成
されたスクロール部113とにより構成される。
(Prior art) A conventional centrifugal compressor for an automotive turbocharger is
It is constructed as shown in the figure, Japanese Utility Model Application No. 60-107392. Turbocharger center housing 10
At the left end of the rotating shaft 103 supported by the invera 1
05 is fastened with nut 1o7, and this impeller 107
is housed within the compressor housing 109. The compressor housing 109 includes a cylindrical portion 11 that encloses the impeller 105.
1 and a scroll portion 113 formed in a spiral shape and located on the outer peripheral side of the impeller 105.

回転軸103の右側に設けられた図示外のタービンロー
タが排ガスによって高速で回転するとき、インベラ10
5も回転して筒状部111内に取込まれた空気は、イン
ペラ105で圧縮されて平行壁ディフユーザ115で減
速し、圧力が上昇した後、スクロール部113内の渦巻
き流路114に流入し、図示外の出口流路を経て図示外
のエンジンに供給される。
When a turbine rotor (not shown) provided on the right side of the rotating shaft 103 rotates at high speed due to exhaust gas, the invera 10
5 rotates and is taken into the cylindrical part 111. The air is compressed by the impeller 105, decelerated by the parallel wall diffuser 115, and after the pressure increases, it flows into the spiral passage 114 in the scroll part 113. The fuel is then supplied to an engine (not shown) via an outlet flow path (not shown).

また、第7図に示すように、平行壁ディフユーザ115
から流出する圧縮された空気が渦巻き流路114へ流入
する際の圧力損失を減らすために、スクロール部123
に傾斜面119を設けてぃる構造も知られている(実開
昭58−92423号公報参照)。
Further, as shown in FIG. 7, the parallel wall diff user 115
In order to reduce the pressure loss when the compressed air flowing out from the scroll portion 123 flows into the spiral passage 114,
A structure in which an inclined surface 119 is provided is also known (see Japanese Utility Model Application Publication No. 58-92423).

ところで、圧縮機のスクロールは、インベラ105によ
り圧縮された空気が平行壁ディフユーザ115を経て渦
巻き流路114を流れる際に、圧力損失を小さくすべく
、平行壁ディフユーザ115を流出する流れの周方向成
分と渦巻き流路l14での流速とが一致するようにスク
ロール部113の流路断面積か設定されている。
By the way, when the air compressed by the invera 105 flows through the spiral flow path 114 via the parallel wall diff user 115, the scroll of the compressor is designed to adjust the circumference of the flow flowing out of the parallel wall diff user 115 in order to reduce pressure loss. The flow passage cross-sectional area of the scroll portion 113 is set so that the directional component matches the flow velocity in the spiral flow passage l14.

このようにして設定された流路断面積の一例を第8図な
いし第10図に示す。これによれば、流路断面積は第1
0図に示すように、渦巻き流路114の巻き始め部12
3から第8図の左回りに巻き角θが大きくなるに従って
直線的に増加し、巻き角θが約360”となる巻き終り
部125に到ると、これから先の出口流路117の出口
部127まてはほとんど変化せず一定となっている。
Examples of flow path cross-sectional areas set in this manner are shown in FIGS. 8 to 10. According to this, the flow path cross-sectional area is the first
As shown in FIG.
The winding angle θ increases linearly from 3 to the counterclockwise in FIG. 127 remains constant with almost no change.

(発明が解決しようとする課題) ところがスクロール巻き終り部125での流速は、まだ
充分速く、したがって上記スクロール形状の圧縮機では
、スクロール出口部127での空気の流速は充分速いま
ま維持され、この速い空気流の動圧がターボチャージャ
からエンジンまでの屈曲の多い配管を通る間に圧力損失
として消費され、圧縮された空気がエンジンの出力向上
のために有効に利用されていないという問題点がある。
(Problem to be Solved by the Invention) However, the flow velocity at the end portion 125 of the scroll winding is still sufficiently high. Therefore, in the scroll-shaped compressor described above, the flow velocity of air at the scroll outlet portion 127 is maintained sufficiently high. The problem is that the dynamic pressure of the fast air flow is consumed as pressure loss while passing through the many curved piping from the turbocharger to the engine, and the compressed air is not effectively used to improve the engine's output. .

この発明は、このような従来の問題点に着目してなされ
たもので、ターボチャージャ圧縮機における圧縮空気の
スクロール出口部での流速を低下させ、ターボチャージ
ャからエンジンまでの間の圧力損失を小さくすることを
目的としている。
This invention was made by focusing on these conventional problems, and reduces the flow velocity of compressed air at the scroll outlet in a turbocharger compressor, thereby reducing pressure loss between the turbocharger and the engine. It is intended to.

[発明の構成] (課題を解決するための手段) 前記課題を解決するためのこの発明の構成は、ターボチ
ャージャにおける遠心圧縮機の渦巻状に形成されたスク
0−ル構造において、前記スクロールは渦巻き流路と渦
巻き流路に連通する直線状の出口流路とを有し、前記出
口流路の出口部での流路断面積は、渦巻き流路と出口流
路との連通部付近での流路断面積のほぼ1.3〜2倍と
したものてある。
[Structure of the Invention] (Means for Solving the Problem) The structure of the present invention for solving the above problem is that in a scroll structure formed in a spiral shape of a centrifugal compressor in a turbocharger, the scroll is It has a spiral flow path and a linear outlet flow path communicating with the spiral flow path, and the cross-sectional area of the outlet flow path at the exit portion of the outlet flow path is approximately It is said to be approximately 1.3 to 2 times the cross-sectional area of the flow path.

(作用) 渦巻き流路を流れる速い空気流は渦巻き流路と出口流路
との連通部付近に達しても衰えず速いままに維持されて
いるが、出口部での流路断面積を渦巻き流路と出口流路
との連通部付近での流路断面積のほぼ1.3〜2.0倍
とすることで、前記空気流は連通部から出口部まで流れ
る間に減速され、動圧が減少して静圧に変換され、この
結果圧縮機としての過給圧力が上昇する。
(Function) The fast airflow flowing through the spiral flow path remains fast without slowing down even when it reaches the area where the spiral flow path and the outlet flow path communicate. By making the cross-sectional area of the flow path approximately 1.3 to 2.0 times the area near the communication portion between the passage and the outlet flow path, the air flow is decelerated while flowing from the communication portion to the outlet portion, and the dynamic pressure is reduced. It is reduced and converted into static pressure, and as a result, the boost pressure as a compressor increases.

(実施例) 次にこの発明の一実施例を図に基づいて説明する。(Example) Next, one embodiment of the present invention will be described based on the drawings.

第2図に自動車用ターボチャージャ1の圧縮機側の断面
を示した。ターボチャージャ1のセンタハウジング3に
軸支された回転軸5の左端部に、インベラ7がナソト9
にて締結され、このインベラ7は圧縮機ハウジング11
内に収納される。圧縮機ハウジング11は、インベラ7
を内包する筒状部13と、インベラ7の外周側に位置す
る渦巻状に形成されたスクロール部15とにより構成さ
れる。
FIG. 2 shows a cross section of the automobile turbocharger 1 on the compressor side. An inflator 7 is attached to the left end of the rotating shaft 5 which is supported by the center housing 3 of the turbocharger 1.
The invera 7 is fastened to the compressor housing 11.
stored inside. The compressor housing 11 is the invera 7
It is composed of a cylindrical part 13 that encloses a cylindrical part 13, and a scroll part 15 formed in a spiral shape and located on the outer peripheral side of the inflator 7.

スクロール部15の断面図を第1図に示した。A cross-sectional view of the scroll portion 15 is shown in FIG.

スクロール部15は、前記第8図と同様な渦巻き流路1
7と渦巻き流路17に連通部19にて連通する直線状の
出口流路21とを有している。渦巻き流路17はその巻
き始め部23から第1図の左回りに巻き角θが大きくな
るに伴い、その流路断面積Aが直線的に増加し、巻き角
θが約360”となる巻き終り部、すなわち連通部19
の流路断面積A1に対し、出口流路21によって長さL
を隔てている出口部25の流路断面積A2を大きく形成
している。具体的には、連通部19から出口部25まで
の出口流路21は、出口部25が連通部19に対し先広
がりの円錐形に形成され、前記流路断面積A2はA,の
ほぼ1、3〜2倍に設定してある。
The scroll portion 15 has a spiral flow path 1 similar to that shown in FIG.
7 and a linear outlet flow path 21 that communicates with the spiral flow path 17 through a communication portion 19 . The spiral channel 17 has a winding shape in which the cross-sectional area A of the spiral passage 17 increases linearly as the winding angle θ increases counterclockwise in FIG. End part, that is, communication part 19
With respect to the flow passage cross-sectional area A1, the length L due to the outlet flow passage 21 is
The flow passage cross-sectional area A2 of the outlet portion 25 separating the two is formed to be large. Specifically, the outlet flow path 21 from the communication portion 19 to the outlet portion 25 is formed in a conical shape with the outlet portion 25 widening toward the communication portion 19, and the flow path cross-sectional area A2 is approximately 1 of A. , is set to 3 to 2 times.

次に前記実施例の作用を説明する。Next, the operation of the above embodiment will be explained.

回転軸5の右側に締結されている図示外のタービンロー
タが排ガスによって高速で回転し、インベラ7も回転し
てこれにより筒状部13に空気が取込まれる。取込まれ
た空気はインペラ7で圧縮されて平行壁ディフユーザ2
7にて減速され、圧力が上昇した後、烏巻き流路17に
流入して整流され、渦巻き流路17の巻き終り部となる
連通部19に達する。この連通部19での空気流速は、
依然として速いまま維持されている。
A turbine rotor (not shown) fastened to the right side of the rotating shaft 5 rotates at high speed due to exhaust gas, and the inflator 7 also rotates, thereby drawing air into the cylindrical portion 13. The air taken in is compressed by the impeller 7 and sent to the parallel wall diff user 2.
After being decelerated at step 7 and increasing in pressure, it flows into the curly flow path 17 and is rectified, reaching the communication portion 19 where the winding end of the spiral flow path 17 ends. The air flow velocity in this communication section 19 is
It still remains fast.

連通部19から出口部25までの出口流路21は先広が
り形状であるので、連通部19での流れの速い空気流は
、出口部25に達するまでの間に減速され、動圧が減少
して静圧に変換される。これによりターボチャージャ1
からエンジンまでの屈曲の多い配管内での圧力損失は減
少して圧縮機による過給圧力は上昇し、過給エンジンと
しての出力性能が向上する。
Since the outlet flow path 21 from the communication part 19 to the outlet part 25 has a tapering shape, the fast air flow in the communication part 19 is decelerated before reaching the outlet part 25, and the dynamic pressure is reduced. is converted into static pressure. This allows turbocharger 1
The pressure loss in the piping, which has many bends, from the engine to the engine is reduced, the boost pressure by the compressor increases, and the output performance of the supercharged engine is improved.

第3図に模型化して示したこの先細り形状の出口流路2
1における性能を、第4図に示したディフユーザの圧力
回復率Cpの特性図より求めると、出口部25での流路
断面積A2が連通部19での流路断面積A1のほぼ1.
3〜2倍の範囲では、この特性図の横軸L/h,の値に
はほとんど影響されず、圧力回復率Cpは約0.3〜約
0.5となって安定した値が得られている。このため、
先広がりの出口流路21の長さしが短かくても、ディフ
ユーザとしての充分な性能が発揮されるので、先広がり
形状とすることによるスクロール全体の大型化は回避で
き、したがって車載上の問題を発生させることなく、圧
縮機の性能を向上させることができる。
This tapered outlet channel 2 is modeled in Figure 3.
1 is obtained from the characteristic diagram of the pressure recovery rate Cp of the differential user shown in FIG.
In the range of 3 to 2 times, it is almost unaffected by the value of the horizontal axis L/h of this characteristic diagram, and the pressure recovery rate Cp is about 0.3 to about 0.5, and a stable value can be obtained. ing. For this reason,
Even if the length of the outlet flow path 21 with a flared tip is short, sufficient performance as a differential user is exhibited, so it is possible to avoid increasing the size of the entire scroll due to the shape of the tip with a flared tip. Compressor performance can be improved without causing problems.

第5図に他の実施例としてスクロール部35の断面図を
示した。
FIG. 5 shows a sectional view of the scroll portion 35 as another embodiment.

このスクロール部35は、渦巻き流路17に連通する出
口流路37を、渦巻き流路17の巻き終り部となる連通
部39の後方付近を段付形状とし、不連続的に拡大した
ものである。この場合の出口流路37の出口部41の流
路断面積A2も、連通部39の流路断面積A1のほぼ1
.3〜2倍である。
In this scroll portion 35, an outlet flow path 37 communicating with the spiral flow path 17 is expanded discontinuously with a stepped shape near the rear of the communication portion 39, which is the end of the winding of the spiral flow path 17. . In this case, the flow path cross-sectional area A2 of the outlet portion 41 of the outlet flow path 37 is also approximately 1 of the flow path cross-sectional area A1 of the communication portion 39.
.. It is 3 to 2 times more.

前記第4図のディフユーザの特性図のよう1こ、圧力回
復率Cpは、出口部面積A2が巻き終り部面積A1の1
.3倍から2倍の範囲では横軸L/h1の影響をほとん
ど受けないという事実により、第1図のように円錐状に
形成した出口流路21内でも空気の流れは剥離している
ことになる。このため、その形状をあえて円錐状にする
必要がなく。
As shown in the characteristic diagram of the differential user shown in FIG.
.. Due to the fact that in the range of 3 times to 2 times, it is hardly affected by the horizontal axis L/h1, the air flow is separated even within the conical outlet channel 21 as shown in Fig. 1. Become. Therefore, there is no need to make the shape conical.

第5図のように段付形状の急拡大流路37としても充分
な圧力回復率Cpが得られる。段付形状の出口流路37
は、例えば鋳造成型や機械加工において、前記第1図の
円錐形状の出口流路21に比べると製造が容易であり、
製造コストを抑えられる利点を有している。
As shown in FIG. 5, a sufficient pressure recovery rate Cp can be obtained even if the rapidly expanding channel 37 has a stepped shape. Stepped outlet channel 37
is easier to manufacture than the conical outlet channel 21 shown in FIG. 1, for example in casting molding or machining;
It has the advantage of reducing manufacturing costs.

[発明の効果] 以上によって明らかなようにこの発明によれば、スクロ
ール部を流れる速い流速の空気流は、渦巻き流路と出口
流路との連通部付近から、連通部に対してほぼ1.3〜
2倍の流路断面積のスクロール出口部までの出口流路を
通る間に減速されて動圧が減少して静圧に変換され、こ
れによりターボチャージャからエンジンまでの屈曲の多
い配管内での圧力損失が減少して圧縮機としての過給圧
力が向上し、エンジン出力を向上させることができる。
[Effects of the Invention] As is clear from the above, according to the present invention, the high velocity airflow flowing through the scroll portion starts from the vicinity of the communication portion between the spiral flow path and the outlet flow path and has a flow rate of approximately 1. 3~
While passing through the exit flow path to the scroll outlet, which has twice the cross-sectional area of the flow path, it is decelerated and dynamic pressure is reduced and converted to static pressure. Pressure loss is reduced, boost pressure for the compressor is increased, and engine output can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこのこの発明の一実施例を示すスクロル部断面
図、第2図は第1図のスクロール部を備えた圧縮機の断
面図、第3図は第1図のスクロール部における流路の模
型図、第4図は第3図の流路の圧力回復率を示す特性図
、第5図はこの発明の他の実施例を示すスクロール部の
断面図、第6図は従来例を示す圧縮機の断面図、第7図
は他の従来例におけるスクロール部の要部断面図、第8
図は従来のスクロール部の断面図、第9図は第8図のI
X−IX断面図、第10図は第8図のスクロール部の形
状特性図である。 ナ 1・・・ターボ≠ヤージャ 15.35・・・スクロール部 17・・・渦巻き流路 19.39・・・連通部 21.37・・・出口流路 25.41・・・出口部 A1 A2 ・ 流路断面積
FIG. 1 is a sectional view of a scroll portion showing an embodiment of the present invention, FIG. 2 is a sectional view of a compressor equipped with the scroll portion of FIG. 1, and FIG. 3 is a flow path in the scroll portion of FIG. 1. FIG. 4 is a characteristic diagram showing the pressure recovery rate of the flow path shown in FIG. 3, FIG. 5 is a sectional view of a scroll portion showing another embodiment of the present invention, and FIG. 6 shows a conventional example. 7 is a sectional view of the compressor, and FIG. 7 is a sectional view of the main part of the scroll part in another conventional example.
The figure is a sectional view of a conventional scroll part, and Figure 9 is I of Figure 8.
The X-IX sectional view and FIG. 10 are shape characteristic diagrams of the scroll portion of FIG. 8. Na 1...Turbo≠Yarja 15.35...Scroll part 17...Spiral passage 19.39...Communication part 21.37...Outlet passage 25.41...Exit part A1 A2・Flow path cross-sectional area

Claims (1)

【特許請求の範囲】[Claims] ターボチャージャにおける遠心圧縮機の渦巻状に形成さ
れたスクロール構造において、前記スクロールは渦巻き
流路と渦巻き流路に連通する直線状の出口流路とを有し
、前記出口流路の出口部での流路断面積は、渦巻き流路
と出口流路との連通部付近での流路断面積のほぼ1.3
〜2倍であることを特徴とする圧縮機のスクロール構造
In a scroll structure formed in a spiral shape of a centrifugal compressor in a turbocharger, the scroll has a spiral flow path and a linear outlet flow path communicating with the spiral flow path, and the scroll has a spiral flow path and a linear outlet flow path communicating with the spiral flow path, and The cross-sectional area of the flow path is approximately 1.3 of the cross-sectional area of the flow path near the communication part between the spiral flow path and the outlet flow path.
A scroll structure of a compressor characterized by ~2 times.
JP1179190A 1990-01-23 1990-01-23 Scroll structure of compressor Pending JPH03217699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1179190A JPH03217699A (en) 1990-01-23 1990-01-23 Scroll structure of compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1179190A JPH03217699A (en) 1990-01-23 1990-01-23 Scroll structure of compressor

Publications (1)

Publication Number Publication Date
JPH03217699A true JPH03217699A (en) 1991-09-25

Family

ID=11787739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1179190A Pending JPH03217699A (en) 1990-01-23 1990-01-23 Scroll structure of compressor

Country Status (1)

Country Link
JP (1) JPH03217699A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004109120A1 (en) * 2003-06-05 2004-12-16 Seikow Chemical Engineering & Machinery, Ltd. Centrifugal blower
WO2012132528A1 (en) * 2011-03-25 2012-10-04 三菱重工業株式会社 Scroll shape of centrifugal compressor
CN103261702A (en) * 2010-12-28 2013-08-21 三菱重工业株式会社 Scroll structure of centrifugal compressor
US9562541B2 (en) 2011-03-17 2017-02-07 Mitsubishi Heavy Industries, Ltd. Scroll structure of centrifugal compressor
WO2018101021A1 (en) * 2016-11-29 2018-06-07 株式会社日立製作所 Diffuser, discharge flow path, and centrifugal turbo machine
US11209015B2 (en) 2016-07-01 2021-12-28 Ihi Corporation Centrifugal compressor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004109120A1 (en) * 2003-06-05 2004-12-16 Seikow Chemical Engineering & Machinery, Ltd. Centrifugal blower
CN100404878C (en) * 2003-06-05 2008-07-23 星光化工机株式会社 Centrifugal blower
CN103261702A (en) * 2010-12-28 2013-08-21 三菱重工业株式会社 Scroll structure of centrifugal compressor
CN103261702B (en) * 2010-12-28 2016-07-06 三菱重工业株式会社 The swirl formation of centrifugal compressor
US9541094B2 (en) 2010-12-28 2017-01-10 Mitsubishi Heavy Industries, Ltd. Scroll structure of centrifugal compressor
US9562541B2 (en) 2011-03-17 2017-02-07 Mitsubishi Heavy Industries, Ltd. Scroll structure of centrifugal compressor
WO2012132528A1 (en) * 2011-03-25 2012-10-04 三菱重工業株式会社 Scroll shape of centrifugal compressor
JP2012202323A (en) * 2011-03-25 2012-10-22 Mitsubishi Heavy Ind Ltd Scroll shape of centrifugal compressor
US9366265B2 (en) 2011-03-25 2016-06-14 Mitsubishi Heavy Industries, Ltd. Scroll shape of centrifugal compressor
US11209015B2 (en) 2016-07-01 2021-12-28 Ihi Corporation Centrifugal compressor
WO2018101021A1 (en) * 2016-11-29 2018-06-07 株式会社日立製作所 Diffuser, discharge flow path, and centrifugal turbo machine

Similar Documents

Publication Publication Date Title
US7575411B2 (en) Engine intake air compressor having multiple inlets and method
EP0526965B1 (en) Compressor casings for turbochargers
CN102221016B (en) Compressor gas flow deflector and compressor incorporating the same
JP4100030B2 (en) Centrifugal compressor
JPS62178799A (en) Compressor
JP2008075536A (en) Centrifugal compressor
JP2008075536A5 (en)
JPS6138125A (en) Supercharger of exhaust gas turbine for internal combustion engine
JP4632076B2 (en) Exhaust turbine turbocharger
US4979361A (en) Stepped diffuser
CN108019380A (en) Turbocharger compressor noise reduction system and method
JPH03217699A (en) Scroll structure of compressor
US20060024152A1 (en) Intake housing for axial fluid flow engines
US20030150212A1 (en) Exhaust gas turbocharger for an internal-combustion engine
JPS6146420A (en) Turbosupercharger
JP2000064848A (en) Turbo-charger
JP3033902B1 (en) Turbocharger compressor
JP2017002910A (en) Turbine and vehicular supercharger
JPS5965907U (en) Turbine exhaust diffuser
JP3063402B2 (en) Turbocharger compressor
JPH01178706A (en) Exhaust chamber for axial-flow turbine
CN216642572U (en) Compressor casing of supercharger
JPH05180198A (en) Housing construction of compressor for exhaust gas turbine supercharger
JP2022548709A (en) Concentric introduction of wastegate mass flow into a flow-optimized axial diffuser
JP2000204908A (en) Axial turbine