WO2004109120A1 - Centrifugal blower - Google Patents

Centrifugal blower Download PDF

Info

Publication number
WO2004109120A1
WO2004109120A1 PCT/JP2003/015060 JP0315060W WO2004109120A1 WO 2004109120 A1 WO2004109120 A1 WO 2004109120A1 JP 0315060 W JP0315060 W JP 0315060W WO 2004109120 A1 WO2004109120 A1 WO 2004109120A1
Authority
WO
WIPO (PCT)
Prior art keywords
centrifugal blower
discharge
impeller
casing
discharge port
Prior art date
Application number
PCT/JP2003/015060
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiro Murakawa
Eiji Asayama
Original Assignee
Seikow Chemical Engineering & Machinery, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seikow Chemical Engineering & Machinery, Ltd. filed Critical Seikow Chemical Engineering & Machinery, Ltd.
Publication of WO2004109120A1 publication Critical patent/WO2004109120A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps

Definitions

  • the present invention relates to a core blower provided with a spiral casing used for air-conditioning equipment or ventilation equipment. [ ⁇ . Technology]
  • the figure is a longitudinal sectional view showing the structure of a blower having a conventional spiral-shaped casing.
  • the casing 10 and the impeller 11 built in the non-winding chamber of the casing 10 are tough.
  • An axial centerline 12 of the discharge P10a of the casing 10 and an axial line of the same direction as the axial direction of the discharge P10a passing through the axis of the impeller 11 (hereinafter referred to as
  • the center line 5) CL1 is parallel to and separated by a predetermined distance.
  • the flow of the fluid flowing on the outer peripheral side is faster than the flow of the fluid flowing on the inner peripheral side. Therefore, when the bending direction of the pipe connected to the discharge port 10a is the same as the rotation direction of the impeller 11, the fluid flows along the bending of the pipe, causing a large pressure loss. However, if the direction of the pipe bending is opposite to the direction of rotation of the impeller 11, the fluid in the fast flowing portion will affect the pipe, causing a large pressure loss at the pipe bending. Occurs. As a result, there is a problem that a predetermined air volume cannot be obtained.
  • the casing 10 is mounted on a base 14 of a centrifugal blower 200 together with a motor 15 for driving the impeller 11.
  • a motor 15 for driving the impeller 11 In the case where the rotation direction of the impeller 11 is the same and only the fluid discharge direction 13 is changed, as shown in FIGS. 6A, 6C and 6E, the same casing is used.
  • the base 1 is positioned so that the center line 1 2 of the discharge port 10 a substantially coincides with the discharge direction 13 (upper, left, and right in the figure) of each fluid. 4 above.
  • the shape of the part to be attached to the base 14 of the casing 10 is different from each other, it is necessary to prepare three types of bases 14 corresponding to the fluid discharge direction 13.
  • the same casing 10 forms the discharge port 10a.
  • the fluid is installed on the base 14 so that the axial center line 12 of each of them substantially coincides with the discharge direction 13 (upper, left, and right in the figure) of each fluid. Also in this case, similarly to the above, it is necessary to prepare three types of bases 14 respectively.
  • the casing 10 of the conventional centrifugal blower 200 shown by a two-dot chain line is moved to the axial center line of the discharge port 10a.
  • 1 2 is arranged on the base 14 so as to approach the first center line CL 1 of the impeller 11.
  • the discharge port of the casing 10 is arranged such that the axial center line 12 of the discharge port 10 a of the casing 10 coincides with the first center line CL 1 of the impeller 11.
  • Elbow joint 16 is attached to 10a.
  • the elbow joint 1 The axial center line 12 a of the newly formed discharge port 16 a at the end of 6 coincides with the first center line CL 1 of the impeller 11.
  • the elbow joint 16 is newly attached to the discharge P10a of the casing 10, so that the casing
  • the centrifugal blower 20 1 disclosed in Japanese Patent Application Laid-Open No. Hei 11-92493 is disclosed. Then, as shown in Fig. 7B, the casing 10 has an axial centerline 12 of the discharge P10a and a first centerline C of the impeller 11 as shown in Fig. 7B.
  • a portion 17 near the discharge P10a of the casing 10 is cut away so as to approach L1 and face in the same direction.
  • the elbow joint 16 is not attached to the discharge port 10a of the casing 10, and the axial centerline 12a of the newly formed discharge port 10b is formed. Approaches the first center line CL 1 of the impeller 11 and faces in the same direction.
  • the size of the centrifugal blower 201 does not increase.
  • the length of the diffuser section 18 of the core blower 201 becomes shorter, the flow velocity in this section 18 cannot be sufficiently reduced.
  • the air flow-static pressure curve L2 of the conventional centrifugal blower is different from the air flow-static pressure curve L2 of the centrifugal blower shown in FIG. 7B. , Shift in the direction where the static pressure decreases for the same air volume As a result, there is a problem that a predetermined air flow cannot be obtained at a predetermined static pressure.
  • An object of the present invention is to provide a centrifugal blower that can reduce the number of types compared to a blower, and a centrifugal blower having a blade built in a spiral casing and a blower.
  • the discharge passage is provided so that the axial center line of the discharge port passes through the axis of the impeller, and the discharge port of the discharge passage is directed toward the flow path.
  • a deceleration portion formed so as to be curved outward so that the flow path is gradually expanded along the discharge direction, and for decelerating a body flowing therethrough efficiently.
  • the fluid flowing quickly can approach the vicinity of the center, and the fluid flowing therethrough can be efficiently decelerated. It can be done. Therefore, even if the pipe that is connected to the discharge passage is bent in the same direction as the rotation direction of the impeller or in the opposite direction, it is difficult for fluid to be separated at this bent portion. In other words, a large pressure loss does not occur, so that the performance of the blower is degraded, and the direction of the wind impeller is changed from the conventional two types to one type. I can do it
  • the deceleration portions may be formed on both sides of the impeller near the discharge port in the discharge passage in the axial direction and in the same direction as the
  • the inner surfaces on both sides in the radial direction of the impeller near the discharge port of the discharge passage of the core blower are formed along the shape of the casing. ⁇ -There is no large pressure loss in the area.
  • the inner surfaces on both sides in the axial direction of the impeller near the discharge P of the discharge passage of the blower have the same width dimension as the axial direction of the impeller in the discharge port of the discharge passage of the blower. Since the width of the casing is larger than the width in the same direction as the axial direction of the impeller, the separation distance on the inner surface is formed so as to gradually increase toward the discharge port.
  • the flowing fluid may cause separation or the like from the inner surface of the discharge passage, which may cause a large pressure loss. Therefore, in the present invention, in order to prevent this, a speed reduction portion is provided at a portion to reduce the pressure. o As a result, it is possible to prevent an increase in pressure loss, thereby preventing a decrease in the performance of the core blower.
  • the radius of curvature of the curved portion is equal to the discharge radius of the discharge passage.
  • the inner diameter of P is formed to be 5 to 20% of the inner diameter of P. According to this configuration, the fluid flowing in the discharge passage of the core blower is efficiently decelerated at the deceleration part. This prevents an increase in pressure loss.
  • the radius of curvature of the curved part of the reduced part is less than 5% of the inner diameter of the discharge outlet of the discharge passage, it is possible to prevent the deterioration of the performance of the core blower. If the deceleration part is too short to efficiently decelerate the fluid, or if the radius of curvature of the curved part of the deceleration part exceeds 20% of the inner diameter of the discharge P in the discharge path, , The singing is large.
  • FIG. 1A is a longitudinal sectional view showing a basic configuration example of a centrifugal blower according to one embodiment of the present invention.
  • FIG. 1B is a plan view showing a basic configuration example of a centrifugal blower according to one embodiment of the present invention.
  • FIG. 1C is a partial cross-sectional view taken along line AA of the discharge passage for the centrifugal blower shown in FIG. 1B.
  • FIG. 2A is a partial cross-sectional view taken along line X1-X1 in FIG. 1B.
  • FIG. 2C is a partial sectional view taken along line AA of FIG. 1B.
  • FIG. 2D is a partial sectional view taken along line X3-X3 in FIG. 1B.
  • FIG. 2E is a partial sectional view taken along line X4-X4 in FIG. 1B.
  • FIG. 3 is a graph showing the relationship between the air volume of the centrifugal blower and the static pressure.
  • FIG. 4A is a front view of a completed centrifugal blower according to one embodiment of the present invention, and shows a configuration example in a case where a fluid discharge direction is vertically upward.
  • FIG. 4B is a front view of a completed centrifugal blower according to one embodiment of the present invention, and shows a configuration example in a case where a fluid discharge direction is rightward.
  • FIG. 4C is a front view of a completed centrifugal blower according to one embodiment of the present invention, and shows a configuration example in a case where a fluid discharge direction is a left direction.
  • FIG. 5 is a longitudinal sectional view showing the configuration of a conventional centrifugal blower provided with a spiral casing.
  • FIG. 6A is a longitudinal sectional view of a completed product of a conventional centrifugal blower, showing an example of a configuration in a case where a fluid discharge direction is vertically upward and a rotation direction of an impeller is counterclockwise.
  • FIG. 6B is a longitudinal sectional view of a completed product of the conventional centrifugal blower, and shows a configuration example in a case where the fluid discharge direction is vertically upward and the rotation direction of the impeller is clockwise.
  • FIG. 6C is a longitudinal sectional view of a completed product of the conventional centrifugal blower, showing an example of a configuration in which the fluid discharge direction is left and the impeller rotation direction is counterclockwise.
  • FIG. 6D is a longitudinal sectional view of a completed product of a conventional centrifugal blower, showing an example of a configuration in which the fluid discharge direction is left and the impeller rotation direction is clockwise.
  • FIG. 6E is a longitudinal sectional view of a completed product of a conventional centrifugal blower, showing an example of a configuration in which the fluid discharge direction is rightward and the impeller rotation direction is counterclockwise.
  • FIG. 6F is a longitudinal sectional view of a completed product of a conventional centrifugal blower, showing an example of a configuration in which the fluid discharge direction is rightward and the impeller rotation direction is clockwise.
  • FIG. 7A shows the base of the conventional centrifugal blower casing shown in Fig. 5 so that the axial center line of the discharge port passes through the axis of the impeller and approaches the center line in the same direction as the axial direction of the discharge port.
  • FIG. 7 is a vertical sectional view of another centrifugal blower in which a centrifugal blower is placed and an elbow joint is attached to a discharge port.
  • Fig. 7B shows the base of the conventional centrifugal blower casing shown in Fig. 5 so that the axial center line of the discharge port passes through the axis of the impeller and approaches the center line in the same direction as the axial direction of the discharge port.
  • FIG. 7 is a vertical cross-sectional view of another centrifugal blower in which a portion near a discharge port of a casing is cut off and is cut off.
  • FIG. 8 is a graph showing the relationship between the air volume and the static pressure of a conventional centrifugal blower.
  • the centrifugal blower 100 includes a spiral casing 1 and an impeller 2 installed in a spiral chamber 1 a of the casing 1.
  • the casing 1 is provided with a discharge passage lb formed so that the flow path expands from the outlet of the spiral chamber 1a.
  • the cross section of the spiral chamber 1a has a substantially rectangular shape, and the cross section gradually changes from the spiral chamber 1a to a circular shape through the discharge passage 1b.
  • the discharge port 1c of the discharge passage 1b has a circular shape.
  • the axial center line 3 of the discharge port 1 c is substantially the same as the center line CL 1 through the axis of the impeller 2 and in the same direction as the axial direction of the discharge port 1 c. They match. That is, the axial center line 3 passes through the axis of the impeller 2.
  • the discharge passage 1b is shown in FIG. 1C.
  • the speed reducing portion 4 for efficiently decelerating the fluid flowing inside and the width direction of the casing 1 in the axial direction of the discharge passage 1b (the same direction as the axial direction of the impeller 2).
  • An inclined portion 5 formed by enlarging at a spread angle ⁇ 1, and a radius of curvature 2 R inward in the radial direction for connecting the inclined portion 5 and the reduction portion 4.
  • a communication portion 6 formed by bending.
  • the spreading angle ⁇ 1 of the inclined portion 5 is set in advance so that the fluid does not separate in the inclined portion 5.
  • the radius of curvature of the curved deceleration section 4 is XI—XI, X2—X2, A—A, X3—X3, X3 in FIG.
  • the radius of curvature R of the reduction portion 4 is set to be equal to the discharge port of the discharge passage 1b.
  • the speed reduction unit 4 is too short to efficiently reduce the fluid. If the radius of curvature R of the reduction section 4 exceeds 20% of the inner diameter D of the discharge port 1c, In addition, the axial height H 2 of the speed reduction unit 4 is set to 0.05 D 0.2 D in accordance with the radius of curvature R of the speed reduction unit.
  • the curve of the deceleration section 4 is actually set in advance by experiment, etc., taking into account the air volume of the blower, the type of fluid to be blown, and the like.
  • H can be set to, for example, 1.5 times or less the inner diameter D of the discharge 1C.
  • the casing 1 of the centrifugal blower 100 according to the present embodiment can be more connected than the conventional case.
  • the inside diameter D of the discharge P 1 C is changed to the inside diameter D of the suction P 8 of the casing 1.
  • the force S that makes the axial centerline 3 of the discharge ⁇ 1c of the discharge passage 1b of the casing 1 coincide with the first centerline CL1 of the impeller 2 is applied to the discharge port 1c.
  • it may be set so as to substantially coincide with the second center line CL 2 of the impeller 2.
  • the centrifugal blower 100 includes a spiral casing 1 and an impeller 2 installed in a spiral chamber 1 a of the casing 1. Axial direction of discharge port 1 c of discharge passage lb of casing 1 W
  • Radius of curvature R of deceleration part 4 0.07D, deceleration part
  • the center line in the same direction as the axial direction of the discharge port 10 a (hereinafter referred to as the vertical center line) CL 1 is in parallel with a predetermined distance, does not have the above-mentioned deceleration section 4, and discharge port 1 of casing 10.
  • the comparative example 2 is different from the embodiment in that the comparative example 2 does not include the deceleration device 4. Therefore, as shown by the two-dot chain line in FIG. 1C, the spreading angle ⁇ 1 of the discharge
  • the centrifugal blower of the present embodiment needs to prepare many types in accordance with the arrangement of the pipes which make the discharge P10a like the centrifugal blower of Comparative Example 1 as described above. There is no. Specifically, as shown in Fig. 4 AC, the number of finished products of the core blower of this embodiment can be reduced from the conventional six types to three types.
  • centrifugal blower which concerns on this invention, types can be reduced compared with the conventional centrifugal blower, without deteriorating performance.
  • the centrifugal blower according to the present invention is useful as a centrifugal blower having high productivity and easy inventory management.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

A centrifugal blower (100) capable of reducing the types thereof less than those of conventional centrifugal blowers without lowering a performance. An impeller (2) is incorporated in a volute casing (1). A delivery passage (1b) formed so that the axial centerline (3) of the delivery port (1c) of the casing (1) is passed through the axis of the impeller (2) and a speed reduction part (4) formed in the delivery passage (1b), in outwardly curved shape, near the delivery port (1c) so that the flow passage can be gradually diverged along the delivery direction of the fluid to efficiently reduce the speed of the fluid flowing inside the flow passage are formed in the casing (1).

Description

遠心送風機  Centrifugal blower
〔技術分野〕 〔Technical field〕
 Light
本発明は、 空 周設備または換気設備などに使用 される渦卷き状の ケ シングを備 る 心送風機に関する。 〔 Θ.技術〕  TECHNICAL FIELD The present invention relates to a core blower provided with a spiral casing used for air-conditioning equipment or ventilation equipment. [Θ. Technology]
'- 図は、 従来の渦卷き状のケーシングを備 る 'し、送風機の構 を示す縦断面図である 。遠心送風機 2 0書  The figure is a longitudinal sectional view showing the structure of a blower having a conventional spiral-shaped casing. Centrifugal blower 20 book
成 0 は、ケ シング 1 0 と、 こ のケ シング 1 0 の無巻室に内蔵された羽根車 1 1 と を倔える。 ケ シング 1 0 の吐出 P 1 0 a の軸方向中心線 1 2 と、 羽根車 1 1 の軸線を通り 吐出 P 1 0 a の軸方向と同 じ方向の中心線 (以下、 第In the case 0, the casing 10 and the impeller 11 built in the non-winding chamber of the casing 10 are tough. An axial centerline 12 of the discharge P10a of the casing 10 and an axial line of the same direction as the axial direction of the discharge P10a passing through the axis of the impeller 11 (hereinafter referred to as
1 中心線とい 5 ) C L 1 とは、 所定の距離を隔てて平行になつてい る。 , 1) The center line 5) CL1 is parallel to and separated by a predetermined distance. ,
こ の遠心送風機 2 0 0 のケーシング 1 0 の吐出口 1 0 a において、 その外周側を流れる流体の流れが内周側を流れる流体の流れに比べ て速く なつている。 そのため、 吐出口 1 0 a に接続される配管の曲 が り 方向が羽根車 1 1 の回転方向と同 じ方向である場合には、 流体 が配管の曲が り に沿って流れるので大きな圧力損失は生じないが、 配管の曲が り方向が羽根車 1 1 の回転方向と反対方向である場合に は、 流れの速い部分の流体が影響して配管の曲が り の部分において 大きな圧力損失を生じる。 これによ り 、 所定の風量を得るこ とがで きないという 問題がある。  At the outlet 10 a of the casing 10 of the centrifugal blower 200, the flow of the fluid flowing on the outer peripheral side is faster than the flow of the fluid flowing on the inner peripheral side. Therefore, when the bending direction of the pipe connected to the discharge port 10a is the same as the rotation direction of the impeller 11, the fluid flows along the bending of the pipe, causing a large pressure loss. However, if the direction of the pipe bending is opposite to the direction of rotation of the impeller 11, the fluid in the fast flowing portion will affect the pipe, causing a large pressure loss at the pipe bending. Occurs. As a result, there is a problem that a predetermined air volume cannot be obtained.
これに対して、 従来は、 第 6 A図および第 6 B図に示すよ う に、 流体を同 じ方向 (図中、 上方) に吐き出す場合でも、 ケーシング 1 0 の吐出口 1 0 a に接続される配管の曲が り 方向に対応して、 回転 方向 (右回 り または左回 り) を異ならせた羽根車 1 1 、 および、 こ れに対応したケーシング 1 0 をそれぞれ 2種類用意している。 On the other hand, conventionally, as shown in FIGS. 6A and 6B, even if the fluid is discharged in the same direction (upward in the figure), the casing 1 0 The impeller 11 with a different rotation direction (clockwise or counterclockwise) corresponding to the bending direction of the pipe connected to the discharge port 10a, and a casing corresponding to this Two types of 10 are prepared.
こ のケ一シング 1 0 は、 遠心送風機 2 0 0 の基台 1 4上に羽根車 1 1 を駆動するモータ 1 5 と と もに設置されている。 羽根車 1 1 の 回転方向を同一と して、 流体の吐出方向 1 3 のみを変える場合、 第 6 A図、 第 6 C図および第 6 E図にそれぞれ示すよ う に、 同一のケ 一シング 1 0 を、 吐出口 1 0 a の軸方向中心線 1 2がそれぞれの流 体の吐出方向 1 3 (図中の上方、 左方、 および右方) にほぼ一致す る よ う に基台 1 4上に設置している。 しかし、 ケーシング 1 0 の基 台 1 4 に取り 付ける部分の形状がそれぞれ異なるので、 基台 1 4 を 流体の吐出方向 1 3 に対応して 3種類用意する必要がある。  The casing 10 is mounted on a base 14 of a centrifugal blower 200 together with a motor 15 for driving the impeller 11. In the case where the rotation direction of the impeller 11 is the same and only the fluid discharge direction 13 is changed, as shown in FIGS. 6A, 6C and 6E, the same casing is used. The base 1 is positioned so that the center line 1 2 of the discharge port 10 a substantially coincides with the discharge direction 13 (upper, left, and right in the figure) of each fluid. 4 above. However, since the shape of the part to be attached to the base 14 of the casing 10 is different from each other, it is necessary to prepare three types of bases 14 corresponding to the fluid discharge direction 13.
同様に、 羽根車 1 1 の回転方向が上記と異なる場合、 第 6 B図、 第 6 D図および第 6 F図に示すよ う に、 同一のケ一シング 1 0 が、 吐出口 1 0 a の軸方向中心線 1 2 がそれぞれの流体の吐出方向 1 3 (図中の上方、 左方、 および右方) にほぼ一致するよ う に基台 1 4 上に設置される。 この場合も、 上記と同様、 3種類の基台 1 4 をそ れぞれ用意する必要がある。  Similarly, when the rotation direction of the impeller 11 is different from the above, as shown in FIGS. 6B, 6D, and 6F, the same casing 10 forms the discharge port 10a. The fluid is installed on the base 14 so that the axial center line 12 of each of them substantially coincides with the discharge direction 13 (upper, left, and right in the figure) of each fluid. Also in this case, similarly to the above, it is necessary to prepare three types of bases 14 respectively.
以上によ り 、 従来は、 同一性能を有する遠心送風機 2 0 0 を少な く と も 6種類用意する必要がある。 そのため、 遠心送風機 2 0 0 の 生産性が悪く な り 、 在庫管理も煩雑になる とい う 問題がある。  As described above, conventionally, it is necessary to prepare at least six types of centrifugal blowers 200 having the same performance. Therefore, there is a problem that productivity of the centrifugal blower 200 deteriorates and inventory management becomes complicated.
そこで、 これに対処するために、例えば、第 7 A図に示すよ う に、 2点鎖線で示す従来の遠心送風機 2 0 0 のケーシング 1 0 を、 その 吐出口 1 0 a の軸方向中心線 1 2 が上記羽根車 1 1 の第 1 中心線 C L 1 に近づく よ う に基台 1 4上に配置している。 さ らに、 こ のケー シング 1 0 の吐出口 1 0 a の軸方向中心線 1 2が羽根車 1 1 の第 1 中心線 C L 1 と一致する よ う に、 こ のケーシング 1 0 の吐出口 1 0 a にエルボ継手 1 6 が取り付けられる。 これによ り 、 エルボ継手 1 6 の端部に新たに形成される吐出口 1 6 a の軸方向中心線 1 2 a が 羽根車 1 1 の第 1 中心線 C L 1 と一致する。 In order to deal with this, for example, as shown in FIG. 7A, the casing 10 of the conventional centrifugal blower 200 shown by a two-dot chain line is moved to the axial center line of the discharge port 10a. 1 2 is arranged on the base 14 so as to approach the first center line CL 1 of the impeller 11. Furthermore, the discharge port of the casing 10 is arranged such that the axial center line 12 of the discharge port 10 a of the casing 10 coincides with the first center line CL 1 of the impeller 11. Elbow joint 16 is attached to 10a. As a result, the elbow joint 1 The axial center line 12 a of the newly formed discharge port 16 a at the end of 6 coincides with the first center line CL 1 of the impeller 11.
これに り 、 上述した流れの速レ、流体は上記新たな吐出口 1 6 a の中央部近傍に近づく こ と にな り 、 この吐出口 1 6 a に接続される 配管を、 羽根車 1 1 の回転方向 と じ方向に曲げても、 反対方向に  As a result, the flow speed and the fluid described above approach the vicinity of the center of the new discharge port 16a, and the pipe connected to the discharge port 16a is connected to the impeller 11 Direction of rotation
·>- 曲げてもヽ の曲が り部分において流体の剥離などが生じにく く な る 。 その結果 、 大きな圧力損失が生じる こ と を防止する こ とが可能 になる。  ·>-Even if it is bent, fluid separation and the like will not easily occur in the bent part of (1). As a result, it is possible to prevent a large pressure loss from occurring.
しかしながら、 こ の場合、 ェルボ継手 1 6 がケーシング 1 0 の吐 出 P 1 0 a に新たに取り付けられるので、 従来に比べてケーシング However, in this case, the elbow joint 16 is newly attached to the discharge P10a of the casing 10, so that the casing
1 0 が大さ < なる と と もに圧力損失が大き く なる という 問題 ; ^ある これに対して、 特開平 1 1 一 2 9 4 3 9 3号公報に開示される遠 心送風機 2 0 1 では、 ケーシング 1 0 は、 第 7 B図に示すよ う に、 その吐出 P 1 0 a の軸方向中心線 1 2 が羽根車 1 1 の第 1 中心線 CThe problem is that the pressure loss increases as the value of 10 becomes smaller than 0. On the other hand, the centrifugal blower 20 1 disclosed in Japanese Patent Application Laid-Open No. Hei 11-92493 is disclosed. Then, as shown in Fig. 7B, the casing 10 has an axial centerline 12 of the discharge P10a and a first centerline C of the impeller 11 as shown in Fig. 7B.
L 1 に近づき同 じ方向に向く よ に 、 ケーシング 1 0 の吐出 P 1 0 a近傍の一部 1 7 を削 り 取ったよ な形状に形成されている 。 これ によ り 、 上記のよ う に、 ケーシング 1 0 の吐出口 1 0 a にェルボ継 手 1 6 を ける こ となく 、 新たに形成される吐出口 1 0 b の軸方向 中心線 1 2 a は、 羽根車 1 1 の第 1 中心線 C L 1 に近づき同 じ方向 を向く。 A portion 17 near the discharge P10a of the casing 10 is cut away so as to approach L1 and face in the same direction. As a result, as described above, the elbow joint 16 is not attached to the discharge port 10a of the casing 10, and the axial centerline 12a of the newly formed discharge port 10b is formed. Approaches the first center line CL 1 of the impeller 11 and faces in the same direction.
これによ り 、上述のよ う に、遠心送風機 2 0 1 は大き く な らない。 しかし、 心送風機 2 0 1 のディ フユーザ部 1 8 が短く なるため、 この部分 1 8 における流速を十分に落とすこ とができず、 この部分 As a result, as described above, the size of the centrifugal blower 201 does not increase. However, since the length of the diffuser section 18 of the core blower 201 becomes shorter, the flow velocity in this section 18 cannot be sufficiently reduced.
1 8 の圧力損失が増え、 遠心送風機 2 0 1 の性能が低下する とレヽ ぅ 問題がある If the pressure loss of 18 increases and the performance of the centrifugal blower 201 decreases, there is a problem
具体的には 、 第 8 図に示すよ う に 、 従来の遠心送風機の風量ー静 圧の曲線 L 1 に対して、 第 7 B図に示した遠心送風機の風量ー静圧 の曲線 L 2 は 、 同じ風量に対して静圧が小さ く なる方向にシフ トす る その結果、 所定の静圧において 所定の風量を得る こ と ができ なレ、と い う 問題がある。 Specifically, as shown in FIG. 8, the air flow-static pressure curve L2 of the conventional centrifugal blower is different from the air flow-static pressure curve L2 of the centrifugal blower shown in FIG. 7B. , Shift in the direction where the static pressure decreases for the same air volume As a result, there is a problem that a predetermined air flow cannot be obtained at a predetermined static pressure.
れに対しては、上記ディ フ ユ -ザ部 1 8 を長く する こ と によ り 、 圧力損失の増加を抑える こ と ができ るが、 上記と 同 じよ う に遠心送 風機が大き く なる と い う 問題がある。  To cope with this, by increasing the length of the diffuser section 18, it is possible to suppress an increase in pressure loss, but as in the above, the centrifugal blower is large. There is a problem.
C発明の開示〕 C Disclosure of Invention)
そこで、 本発明は、 以上の問題を解決する になされたも ので あ り 、 性能を低下させる こ と な く 、 従来の遠
Figure imgf000006_0001
風機に比べて種類 を減らすこ と ができ る遠心送風機を提供する を 目 的とする 本発明は 、 渦卷き状のケーシング内に羽根 内蔵す 心、送風 機であって 、 ケ シングに、 その吐出 口 の軸方 中心線が上記羽根 車の軸線を通る よ う に設け られた吐出通路と 吐出通路の吐出口 送該流次めを向と
Therefore, the present invention has been made to solve the above-mentioned problems, and does not reduce the performance.
Figure imgf000006_0001
An object of the present invention is to provide a centrifugal blower that can reduce the number of types compared to a blower, and a centrifugal blower having a blade built in a spiral casing and a blower. The discharge passage is provided so that the axial center line of the discharge port passes through the axis of the impeller, and the discharge port of the discharge passage is directed toward the flow path.
近傍に、 その流路が流体を吐出方向に沿つて漸 拡大される よ う に 外方に湾曲 して形成された、 その内 を流れる 体を効率よ < 減速 させるための減速部と を備える。 、 In the vicinity, there is provided a deceleration portion formed so as to be curved outward so that the flow path is gradually expanded along the discharge direction, and for decelerating a body flowing therethrough efficiently. ,
こ の構成によれば、 遠心送風機の吐出通路の吐出口 において 、 流 れの速い流体が中央部付近に近づける こ と がで る と と と もに 、 そ の中を流れる流体を効率よ く 減速させる こ と がでさ る 。 て 、 吐 出通路に接糸冗 れる配管を、 羽根車の回転方向 と 同 じ方向に曲げて も 反対方向に曲げても、 こ の曲が り 部分において流体の剥離な ど が生じに く く な り 、 大き な圧力損失は生じない れによ り 、 、 送風機の性能を低下させる こ と な < 返 'し、 風 の羽根車の回聿 方 向を 、 従来の 2種類から 1 種類にする こ とがで る  According to this configuration, at the discharge port of the discharge passage of the centrifugal blower, the fluid flowing quickly can approach the vicinity of the center, and the fluid flowing therethrough can be efficiently decelerated. It can be done. Therefore, even if the pipe that is connected to the discharge passage is bent in the same direction as the rotation direction of the impeller or in the opposite direction, it is difficult for fluid to be separated at this bent portion. In other words, a large pressure loss does not occur, so that the performance of the blower is degraded, and the direction of the wind impeller is changed from the conventional two types to one type. I can do it
また、 上記減速部は、 吐出通路の吐出 口近傍の 羽根車の軸方向 と |pj じ方向の両側にそれぞれ形成 れて も よ い。  The deceleration portions may be formed on both sides of the impeller near the discharge port in the discharge passage in the axial direction and in the same direction as the | pj direction.
般的に 心送風機の吐出通 の吐出 口近傍の 、 羽根車の径方 向の両側の内面は、 ケーシングの き形状に沿つて形成されてい るの · - で、 の部分に oレ、て大さな圧力損失は生じない。 これに対し て、 as 、送風機の吐出通路の吐出 P近傍の、 羽根車の軸方向の両側 の内面は 、送風機の吐出通路の吐出口の 、 羽根車の軸方向と同 じ方向の幅寸法が ケ シングの 羽根車の軸方向と同 じ方向の幅 寸法に比ぺて大きいので 内面の離隔距離が吐出口に向かつて漸 次拡大される よ う に形成される そのため、 こ の吐出通路内を流れ る流体が吐出通路の内面から剥離などを起し 、 大きな圧力損失が生 じる場合がある そ で 、 本発明では、 これを防止するために の部分に減速部を S けてレ、る o これによ り 、 圧力損失の増加を防ぐ こ とがで るので 心送風機の性能の低下を防止する こ とが可能 き Generally, the inner surfaces on both sides in the radial direction of the impeller near the discharge port of the discharge passage of the core blower are formed along the shape of the casing. ·-There is no large pressure loss in the area. On the other hand, as and the inner surfaces on both sides in the axial direction of the impeller near the discharge P of the discharge passage of the blower have the same width dimension as the axial direction of the impeller in the discharge port of the discharge passage of the blower. Since the width of the casing is larger than the width in the same direction as the axial direction of the impeller, the separation distance on the inner surface is formed so as to gradually increase toward the discharge port. The flowing fluid may cause separation or the like from the inner surface of the discharge passage, which may cause a large pressure loss. Therefore, in the present invention, in order to prevent this, a speed reduction portion is provided at a portion to reduce the pressure. o As a result, it is possible to prevent an increase in pressure loss, thereby preventing a decrease in the performance of the core blower.
となる。 It becomes.
また、 上記減速部は 湾曲する部分の曲率半径が吐出通路の吐出 In the deceleration section, the radius of curvature of the curved portion is equal to the discharge radius of the discharge passage.
P の内径の 5 〜 2 0 %になるよ に形成される こ とが望ま しレ、 この構成によれば 心送風機の吐出通路内を流れる流体が減速 部において効率よ <減速される o これによ り 、 圧力損失の増加を防It is desirable that the inner diameter of P is formed to be 5 to 20% of the inner diameter of P. According to this configuration, the fluid flowing in the discharge passage of the core blower is efficiently decelerated at the deceleration part. This prevents an increase in pressure loss.
j=  j =
ぐこ とができ るので 心送風機の性能の低下を防止する と力 可 能となる なねヽ 減 部の湾曲する部分の曲率半径が吐出通路の吐 出口の内径の 5 %未満の場合には 、 減速部が短すぎて流体を効率よ く減速する こ とができなレ、 また 減速部の湾曲する部分の曲率半 径が吐出 路の吐出 P の内径の 2 0 %を超える場合には、 ケ 、 シン グが大き < なる。 If the radius of curvature of the curved part of the reduced part is less than 5% of the inner diameter of the discharge outlet of the discharge passage, it is possible to prevent the deterioration of the performance of the core blower. If the deceleration part is too short to efficiently decelerate the fluid, or if the radius of curvature of the curved part of the deceleration part exceeds 20% of the inner diameter of the discharge P in the discharge path, , The singing is large.
〔図面の簡単な説明〕 [Brief description of drawings]
第 1 A図は、 本発明の一実施形態に係る遠心送風機の基本構成例を示す縦断面図で ある。  FIG. 1A is a longitudinal sectional view showing a basic configuration example of a centrifugal blower according to one embodiment of the present invention.
第 1 B図は、 本発明の一実施形態に係る遠心送風機の基本構成例を示す平面図であ る。  FIG. 1B is a plan view showing a basic configuration example of a centrifugal blower according to one embodiment of the present invention.
第 1 C図は、 第 1 B図に示す遠心送風機め吐出通路の A— A線部分断面図である。 第 2 A図は、 第 1 B図の X 1— X 1線部分断面図である。 FIG. 1C is a partial cross-sectional view taken along line AA of the discharge passage for the centrifugal blower shown in FIG. 1B. FIG. 2A is a partial cross-sectional view taken along line X1-X1 in FIG. 1B.
第 2 B図は、 第 1 B図の X 2— X 2線部分断面図である。  FIG. 2B is a partial cross-sectional view taken along line X2-X2 in FIG. 1B.
第 2 C図は、 第 1 B図の A— A線部分断面図である。  FIG. 2C is a partial sectional view taken along line AA of FIG. 1B.
第 2 D図は、 第 1 B図の X 3— X 3線部分断面図である。  FIG. 2D is a partial sectional view taken along line X3-X3 in FIG. 1B.
第 2 E図は、 第 1 B図の X 4— X 4線部分断面図である。  FIG. 2E is a partial sectional view taken along line X4-X4 in FIG. 1B.
第 3図は、 遠心送風機の風量と静圧との関係を示すグラフである。  FIG. 3 is a graph showing the relationship between the air volume of the centrifugal blower and the static pressure.
第 4 A図は、 本発明の一実施形態に係る遠心送風機の完成品の正面図であり、 流体 の吐出方向が鉛直上方である場合の構成例を示している。  FIG. 4A is a front view of a completed centrifugal blower according to one embodiment of the present invention, and shows a configuration example in a case where a fluid discharge direction is vertically upward.
第 4 B図は、 本発明の一実施形態に係る遠心送風機の完成品の正面図であり、 流体 の吐出方向が右方である場合の構成例を示している。  FIG. 4B is a front view of a completed centrifugal blower according to one embodiment of the present invention, and shows a configuration example in a case where a fluid discharge direction is rightward.
第 4 C図は、 本発明の一実施形態に係る遠心送風機の完成品の正面図であり、 流体 の吐出方向が左方である場合の構成例を示している。  FIG. 4C is a front view of a completed centrifugal blower according to one embodiment of the present invention, and shows a configuration example in a case where a fluid discharge direction is a left direction.
第 5図は、 従来の渦巻き状のケーシングを備える遠心送風機の構成を示す縦断面図 である。  FIG. 5 is a longitudinal sectional view showing the configuration of a conventional centrifugal blower provided with a spiral casing.
第 6 A図は、 従来の遠心送風機の完成品の縦断面図であり、 流体の吐出方向が鉛直 上方であって羽根車の回転方向が左回りの場合の構成例を示している。  FIG. 6A is a longitudinal sectional view of a completed product of a conventional centrifugal blower, showing an example of a configuration in a case where a fluid discharge direction is vertically upward and a rotation direction of an impeller is counterclockwise.
第 6 B図は、 従来の遠心送風機の完成品の縦断面図であり、 流体の吐出方向が鉛直 上方であって羽根車の回転方向が右回りの場合の構成例を示している。  FIG. 6B is a longitudinal sectional view of a completed product of the conventional centrifugal blower, and shows a configuration example in a case where the fluid discharge direction is vertically upward and the rotation direction of the impeller is clockwise.
第 6 C図は、 従来の遠心送風機の完成品の縦断面図であり、 流体の吐出方向が左方 であって羽根車の回転方向が左回りの場合の構成例を示している。  FIG. 6C is a longitudinal sectional view of a completed product of the conventional centrifugal blower, showing an example of a configuration in which the fluid discharge direction is left and the impeller rotation direction is counterclockwise.
第 6 D図は、 従来の遠心送風機の完成品の縦断面図であり、 流体の吐出方向が左方 であつて羽根車の回転方向が右回りの場合の構成例を示している。  FIG. 6D is a longitudinal sectional view of a completed product of a conventional centrifugal blower, showing an example of a configuration in which the fluid discharge direction is left and the impeller rotation direction is clockwise.
第 6 E図は、 従来の遠心送風機の完成品の縦断面図であり、 流体の吐出方向が右方 であって羽根車の回転方向が左回りの場合の構成例を示している。  FIG. 6E is a longitudinal sectional view of a completed product of a conventional centrifugal blower, showing an example of a configuration in which the fluid discharge direction is rightward and the impeller rotation direction is counterclockwise.
第 6 F図は、 従来の遠心送風機の完成品の縦断面図であり、 流体の吐出方向が右方 であって羽根車の回転方向が右回りの場合の構成例を示している。  FIG. 6F is a longitudinal sectional view of a completed product of a conventional centrifugal blower, showing an example of a configuration in which the fluid discharge direction is rightward and the impeller rotation direction is clockwise.
第 7 A図は、 第 5図に示す従来の遠心送風機のケーシングを、 吐出口の軸方向中心 線が羽根車の軸線を通り吐出口の軸方向と同じ方向の中心線に近づくように基台に配 置し、 さらに吐出口にエルボ継手を取り付けた、 別の遠心送風機の縦断面図である。 第 7 B図は、 第 5図に示す従来の遠心送風機のケーシングを、 吐出口の軸方向中心 線が羽根車の軸線を通り吐出口の軸方向と同じ方向の中心線に近づくように基台に配 置し、 ケーシングの吐出口近傍の一部を削り取った、 別の遠心送風機の縦断面図であ る。 Fig. 7A shows the base of the conventional centrifugal blower casing shown in Fig. 5 so that the axial center line of the discharge port passes through the axis of the impeller and approaches the center line in the same direction as the axial direction of the discharge port. Distributed to FIG. 7 is a vertical sectional view of another centrifugal blower in which a centrifugal blower is placed and an elbow joint is attached to a discharge port. Fig. 7B shows the base of the conventional centrifugal blower casing shown in Fig. 5 so that the axial center line of the discharge port passes through the axis of the impeller and approaches the center line in the same direction as the axial direction of the discharge port. FIG. 7 is a vertical cross-sectional view of another centrifugal blower in which a portion near a discharge port of a casing is cut off and is cut off.
第 8図は、 従来の遠心送風機の風量と静圧との関係を示すグラフである。  FIG. 8 is a graph showing the relationship between the air volume and the static pressure of a conventional centrifugal blower.
〔発明を実施するための最良の形態〕 [Best mode for carrying out the invention]
以下、本発明の実施の形態について図面を参照しながら説明する。 第 1 A図に示すよ う に、 遠心送風機 1 0 0 は、 渦卷き状のケーシ ング 1 と、 このケーシング 1 の渦卷室 1 a 内に設置された羽根車 2 と を備える。 ケーシング 1 には、 渦卷室 1 a の出口から流路が拡大 するよ う に形成された吐出通路 l b を備える。 第 1 B図に示すよ う に、 渦巻室 1 a の流路断面はほぼ矩形状であ り 、 その流路断面が渦 巻室 1 a から吐出通路 1 b を通して徐々 に円形状に変化し、 吐出通 路 1 b の吐出口 1 c では円形状になる。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1A, the centrifugal blower 100 includes a spiral casing 1 and an impeller 2 installed in a spiral chamber 1 a of the casing 1. The casing 1 is provided with a discharge passage lb formed so that the flow path expands from the outlet of the spiral chamber 1a. As shown in FIG. 1B, the cross section of the spiral chamber 1a has a substantially rectangular shape, and the cross section gradually changes from the spiral chamber 1a to a circular shape through the discharge passage 1b. The discharge port 1c of the discharge passage 1b has a circular shape.
また、 この吐出口 1 c の軸方向中心線 3 は、 羽根車 2 の軸線を通 り 吐出口 1 c の軸方向と同じ方向の中心線 (以下、 第 1 中心線とい う) C L 1 に略一致する よ う になっている。 すなわち、 上記軸方向 中心線 3 は羽根車 2 の軸線を通る。  The axial center line 3 of the discharge port 1 c is substantially the same as the center line CL 1 through the axis of the impeller 2 and in the same direction as the axial direction of the discharge port 1 c. They match. That is, the axial center line 3 passes through the axis of the impeller 2.
これによ り 、 比較的流れの速い流体を、 遠心送風機 1 0 0 の吐出 口 1 c の中央部付近に近づける こ とができ る。 その結果、 吐出口 1 c に接続される配管 (図示せず) を、 羽根車 2 の回転方向と同 じ方 向に曲げても、 反対方向に曲げても、 この曲が り部分において流体 の剥離などが生じにく く な り 、 大きな圧力損失が生じる こ と を防止 する こ とができ る。 以上によ り 、 羽根車 2 の回転方向を、 従来の 2 種類から 1 種類に統一するこ とができ る。  This makes it possible to bring a relatively fast flowing fluid closer to the vicinity of the center of the outlet 1c of the centrifugal blower 100. As a result, regardless of whether the pipe (not shown) connected to the discharge port 1 c is bent in the same direction as the rotation direction of the impeller 2 or in the opposite direction, the fluid at the bent portion Peeling is less likely to occur, and a large pressure loss can be prevented. As described above, the rotation direction of the impeller 2 can be unified from the conventional two types to one type.
さ らに詳細に説明する と、 この吐出通路 1 b は、 第 1 C図に示す よ う に、内側を流れる流体を効率よ く 減速させるための減速部 4 と、 吐出通路 1 b の軸方向にケーシング 1 の幅方向 (羽根車 2 の軸方向 と同じ方向である。 第 1 B図の符号 W参照。 ) の広が り角度 δ 1 で 拡大して形成された傾斜部位 5 と、 この傾斜部位 5 と減速部 4 と を 連絡するための径方向内方に曲率半径 2 Rで湾曲 して形成された連 絡部位 6 と を備える。 なお、 傾斜部位 5 の広が り角度 δ 1 は、 傾斜 部位 5 内において流体が剥離など起こ さないよ う に予め設定される。 More specifically, the discharge passage 1b is shown in FIG. 1C. In this way, the speed reducing portion 4 for efficiently decelerating the fluid flowing inside, and the width direction of the casing 1 in the axial direction of the discharge passage 1b (the same direction as the axial direction of the impeller 2). (Refer to the symbol W in the figure.) An inclined portion 5 formed by enlarging at a spread angle δ 1, and a radius of curvature 2 R inward in the radial direction for connecting the inclined portion 5 and the reduction portion 4. And a communication portion 6 formed by bending. The spreading angle δ 1 of the inclined portion 5 is set in advance so that the fluid does not separate in the inclined portion 5.
この減速部 4 は、 第 I B図に示すよ う に、 この遠心送風機 1 0 0 の吐出通路 1 b の吐出口 l c近傍の、 ケーシング 1 の幅方向の両側 As shown in FIG. IB, this deceleration section 4 is located on both sides in the width direction of the casing 1 near the discharge port l c of the discharge passage 1 b of the centrifugal blower 100.
(第 1 B図中の斜線部) に形成されている。 この減速部 4は、 第 1(Shaded area in FIG. 1B). This deceleration unit 4
C図に示すよ う に、 第 1 B図の A— A線断面視で、 吐出口 1 c の軸 方向中心線 3 に対して左右対称に所定の曲率半径 Rで径方向外方に 湾曲 して形成されている。 As shown in Fig. C, in a cross-sectional view taken along line A-A in Fig. 1B, the discharge port 1c is bent radially outward with a predetermined radius of curvature R symmetrically with respect to the axial center line 3 of the discharge port 1c. It is formed.
また 、 湾曲 した減速部 4 の曲率半径は、 第 2 A〜 E図に示すよ う に、 第 1 B図の X I — X I 、 X 2 — X 2 、 A— A、 X 3 一 X 3 、 X Further, as shown in FIGS. 2A to 2E, the radius of curvature of the curved deceleration section 4 is XI—XI, X2—X2, A—A, X3—X3, X3 in FIG.
4 — X 4線断面視で、 それぞれ R 1 、 R 2 、 R 、 R 3 ヽ R 4である。 これらは、 R 1 > R 2 > R、 および、 R 4 〉 R 3 > Rの関係を有す る。 すなわち 断面視の位置が吐出口 1 c の中心 ゝら左右方 (ケー シング 1 の幅方向に垂直な方向) に遠ざかるに従つて 、 その位置に 対応する減速部 4 の曲率半径が徐々 に大き く なる。 そして、 この減 速部 4 の左右端は、 吐出通路 l b の吐出口 l c付近の減速部 4 を除 く部位 7 にそれぞれ連続する よ う になっている 4 — X 4 section view, R 1, R 2, R, R 3 ヽ R 4 respectively. These have a relationship of R 1> R 2> R and R 4> R 3> R. In other words, as the position in cross-section moves away from the center of the discharge port 1c to the left and right (in the direction perpendicular to the width direction of the casing 1), the radius of curvature of the reduction unit 4 corresponding to that position gradually increases. Become. The left and right ends of the deceleration portion 4 are respectively connected to portions 7 excluding the deceleration portion 4 near the discharge port l c of the discharge passage lb.
こ こで、 この減速部 4 の曲率半径 Rは、  Here, the radius of curvature R of the reduction section 4 is
は 、 吐出通路 1 b の吐出口 1 c の内径である) に設定される こ とが 望ま しレ、 」れ よ 、 減速部 4 の曲率半径 Rが吐出通路 1 b の吐出口Is preferably the inner diameter of the discharge port 1c of the discharge passage 1b). However, the radius of curvature R of the reduction portion 4 is set to be equal to the discharge port of the discharge passage 1b.
1 c の内径 Dの 5 %未満の場合には、 減速部 4が短すぎて流体を効 率よ く減速する こ とができないためである。 また、 減速部 4 の曲率 半径 Rが吐出口 1 c の内径 Dの 2 0 %を超える場合には、 ケーシン グ 1 が大き く なるからである またヽ こ の減速部 の曲率半径 Rに 対応して減速部 4 の軸方向の高さ H 2 を、 0 . 0 5 D 0 . 2 Dに am If the inner diameter D of 1c is less than 5%, the speed reduction unit 4 is too short to efficiently reduce the fluid. If the radius of curvature R of the reduction section 4 exceeds 20% of the inner diameter D of the discharge port 1c, In addition, the axial height H 2 of the speed reduction unit 4 is set to 0.05 D 0.2 D in accordance with the radius of curvature R of the speed reduction unit.
BX Atする こ と が望ま しい  BX At is desirable
なお、 減速部 4 の湾曲曲線は 、 実際には、 'し、送風機の風量、 送 風する流体の種類な どに J心 じて予め実験などによ り 設定される。  Note that the curve of the deceleration section 4 is actually set in advance by experiment, etc., taking into account the air volume of the blower, the type of fluid to be blown, and the like.
上記減速部 4 では の中を流れる流体が効率よ く 減速されるの で、 流体を減速させるのに必要な吐出通路 1 b の軸方向の距離を、 従来に比べて小さ < 設定する こ と が可能になる 逆に ば、 吐出 In the deceleration section 4, the fluid flowing in the is decelerated efficiently, so that the axial distance of the discharge passage 1 b required to decelerate the fluid can be set smaller than in the past. Conversely, dispensing
P 1 c 付近に減 部 4 を けない場ム If there is no reduction 4 near P 1 c
a は、 上記距離を長 < する必要 がある  a must be longer than the above distance
り 具体的にはヽ 羽根車 2 の軸線を通 り 吐出 口 1 c に略平行な中 心線 (以下、 2 中心線とい ラ ) c L 2 力、ら吐出 P 1 C までの高さ 具体 Specifically, a center line passing through the axis of the impeller 2 and substantially parallel to the discharge port 1 c (hereinafter referred to as the center line) c L 2 Force, height to the discharge P 1 C
Hを 、 例えば 、 吐出 1 C の内径 D の 1 . 5倍以下に設定する こ と ができ る H can be set to, for example, 1.5 times or less the inner diameter D of the discharge 1C.
以上によ り 、 本実施形 に係 心送風機 1 0 0 のケ シング 1 は従来のものに比ベてコ ンノヽク ト にする こ と ができ る  As described above, the casing 1 of the centrifugal blower 100 according to the present embodiment can be more connected than the conventional case.
また、 吐出 P 1 C の内径 D を 、 ケ シング 1 の吸込 P 8 の内径 D Also, the inside diameter D of the discharge P 1 C is changed to the inside diameter D of the suction P 8 of the casing 1.
1 と 同 じに して よい。 これによ り 、 これらに接 れる配管の種 May be the same as 1. As a result, the type of piping
>- 類を統一する と もでき る  >-Can be unified
また、 こ こでは 、 ケーシング 1 の吐出通路 1 b の吐出 Π 1 c の軸 方向中心線 3 を、羽根車 2 の第 1 中心線 C L 1 に一致させている力 S こ の吐出 口 1 c に接続される配管の配置に応じて、 羽根車 2 の第 2 中心線 C L 2 に略一致する よ う に設定しても構わない。  In this case, the force S that makes the axial centerline 3 of the discharge Π1c of the discharge passage 1b of the casing 1 coincide with the first centerline CL1 of the impeller 2 is applied to the discharge port 1c. Depending on the arrangement of the connected pipes, it may be set so as to substantially coincide with the second center line CL 2 of the impeller 2.
以下、 実施例に基づいて本発明を詳述する。  Hereinafter, the present invention will be described in detail based on examples.
〔実施例〕  〔Example〕
第 1 A C図に示すよ う に、 遠心送風機 1 0 0 は、 渦卷き状のケ シング 1 と 、 こ のケーシング 1 の渦卷室 1 a 内に設置された羽根 車 2 と を備える。 ケーシング 1 の吐出通路 l b の吐出口 1 c の軸方 W As shown in FIG. 1 AC, the centrifugal blower 100 includes a spiral casing 1 and an impeller 2 installed in a spiral chamber 1 a of the casing 1. Axial direction of discharge port 1 c of discharge passage lb of casing 1 W
10 向中心線 3 が羽根車 2 の垂直方向中心線 C L 1 に略一致する よ う に なっている。 この吐出口 l c近傍に減速部 4 を備える  The 10-direction center line 3 substantially coincides with the vertical center line C L 1 of the impeller 2. A deceleration unit 4 is provided near this discharge port l c
そして、 こ の遠心送風機 1 0 0 では、 ケーシング 1 の吐出口 1 a の内径 Dに対して、 羽根車 2 の第 2 中心線 C L 2から吐出口 1 c の 高さ H = 0 . 9 5 D、 減速部 4 の曲率半径 R = 0 . 0 7 D 、 減速部 In the centrifugal blower 100, the height H of the discharge port 1 c from the second center line CL 2 of the impeller 2 with respect to the inner diameter D of the discharge port 1 a of the casing 1 is H = 0.95 D. , Radius of curvature R of deceleration part 4 = 0.07D, deceleration part
4 の高さ H 2 = 0 . 0 7 D、吐出通路 1 b の広が り角度 δ 1 = 2 8 ° に設定されている。 4, the height H 2 = 0.07 D, and the divergence angle δ 1 = 28 ° of the discharge passage 1b.
〔比較例 1 〕  [Comparative Example 1]
比較例 1 は、 第 5 図に示すよ う に、 実施例に対してヽ ケ一シング In Comparative Example 1, as shown in FIG.
1 0 の吐出口 1 0 a の軸方向中心線 1 2 と、 羽根車 1 1 の軸線を通 り 吐出口 1 0 a の軸方向と同じ方向の中心線 (以下、 垂直方向中心 線とい う) C L 1 とが所定の距離を隔てて平行になつている こ と、 上記減速部 4 を備えないこ と、 および、 ケーシング 1 0 の吐出口 1Through the axial centerline 1 2 of the discharge port 10 a 10 a and the axis of the impeller 11 1, the center line in the same direction as the axial direction of the discharge port 10 a (hereinafter referred to as the vertical center line) CL 1 is in parallel with a predetermined distance, does not have the above-mentioned deceleration section 4, and discharge port 1 of casing 10.
0 a の内径 D 2 (ほぼ 0 . 8 5 D ) に対して、 羽根車 1 1 の第 2 中 心線 C L 2 力 ら吐出口 1 0 a までの高さ H 3 = 0 . 9 2 D 2 し 1¾ 疋 されているこ と が相違する。 その他は実施例と同等である For the inner diameter D 2 of 0 a (approximately 0.85 D), the height H 3 = 0.92 D 2 from the second center line CL 2 of the impeller 11 to the discharge port 10 a However, it is different from the one that is posted. Others are equivalent to the embodiment.
〔比較例 2 〕  (Comparative Example 2)
比較例 2 は、 第 7 B図に示すよ う に、 実施例に対して 、 上記減速 都 4 を備えないこ とが相違する。 そのため、 第 1 C図の 2点鎖線で 示すよ う に、 上述した吐出通路 1 b の広が り 角度 δ 1 が 2 8 ° 力 ら As shown in FIG. 7B, the comparative example 2 is different from the embodiment in that the comparative example 2 does not include the deceleration device 4. Therefore, as shown by the two-dot chain line in FIG. 1C, the spreading angle δ1 of the discharge
3 0 ° に広がっている。 その他は、 実施例と 同等である Spreads over 30 °. Others are the same as the embodiment.
〔特性の評価〕  [Evaluation of properties]
上記実施例、 比較例 1 および比較例 2 の遠心送風機を用いて、 遠 心送風機の性能測定し、 その評価を行った。 その結果を第 3 図に示 す。 図中、 符号 L l 、 L 2、 L 3 は、 それぞれ比較例 1 比較例 2、 および実施例に対応する性能曲線である。  Using the centrifugal blowers of the above example, comparative examples 1 and 2, the performance of the centrifugal blowers was measured and evaluated. Figure 3 shows the results. In the figure, symbols L1, L2, and L3 are performance curves corresponding to Comparative Example 1, Comparative Example 2, and Example, respectively.
第 3 図に示すよ う に、 比較例 1 (性能曲線 L 1 ) と実施例 (性能 曲線 L 3 ) と を比べる と、 比較例 1 に対して実施例の性能が大き く 低下していない と 力 Sわ力 る。 これによ り 、 実施例は比較例 1 と 同 等の性能である と レ、える。 し力 も、 本実施例の遠心送風機は 、 上述 した に、 比較例 1 の遠心送風機のよ う に、 吐出 P 1 0 a に 糸冗 する配管の配置に対応して多く の種類を用意する必要がない 。 具体 的には 第 4 A C図に示すよ う に、 本実施例の 心送風機の完成 品の種類を、 従来の 6種類力 ら 3種類まで削減する こ と がでさ る。As shown in FIG. 3, when the comparative example 1 (performance curve L 1) and the example (performance curve L 3) are compared, the performance of the example is larger than that of comparative example 1. If it does not decrease, it will be strong. This indicates that the example has the same performance as that of the comparative example 1. As described above, the centrifugal blower of the present embodiment needs to prepare many types in accordance with the arrangement of the pipes which make the discharge P10a like the centrifugal blower of Comparative Example 1 as described above. There is no. Specifically, as shown in Fig. 4 AC, the number of finished products of the core blower of this embodiment can be reduced from the conventional six types to three types.
―方 比較例 2 は、 実施例と 同 じよ う に、 遠心送風機の種類を減 - らす と はでさ るが、 第 3 図に示すよ う に、 遠心送風機の性能が低 下してレ、る o 特に 、 遠心送風機の高風量域において 、 実施例 (性能 曲線 L 3 ) に対して比較例 2 (性能曲線 L 2 ) の静圧が大き く 低下 し、 大さ な圧力損失が生じている。 れは、 上述した吐出通路 1 b に減 部 4 がき A -In Comparative Example 2, although the type of the centrifugal blower is reduced as in the example, as shown in Fig. 3, the performance of the centrifugal blower is reduced. O In particular, in the high air volume region of the centrifugal blower, the static pressure of Comparative Example 2 (performance curve L 2) is significantly lower than that of the embodiment (performance curve L 3), causing a large pressure loss. ing. This is due to the reduced part 4 in the discharge passage 1b described above.
RXけ られていないので、 その中を流れる流体が十分に 減速されなレヽ と 、および、吐出通路 1 b の広が り 角度 δ 1 が 2 8 ° 力、ら 3 0 ° に広がつたこ と によ り 、 吐出通路 1 b の内面で流体の剥 離な どが起こ やすく なつたこ と による もの と 考免 られる。 これに よ り 、遠心送風機 1 0 0 の吐出通路 1 b に減速部 4 を設ける こ と 力 圧力損失を低減させる こ と に効果的である こ と がわかる。  Since the RX is not vibrated, the fluid flowing through it has not been sufficiently decelerated, and the spread angle δ1 of the discharge passage 1b has spread to 28 ° force and 30 °. Accordingly, it can be considered that fluid separation easily occurs on the inner surface of the discharge passage 1b. From this, it can be seen that providing the reduction section 4 in the discharge passage 1b of the centrifugal blower 100 is effective in reducing the force and pressure loss.
また、 上述 した実施形態は一例であ り 、 本発明の要旨を損なわな い範囲での種々 の変更は可能であ り 、 本発明は上述した実施形態に 限定される も の ではない。  Further, the above-described embodiment is an example, and various changes can be made without departing from the spirit of the present invention, and the present invention is not limited to the above-described embodiment.
〔産業上の利用の可能性〕 [Possibility of industrial use]
本発明に係る遠心送風機によれば、 性能を低下させる こ と な く 、 従来の遠心送風機に比べて種類を減らすこ と ができ る。 その結果、 本発明に係る遠心送風機は、 生産性が良く 在庫管理も容易な遠心送 風機と して有用である。  ADVANTAGE OF THE INVENTION According to the centrifugal blower which concerns on this invention, types can be reduced compared with the conventional centrifugal blower, without deteriorating performance. As a result, the centrifugal blower according to the present invention is useful as a centrifugal blower having high productivity and easy inventory management.

Claims

1 . 渦巻き状のケーシング内に羽根車を内蔵する遠心送風機であ つて、 1. A centrifugal blower with a built-in impeller inside a spiral casing,
上記ケーシングに、 その吐出口の軸方向中心線が上記羽根車の軸 請  The axial center line of the discharge port on the casing is aligned with the shaft of the impeller.
線を通るよ う に設けられた吐出通路と、 A discharge passage provided to pass through the line,
該吐出通路の吐出口近傍に、 その流路が流体を吐出方向に沿って 漸次拡大されるよ う に外方に湾曲して形成された、 その内側を流れ る流体を効率よく減速させるための減速部とを備えてなる、 遠心送 風機。  In the vicinity of the discharge port of the discharge passage, the flow path is formed so as to be curved outward so as to gradually expand the fluid in the discharge direction. A centrifugal blower comprising a reduction unit.
 Enclosure
2 . 上記減速部が、 上記吐出通路の吐出口近傍の、 羽根車の軸方 向と同じ方向の両側にそれぞれ形成されてなる、 請求項 1 に記載の 遠心送風機。  2. The centrifugal blower according to claim 1, wherein the deceleration portions are formed on both sides in the same direction as the axial direction of the impeller, near the discharge port of the discharge passage.
3 . 上記減速部は、 湾曲する部分の曲率半径が上記吐出通路の吐 出口の内径の 5〜 2 0 %になるよ う に形成されてなる、 請求項 1 に 記載の遠心送風機。 3. The centrifugal blower according to claim 1, wherein the deceleration portion is formed such that the radius of curvature of the curved portion is 5 to 20% of the inner diameter of the discharge outlet of the discharge passage.
4 . 上記減速部は、 湾曲する部分の曲率半径が上記吐出通路の吐 出口の内径の 5 〜 2 0 %になるよ う.に形成されてなる、 請求項 2に 記載の遠心送風機。  4. The centrifugal blower according to claim 2, wherein the deceleration portion is formed such that a radius of curvature of a curved portion is 5 to 20% of an inner diameter of the discharge outlet of the discharge passage.
PCT/JP2003/015060 2003-06-05 2003-11-26 Centrifugal blower WO2004109120A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-160153 2003-06-05
JP2003160153A JP4590167B2 (en) 2003-06-05 2003-06-05 Centrifugal blower

Publications (1)

Publication Number Publication Date
WO2004109120A1 true WO2004109120A1 (en) 2004-12-16

Family

ID=33508568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/015060 WO2004109120A1 (en) 2003-06-05 2003-11-26 Centrifugal blower

Country Status (4)

Country Link
JP (1) JP4590167B2 (en)
CN (1) CN100404878C (en)
TW (1) TWI253491B (en)
WO (1) WO2004109120A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104420431B (en) * 2013-08-28 2016-08-10 苏州宝时得电动工具有限公司 Blowing device
CA3139766C (en) 2019-10-17 2023-10-31 Zhongshan Broad-Ocean Motor Co., Ltd. Volute assembly and induced draught fan using same
CN211082385U (en) * 2019-10-17 2020-07-24 中山大洋电机股份有限公司 Volute component and induced draft fan applying same
EP4191072A4 (en) * 2020-07-29 2023-09-20 Mitsubishi Electric Corporation Scroll casing of centrifugal blower, centrifugal blower provided with scroll casing, air conditioner, and refrigeration circuit device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5313610U (en) * 1976-07-19 1978-02-04
JPH03217699A (en) * 1990-01-23 1991-09-25 Nissan Motor Co Ltd Scroll structure of compressor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB733533A (en) * 1952-08-26 1955-07-13 Establissements Neu Sa Des Improvements in or relating to centrifugal blowers, compressors, pumps and the like
US3860360A (en) * 1973-09-04 1975-01-14 Gen Motors Corp Diffuser for a centrifugal compressor
JPS5529381Y2 (en) * 1976-01-19 1980-07-12
JPS59131799A (en) * 1983-12-19 1984-07-28 Hitachi Ltd Casing for centrifugal hydraulic machine
DK1061265T3 (en) * 1999-06-14 2006-02-06 Waertsilae Nsd Schweiz Ag Charging group for a large diesel engine
JP2001193682A (en) * 2000-01-06 2001-07-17 Ebara Corp Voltex pump

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5313610U (en) * 1976-07-19 1978-02-04
JPH03217699A (en) * 1990-01-23 1991-09-25 Nissan Motor Co Ltd Scroll structure of compressor

Also Published As

Publication number Publication date
TWI253491B (en) 2006-04-21
CN1788168A (en) 2006-06-14
JP4590167B2 (en) 2010-12-01
JP2004360579A (en) 2004-12-24
TW200427930A (en) 2004-12-16
CN100404878C (en) 2008-07-23

Similar Documents

Publication Publication Date Title
US9322413B2 (en) Centrifugal fan
WO2009139422A1 (en) Centrifugal fan
US20110229327A1 (en) Centrifugal multiblade fan
WO2017026150A1 (en) Air blower and air conditioning device equipped with air blower
EP2775146B1 (en) Cross-flow fan
JP5879363B2 (en) Multi-blade fan and air conditioner equipped with the same
EP3135918B1 (en) Centrifugal fan
US11808270B2 (en) Impeller, multi-blade air-sending device, and air-conditioning apparatus
WO2014141613A1 (en) Air blower
JP3812537B2 (en) Centrifugal blower
WO2004109120A1 (en) Centrifugal blower
JP6844526B2 (en) Multi-wing centrifugal fan
JP5825339B2 (en) Cross flow fan wings
JP2006077631A (en) Impeller for centrifugal blower
JP2006125229A (en) Sirocco fan
US12000602B2 (en) Air-conditioning apparatus
WO2014097625A1 (en) Air conditioner
US20090169373A1 (en) Centrifugal blower and bottom housing thereof
JP2009013923A (en) Centrifugal blower
JP6860331B2 (en) Diffuser, discharge channel, and centrifugal turbomachinery
US20220214052A1 (en) Cross flow fan blade, cross flow fan, and air conditioner indoor unit
JP4698818B2 (en) Multi-blade blower
US20220372990A1 (en) Impeller, multi-blade fan, and air-conditioning apparatus
JP7179202B2 (en) Blowers and air conditioners
WO2024038506A1 (en) Refrigeration cycle device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20038B0333X

Country of ref document: CN

122 Ep: pct application non-entry in european phase