JP2000204908A - Axial turbine - Google Patents

Axial turbine

Info

Publication number
JP2000204908A
JP2000204908A JP11009588A JP958899A JP2000204908A JP 2000204908 A JP2000204908 A JP 2000204908A JP 11009588 A JP11009588 A JP 11009588A JP 958899 A JP958899 A JP 958899A JP 2000204908 A JP2000204908 A JP 2000204908A
Authority
JP
Japan
Prior art keywords
outlet
diffuser
pressure
turbine
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11009588A
Other languages
Japanese (ja)
Inventor
Nobuaki Ijichi
伸彰 伊地知
Hiromoto Ono
博基 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP11009588A priority Critical patent/JP2000204908A/en
Publication of JP2000204908A publication Critical patent/JP2000204908A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supercharger (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To decrease diffuser outlet pressure on an opposite side of a fluid outlet, and equalize pressure distribution of an outlet casing in a circumferential direction. SOLUTION: In an axial turbine 1 which leads a fluid F passing through a moving blade 2 in the direction of a turbine axis C using a circular diffuser 3 in the radial direction outside, and discharges the one from a fluid outlet 5 through an outlet casing 4, the circular diffuser 3 is leaned to a side of the fluid outlet 5 against the turbine axis C. A passage length for an opposite side of the fluid outlet 5 of the circular diffuser 3 becomes shorter than that for the side of the fluid outlet 5, a pressure increasing rate on the opposite side worsens intentionally, diffuser outlet pressure decreases, and diffuser inlet pressure decreases. Also, the diffuser outlet pressure is differentiated in each circumferential direction position, and pressure distribution of the outlet casing 4 is equalized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はガスタービンや舶用
過給機等に適用される軸流タービンに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an axial turbine applied to a gas turbine, a marine turbocharger, and the like.

【0002】[0002]

【従来の技術】一般に半径方向流出型なるディフュー
ザ、即ち環状ディフューザを備えた軸流タービンが知ら
れている。これは図5に示すように、タービン軸C方向
に動翼51を通過した流体Fを、環状ディフューザ52
で半径方向外側に導き、出口車室53を通じて流体出口
54から排出させるようになっている。
2. Description of the Related Art Generally, there is known an axial flow turbine provided with a radially outflow type diffuser, that is, an annular diffuser. As shown in FIG. 5, the fluid F that has passed through the rotor blades 51 in the direction of the turbine axis C is transferred to an annular diffuser 52.
At the fluid outlet 54 through the outlet casing 53.

【0003】[0003]

【発明が解決しようとする課題】しかし、この構造だ
と、出口車室53において、タービン軸Cに対し流体出
口54の反対側(図中下側)にある流体が、流体出口5
4まで遠いためになかなか排出されず、その位置の圧力
を高めてしまうという問題がある。
However, with this structure, in the outlet casing 53, the fluid on the opposite side (lower side in the figure) of the fluid outlet 54 with respect to the turbine shaft C is discharged to the fluid outlet 5
Since it is far to 4, it is difficult to discharge, and there is a problem that the pressure at that position is increased.

【0004】即ち、その反対側の位置において、出口車
室53の圧力が高いということは環状ディフューザ52
の出口ひいては入口でも圧力が高いということになる。
タービンでは動翼51の入口圧が高く、出口圧が低い方
がよいので、このように動翼出口圧ないしディフューザ
入口圧が高いと、大きな差圧が得られず大きなタービン
仕事量が得られない。
That is, at the position on the opposite side, the fact that the pressure in the exit casing 53 is high means that the annular diffuser 52
This means that the pressure is high at the outlet and thus at the inlet.
In a turbine, the higher the inlet pressure of the moving blade 51 and the lower the outlet pressure, the better. Therefore, if the moving blade outlet pressure or the diffuser inlet pressure is high, a large differential pressure cannot be obtained and a large turbine work cannot be obtained. .

【0005】また、出口車室53はタービン軸C回りを
周回する通路で、一般的にはチャンバ型と称される通路
断面一定のものが使用される。環状ディフューザ52の
出口部では十分流速が低下されているため、出口車室5
3の圧力分布は周方向にほぼ一定で、周方向流れによる
圧力損失は僅かといわれている。しかし、厳密には上述
のように流体出口54側よりその反対側で圧力が大きく
なる。すると出口車室53において周方向の圧力分布が
生じ、出口車室53内で流れが乱れて損失が生じてしま
う。
The outlet casing 53 is a passage orbiting around the turbine axis C, and a passage having a constant cross section, generally called a chamber type, is used. Since the flow velocity is sufficiently reduced at the outlet of the annular diffuser 52, the outlet casing 5
The pressure distribution of No. 3 is almost constant in the circumferential direction, and the pressure loss due to the circumferential flow is said to be slight. However, strictly speaking, as described above, the pressure increases on the side opposite to the fluid outlet 54 side. Then, a circumferential pressure distribution occurs in the outlet casing 53, and the flow is disturbed in the outlet casing 53, resulting in a loss.

【0006】従来、通常用いられている軸方向流入/流
出型ディフューザについては多くの研究結果があり、性
能を示すマップ等も既に確立されている。しかし、上述
のような半径方向流出型ディフューザについての研究結
果は未だ多く見受けられない。
Heretofore, there have been many studies on conventionally used axial inflow / outflow diffusers, and maps and the like showing the performance have already been established. However, there are not many studies on the radial outflow diffuser as described above.

【0007】[0007]

【課題を解決するための手段】本発明は、タービン軸方
向に動翼を通過した流体を環状ディフューザで半径方向
外側に導き、出口車室を通じて流体出口から排出させる
軸流タービンにおいて、上記環状ディフューザをタービ
ン軸に対し上記流体出口側に偏心させたものである。
According to the present invention, there is provided an axial flow turbine for guiding a fluid passing through a blade in an axial direction of a turbine radially outward by an annular diffuser and discharging the fluid from a fluid outlet through an outlet casing. Is eccentric to the fluid outlet side with respect to the turbine shaft.

【0008】これによれば、環状ディフューザの流体出
口反対側の通路長さを流体出口側より短くできる。これ
によりその反対側での圧力上昇率を意図的に悪化させ、
ディフューザ出口圧を減少し、ディフューザ入口圧を減
少すると共に、ディフューザ出口圧を周方向位置毎に異
ならせ、出口車室の圧力分布を周方向に均等化できる。
According to this, the length of the passage of the annular diffuser on the side opposite to the fluid outlet can be made shorter than that of the fluid outlet. This intentionally worsens the rate of pressure rise on the other side,
The diffuser outlet pressure can be reduced, the diffuser inlet pressure can be reduced, and the diffuser outlet pressure can be varied for each circumferential position, so that the pressure distribution in the outlet casing can be equalized in the circumferential direction.

【0009】[0009]

【発明の実施の形態】以下、本発明の好適な実施の形態
を添付図面に基づいて詳述する。
Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0010】図1は本発明に係る軸流タービンを示す。
この軸流タービン1も従来同様、タービン軸C方向に動
翼2を通過した流体Fを環状ディフューザ3で半径方向
外側に導き、出口車室4を通じて周方向一箇所の流体出
口5から排出させるようになっている。
FIG. 1 shows an axial turbine according to the present invention.
In this axial flow turbine 1 as well, the fluid F that has passed through the rotor blade 2 in the direction of the turbine axis C is guided radially outward by the annular diffuser 3 and discharged from the fluid outlet 5 at one circumferential position through the outlet casing 4, as in the prior art. It has become.

【0011】軸流タービン1においては、タービンケー
シング6内部に翼車室7が区画形成され、この翼車室7
に翼車8が回転自在に収容される。翼車8の外周部に複
数の動翼2が軸方向に多列に取り付けられる。動翼2が
流体Fで駆動されることにより翼車8がタービン軸C回
りを回転される。翼車8の軸方向前方(図中右側)ない
し上流側にノーズコーン9が配置され、これは複数の静
翼10を介してタービンケーシング6側に固定される。
また軸方向の動翼2間にも翼車室7の内壁に取り付けら
れた複数の静翼11が設けられる。
In the axial flow turbine 1, a blade casing 7 is formed inside a turbine casing 6.
The impeller 8 is rotatably housed in the housing. A plurality of moving blades 2 are mounted on the outer periphery of the impeller 8 in multiple rows in the axial direction. When the moving blade 2 is driven by the fluid F, the impeller 8 is rotated around the turbine axis C. A nose cone 9 is disposed axially forward (right side in the figure) or upstream of the impeller 8, and is fixed to the turbine casing 6 via a plurality of stationary blades 10.
A plurality of stationary blades 11 attached to the inner wall of the blade casing 7 are also provided between the moving blades 2 in the axial direction.

【0012】環状ディフューザ3は、軸方向から半径方
向へと流れの向きを変える曲がり通路であり、タービン
ケーシング6によって区画形成され、動翼2の軸方向後
方(図中左側)の入口12と、半径方向外側に臨んで出
口車室4に開放する出口13とを有する。環状ディフュ
ーザ3は軸回りの全周に連続しており、半径方向外側な
いし下流側に進むにつれて、軸回りの環状に、通路面積
を拡大させていく。これによって入口12から流入した
高速の流体Fを徐々に減速し、高圧化させ、出口車室4
に流出させる。
The annular diffuser 3 is a curved passage that changes the direction of flow from the axial direction to the radial direction, is formed by the turbine casing 6, and has an inlet 12 axially rearward (left side in the figure) of the moving blade 2, An outlet 13 facing the outside in the radial direction and opening to the outlet casing 4. The annular diffuser 3 is continuous along the entire circumference around the axis, and the passage area is enlarged in an annular shape around the axis as going radially outward or downstream. As a result, the high-speed fluid F flowing from the inlet 12 is gradually decelerated to a high pressure, and the outlet casing 4
Drain.

【0013】出口車室4は従来同様のチャンバ型と称さ
れるもので、タービン軸Cと同軸且つその軸回りを周回
する流体通路であり、その通路断面は一定である。出口
車室4の軸方向後方に環状ディフューザ3の出口13が
接続される。出口車室4はタービンケーシング6内部に
区画形成され、翼車室7を所定の肉厚を隔てて半径方向
外側から囲繞する。
The outlet casing 4 is a so-called chamber type similar to the conventional one, and is a fluid passage coaxial with the turbine shaft C and orbiting around the shaft. The passage cross section is constant. The outlet 13 of the annular diffuser 3 is connected to the rear of the outlet casing 4 in the axial direction. The outlet casing 4 is defined inside the turbine casing 6 and surrounds the vane casing 7 from a radial outside with a predetermined thickness.

【0014】流体出口5は出口車室4の周方向一箇所に
設けられ、出口車室4の半径方向外側に流体を排出する
ようになっている。流体出口5は排気ダクトを介して大
気開放されており、よって流体出口5及びこれに直接面
した出口車室4内は大気圧より少し高い圧力となる。図
示例では流体出口5は出口車室4の真上に設けられる。
The fluid outlet 5 is provided at one location in the circumferential direction of the outlet casing 4 and discharges fluid to the outside of the outlet casing 4 in the radial direction. The fluid outlet 5 is open to the atmosphere through an exhaust duct, and thus the pressure in the fluid outlet 5 and the interior of the outlet casing 4 directly facing the fluid outlet 5 is slightly higher than the atmospheric pressure. In the illustrated example, the fluid outlet 5 is provided directly above the outlet casing 4.

【0015】ところで、従来は図5に示したように環状
ディフューザ52がタービン軸Cと同軸であった。従っ
てその通路長さや、入口及び出口の半径方向位置も軸対
称で全周等しかった。
Conventionally, the annular diffuser 52 was coaxial with the turbine axis C as shown in FIG. Accordingly, the length of the passage and the radial positions of the inlet and the outlet were also axially symmetric and equal to the entire circumference.

【0016】これに対し本実施形態では、図1に示すよ
うに、環状ディフューザ3をタービン軸Cに対し流体出
口5側に偏心させている。これらの位置関係を図2に示
す。偏心後の環状ディフューザ3の中心をCeで示し、
偏心量はeである。なおこの図では、環状ディフューザ
3の偏心に伴い出口車室4の通路断面が流体出口5側
(上側)で小さく、流体出口5の反対側(下側)で大き
くなっているように見えるが、実際は図1、図5に示す
ように環状ディフューザ3の出口側区画壁14が偏心分
延長され、反出口側区画壁15が偏心分短縮(切除)さ
れるだけで、出口車室4の実質的な変更はない。
On the other hand, in the present embodiment, as shown in FIG. 1, the annular diffuser 3 is eccentric with respect to the turbine shaft C toward the fluid outlet 5. FIG. 2 shows these positional relationships. The center of the annular diffuser 3 after eccentricity is indicated by Ce,
The amount of eccentricity is e. In this figure, the passage cross section of the outlet casing 4 seems to be smaller on the fluid outlet 5 side (upper side) and larger on the opposite side (lower side) of the fluid outlet 5 due to the eccentricity of the annular diffuser 3. Actually, as shown in FIGS. 1 and 5, the outlet side partition wall 14 of the annular diffuser 3 is extended by eccentricity and the opposite outlet side partition wall 15 is shortened (cut off) by eccentricity. No significant changes.

【0017】この環状ディフューザ3の偏心により、環
状ディフューザ3の半径方向に沿う通路長さは、流体出
口5側ほど長く、流体出口5の反対側ほど短くなる。
Due to the eccentricity of the annular diffuser 3, the passage length of the annular diffuser 3 along the radial direction becomes longer toward the fluid outlet 5 and becomes shorter toward the opposite side of the fluid outlet 5.

【0018】次に、本実施形態の作用を説明する。Next, the operation of the present embodiment will be described.

【0019】図3は環状ディフューザの圧力回復係数を
示す一般的な線図である。圧力回復係数はCpで表さ
れ、この値が大きいほど環状ディフューザ内での圧力上
昇の程度が大きくなる。つまり環状ディフューザとして
は好ましい特性となる訳である。横軸には無次元通路流
さL/Hが、縦軸には面積比(A2 /A1 )−1がとっ
てある。図4に示すように、Lは環状ディフューザ3の
半径方向に沿った通路長さ、Hは環状ディフューザ3の
入口端の半径方向長さ、A1 ,A2 はそれぞれ環状ディ
フューザ3の入口端及び出口端の環状面積である。環状
ディフューザ3の各寸法を変えて実験を行うと、圧力回
復係数一定となる山形のラインを描くことができる。こ
れらラインの各ピークを結んだ直線上にくるよう、環状
ディフューザ3の寸法を決めてやれば、通路長さと面積
比とがバランスされたコンパクトなディフューザとする
ことができる。
FIG. 3 is a general diagram showing the pressure recovery coefficient of an annular diffuser. The pressure recovery coefficient is represented by Cp, and the greater this value, the greater the degree of pressure rise in the annular diffuser. That is, this is a preferable characteristic for an annular diffuser. The horizontal axis dimensionless passage flow L / H is the vertical axis area ratio (A 2 / A 1) -1 is are taken. As shown in FIG. 4, L is a passage length along the radial direction of the annular diffuser 3, H is a radial length of an inlet end of the annular diffuser 3, and A 1 and A 2 are an inlet end of the annular diffuser 3 and The annular area at the exit end. When an experiment is performed while changing the dimensions of the annular diffuser 3, a mountain-shaped line with a constant pressure recovery coefficient can be drawn. If the size of the annular diffuser 3 is determined so as to be on a straight line connecting the peaks of these lines, a compact diffuser in which the passage length and the area ratio are balanced can be obtained.

【0020】本図により、一般的には、通路長さが長い
ほど、また面積比が大きいほど圧力回復係数は大きくな
るといえる。
From this figure, it can be said that, generally, the longer the passage length and the larger the area ratio, the larger the pressure recovery coefficient.

【0021】さて、本実施形態の場合、環状ディフュー
ザ3の通路長さLが、流体出口5側ほど長く、流体出口
5の反対側ほど短くなる。よって例えば、図2に示すよ
うに、出口車室4のうち、流体出口5に最も近い真上部
Pu、最も遠い真下部Pd、及び中間の水平部Phの位
置で、圧力回復係数Cpを見てみると、図3に示すよう
に、真上部Pu、水平部Ph、真下部Pdの順で次第に
圧力回復係数Cpが低くなり、圧力上昇率が悪化する。
これは、流体出口5から最も遠い真下部Pdの位置で、
環状ディフューザ3の出口圧を最も低くできることを意
味する。従って、その位置で環状ディフューザ3の入口
圧も低くすることができ、動翼出口圧を低くしてタービ
ンの仕事量を増すことができる。
In the case of the present embodiment, the passage length L of the annular diffuser 3 is longer on the fluid outlet 5 side and shorter on the opposite side of the fluid outlet 5. Therefore, for example, as shown in FIG. 2, in the outlet casing 4, the pressure recovery coefficient Cp is determined at the positions of the upper portion Pu closest to the fluid outlet 5, the lower portion Pd farthest from the fluid outlet 5, and the middle horizontal portion Ph. As shown in FIG. 3, the pressure recovery coefficient Cp gradually decreases in the order of the upper portion Pu, the horizontal portion Ph, and the lower portion Pd, and the pressure rise rate deteriorates.
This is the position of the lowermost Pd farthest from the fluid outlet 5,
This means that the outlet pressure of the annular diffuser 3 can be minimized. Therefore, at that position, the inlet pressure of the annular diffuser 3 can also be reduced, and the blade outlet pressure can be reduced to increase the work load of the turbine.

【0022】また、真下部Pdの位置から流体出口5に
近付くにつれ圧力回復係数Cpが増大し、環状ディフュ
ーザ3の出口圧が次第に高まる。これは従来、出口車室
4の真下部Pdから真上部Puに減少していく圧力勾配
を打ち消す方向である。このように環状ディフューザ3
のディフューザ特性(性能)を周方向位置毎に連続的に
変えられるので、出口車室4全体の周方向の圧力分布を
均等にでき、出口車室4内の圧力損失を低減できる。以
上によってタービン全体の損失が低減され、タービン仕
事量も増大することが可能となる。
Further, the pressure recovery coefficient Cp increases as the fluid outlet 5 is approached from the position right below Pd, and the outlet pressure of the annular diffuser 3 gradually increases. This is a direction in which the pressure gradient decreasing from the lower portion Pd of the exit casing 4 to the upper portion Pu of the exit casing 4 is conventionally canceled. Thus, the annular diffuser 3
The diffuser characteristic (performance) can be continuously changed for each circumferential position, so that the circumferential pressure distribution of the entire outlet casing 4 can be made uniform, and the pressure loss in the outlet casing 4 can be reduced. As described above, the loss of the entire turbine is reduced, and the work of the turbine can be increased.

【0023】なお本実施形態については以下のように考
えることもできる。即ち、真下部において、従来はディ
フューザが流れを減速し過ぎたため、流れがその位置に
滞留し、なかなか流体出口まで到達できなかった。本実
施形態ではディフューザで流れの速度を圧力に変換しき
れない分、速度を残すことができ、これによって流体出
口に早く到達させることができ、真下部の高圧化を防ぐ
ことができる。
The present embodiment can be considered as follows. That is, in the area directly below, the diffuser has conventionally decelerated the flow too much, so that the flow has stayed at that position, making it difficult to reach the fluid outlet. In the present embodiment, the velocity can be left as much as the diffuser cannot convert the velocity of the flow into the pressure, so that the fluid can reach the fluid outlet quickly, and the pressure increase immediately below can be prevented.

【0024】本実施形態では流体出口5がほぼ大気圧な
ので、出口車室4の全周をほぼ大気圧にすることができ
る。なお従来は真下部の位置が大気圧以上になる。図3
に示すように、真上部Pu、真下部Pd及び水平部Ph
に対応する環状ディフューザ3の各寸法はピークライン
上に乗るように決めるのが好ましい。
In the present embodiment, since the fluid outlet 5 is substantially at atmospheric pressure, the entire circumference of the outlet casing 4 can be made substantially at atmospheric pressure. Conventionally, the position immediately below is higher than the atmospheric pressure. FIG.
As shown in the figure, the upper part Pu, the lower part Pd, and the horizontal part Ph
It is preferable that the dimensions of the annular diffuser 3 corresponding to are set so as to be on the peak line.

【0025】本実施形態は従来に比し環状ディフューザ
部分の変更のみに止どまる。よって大幅な変更を伴うこ
となく、低コストで性能向上を見込める利点がある。
In this embodiment, only the change of the annular diffuser portion is different from the conventional case. Therefore, there is an advantage that the performance can be improved at low cost without any significant change.

【0026】以上、本発明の実施の形態は上述のものに
限られない。また本発明はガスタービンや舶用過給機
等、あらゆる軸流タービンに適用できる。
As described above, the embodiments of the present invention are not limited to those described above. Further, the present invention can be applied to all axial flow turbines such as gas turbines and marine turbochargers.

【0027】[0027]

【発明の効果】本発明は次の如き優れた効果を発揮す
る。
The present invention exhibits the following excellent effects.

【0028】(1) 流体出口の反対側において、ディ
フューザ入口圧を減少し、タービン仕事量を増大でき
る。
(1) On the opposite side of the fluid outlet, the diffuser inlet pressure can be reduced and the turbine work can be increased.

【0029】(2) 出口車室の圧力分布を周方向に均
等化でき、タービン損失を低減できる。
(2) The pressure distribution in the outlet casing can be equalized in the circumferential direction, and the turbine loss can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態にかかる軸流タービンを示
す縦断側面図である。
FIG. 1 is a longitudinal sectional side view showing an axial flow turbine according to an embodiment of the present invention.

【図2】環状ディフューザの位置を示す概略縦断正面図
である。
FIG. 2 is a schematic longitudinal sectional front view showing a position of an annular diffuser.

【図3】環状ディフューザの圧力回復係数を示す線図で
ある。
FIG. 3 is a diagram showing a pressure recovery coefficient of an annular diffuser.

【図4】図3の線図の各寸法を説明するための図であ
る。
FIG. 4 is a diagram for explaining each dimension of the diagram of FIG. 3;

【図5】従来の軸流タービンを示す縦断側面図である。FIG. 5 is a longitudinal sectional side view showing a conventional axial flow turbine.

【符号の説明】[Explanation of symbols]

1 軸流タービン 2 動翼 3 環状ディフューザ 4 出口車室 5 流体出口 C タービン軸 F 流体 Reference Signs List 1 axial flow turbine 2 rotor blade 3 annular diffuser 4 outlet casing 5 fluid outlet C turbine shaft F fluid

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 タービン軸方向に動翼を通過した流体を
環状ディフューザで半径方向外側に導き、出口車室を通
じて流体出口から排出させる軸流タービンにおいて、上
記環状ディフューザをタービン軸に対し上記流体出口側
に偏心させたことを特徴とする軸流タービン。
1. An axial flow turbine in which a fluid that has passed through a rotor blade in an axial direction of a turbine is radially outwardly guided by an annular diffuser and discharged from a fluid outlet through an outlet casing, the annular diffuser is connected to the fluid outlet with respect to a turbine shaft. An axial turbine characterized by being eccentric to the side.
JP11009588A 1999-01-18 1999-01-18 Axial turbine Pending JP2000204908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11009588A JP2000204908A (en) 1999-01-18 1999-01-18 Axial turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11009588A JP2000204908A (en) 1999-01-18 1999-01-18 Axial turbine

Publications (1)

Publication Number Publication Date
JP2000204908A true JP2000204908A (en) 2000-07-25

Family

ID=11724496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11009588A Pending JP2000204908A (en) 1999-01-18 1999-01-18 Axial turbine

Country Status (1)

Country Link
JP (1) JP2000204908A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283587A (en) * 2005-03-31 2006-10-19 Hitachi Ltd Turbine exhaust system
CN101680360B (en) * 2007-06-26 2012-09-05 博格华纳公司 Turbocharger diffuser
WO2019076980A1 (en) * 2017-10-19 2019-04-25 Abb Turbo Systems Ag Diffusor device for an exhaust gas turbine
JPWO2020240608A1 (en) * 2019-05-24 2020-12-03
RU2772097C2 (en) * 2017-10-19 2022-05-16 Абб Швайц Аг Diffuser device of turbine operating on exhaust gases

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283587A (en) * 2005-03-31 2006-10-19 Hitachi Ltd Turbine exhaust system
JP4619849B2 (en) * 2005-03-31 2011-01-26 株式会社日立製作所 Turbine exhaust system
CN101680360B (en) * 2007-06-26 2012-09-05 博格华纳公司 Turbocharger diffuser
US8632304B2 (en) 2007-06-26 2014-01-21 Borgwarner Turbocharger diffuser
RU2772097C2 (en) * 2017-10-19 2022-05-16 Абб Швайц Аг Diffuser device of turbine operating on exhaust gases
JP7179841B2 (en) 2017-10-19 2022-11-29 エービービー スウィッツァーランド リミテッド Diffuser device for exhaust gas turbine
KR20200066358A (en) 2017-10-19 2020-06-09 에이비비 터보 시스템즈 아게 Diffuser device for exhaust gas turbine
KR102612779B1 (en) 2017-10-19 2023-12-13 터보 시스템즈 스위츠랜드 엘티디. Diffuser device for exhaust gas turbines
CN111201369A (en) * 2017-10-19 2020-05-26 Abb涡轮***有限公司 Diffuser assembly for an exhaust gas turbine
JP2020537728A (en) * 2017-10-19 2020-12-24 アーベーベー ターボ システムズ アクチエンゲゼルシャフト Exhaust gas turbine diffuser device
WO2019076980A1 (en) * 2017-10-19 2019-04-25 Abb Turbo Systems Ag Diffusor device for an exhaust gas turbine
US11208919B2 (en) * 2017-10-19 2021-12-28 Abb Schweiz Ag Diffusor device for an exhaust gas turbine
CN113767213A (en) * 2019-05-24 2021-12-07 三菱重工发动机和增压器株式会社 Centrifugal compressor and turbocharger
US20220196031A1 (en) * 2019-05-24 2022-06-23 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Centrifugal compressor and turbocharger
WO2020240608A1 (en) * 2019-05-24 2020-12-03 三菱重工エンジン&ターボチャージャ株式会社 Centrifugal compressor and turbocharger
JP7198923B2 (en) 2019-05-24 2023-01-04 三菱重工エンジン&ターボチャージャ株式会社 Centrifugal compressor and turbocharger
CN113767213B (en) * 2019-05-24 2023-12-05 三菱重工发动机和增压器株式会社 Centrifugal compressor and turbocharger
JPWO2020240608A1 (en) * 2019-05-24 2020-12-03

Similar Documents

Publication Publication Date Title
EP0526965B1 (en) Compressor casings for turbochargers
EP3564537B1 (en) Centrifugal compressor and turbocharger
JP2001289050A (en) Variable capacity turbo supercharger
CN105909320A (en) Wastegate with injected flow
JP2016539276A (en) Curved diffusion channel section of centrifugal compressor
JPH09310699A (en) Centrifugal compressor
WO2018181343A1 (en) Centrifugal compressor
US20210123444A1 (en) Mixed-flow compressor configuration for a refrigeration system
EP3421814B1 (en) Centrifugal compressor
JP2001200797A (en) Multistage centrifugal compressor
JP2019007425A (en) Centrifugal compressor and turbocharger
JP2007247622A (en) Centrifugal turbo machine
WO2018155546A1 (en) Centrifugal compressor
JP2010185361A (en) Centrifugal compressor
WO2015041174A1 (en) Rotating machine
JP7429810B2 (en) Multi-stage centrifugal fluid machine
JP2000204908A (en) Axial turbine
JPH0979192A (en) Multistage centrifugal compressor and its inter-stage injection flow passage structure
JP5232721B2 (en) Centrifugal compressor
CN110857791A (en) Range hood with current collector
JPH01318790A (en) Flashing vane of multistage pump
CN110520630B (en) Centrifugal compressor
JPH0874603A (en) Fluid extraction mechanism for compressor
JP2005240713A (en) Centrifugal compressor
KR20030006810A (en) Centrifugal compressor