JPH03200402A - High speed heavy load tire - Google Patents

High speed heavy load tire

Info

Publication number
JPH03200402A
JPH03200402A JP1342115A JP34211589A JPH03200402A JP H03200402 A JPH03200402 A JP H03200402A JP 1342115 A JP1342115 A JP 1342115A JP 34211589 A JP34211589 A JP 34211589A JP H03200402 A JPH03200402 A JP H03200402A
Authority
JP
Japan
Prior art keywords
tire
bead
tread
carcass
normal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1342115A
Other languages
Japanese (ja)
Inventor
Kiyoshi Kamiyoko
清志 上横
Eimei Yoshikawa
栄明 吉川
Katsuto Miura
克仁 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP1342115A priority Critical patent/JPH03200402A/en
Publication of JPH03200402A publication Critical patent/JPH03200402A/en
Pending legal-status Critical Current

Links

Landscapes

  • Tires In General (AREA)

Abstract

PURPOSE:To reduce full thickness and bending rigidity of a shoulder part to suppress bending deformation and heat generation of a bead part by setting a ratio of full thickness of a point in 90% contact with the ground on a tread part to full thickness on a tire equator at a specific value or less. CONSTITUTION:The tire 1 is provided with at least a radial-structured carcass 7 which extends from a tread part 5 through a side wall part 4 to a bead part 3 and folded back around a bead core 2 and a belt layer 10 which is placed outside the radial direction of the carcass 7 and inside the tread part 5. In this case full thickness of the tread part on a tire equator A is assumed to be TA. In such a state that the tire 1 is attached to a normal rim R and filled with normal inner pressure as well as applied with normal load, full thickness of the tread part of a point B in 90% contact with the ground which isolates 90% of length L from the tire equator A to a ground contacting end C in a tire axial direction is assumed to be TB. Thickness ratio of TB/TA is set to 1 or lower.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ビード変形及びビード発熱を低減でき、ビー
ド損傷を抑制し耐久性を向上しうる高速重荷重用タイヤ
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high-speed, heavy-load tire that can reduce bead deformation and bead heat generation, suppress bead damage, and improve durability.

〔従来の技術〕[Conventional technology]

近年、高荷重、高速条件で使用されるタイヤ、例えば航
空機用タイヤにおいても構造耐久性能、走行性能、燃費
性能等の向上のためにラジアル構造が採用されつつある
。しかしながらこのような航空機用タイヤは、高内圧、
高荷重、高速条件下で使用されるため、他の分野のタイ
ヤに比べ高い耐久性能が要求され、特にビード部は、離
着陸時の大きな負荷による曲げ変形に伴う歪によりカー
カス端部及びその近傍に剥離損傷が発生しやすく、従ワ
て従来、ビードボリュームの増加、有機、無機繊維コー
ドからなる補強層を用いる等により、ビード部の剛性を
高め、前記曲げ変形の抑制が計られている。
In recent years, radial structures have been increasingly adopted in tires used under high-load, high-speed conditions, such as aircraft tires, in order to improve structural durability, running performance, fuel efficiency, and the like. However, such aircraft tires have high internal pressure,
Since tires are used under high load and high speed conditions, higher durability performance is required compared to tires in other fields.In particular, the bead part is damaged due to bending deformation due to large loads during takeoff and landing, causing damage to the end of the carcass and its vicinity. Peeling damage is likely to occur, and conventionally attempts have been made to increase the rigidity of the bead portion and suppress the bending deformation by increasing the bead volume, using a reinforcing layer made of organic or inorganic fiber cords, or the like.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、このような剛性強化策では、曲げ変形に
伴う内部発熱を低減しえず、満足のいくビード部損傷の
防止効果を得るに至っていない。
However, such rigidity strengthening measures cannot reduce internal heat generation due to bending deformation, and have not yet achieved a satisfactory effect of preventing damage to the bead portion.

従って、本発明者らは、ビード部の曲げ変形について米
国航空局規格TSO−C62cに基づく離陸タクシ−シ
ュミレーシランテスト等を用いて種々の研究を積み重ね
た。その結果、正規リムRに装着されかつ正規内圧を充
填した第4図に示す無負荷時のタイヤビード部AOと正
規荷重での負荷時のタイヤビード部AIとを比較した場
合、負荷時のビード部A1は、無負荷時のビード部AO
のプロファイルに影響されることなくほぼ一定の形状に
変形すること、及びビード部の内部発熱は、第5図に示
すように、例えばリムフランジRaの外側縁から立上げ
た垂線における、各ビード部AO1A1外面とリムフラ
ンジRa−ヒ縁との間の各長さ、即ち初期高さhO1負
荷高さhlの差であるビード変形11ho−hlが小さ
いほど低いことを見出し得た。さらにビード変形量ho
−hlを下げるべくビード部の厚さ、とくに変曲点部分
の厚さであるクリンチ厚さを増すことにより剛性を高め
ることは、むしろビード部の発熱を増大することも見出
している。
Therefore, the inventors of the present invention have conducted various studies on the bending deformation of the bead portion using a take-off taxi simulation silan test based on the National Civil Aviation Administration standard TSO-C62c. As a result, when comparing the unloaded tire bead part AO shown in Fig. 4, which is mounted on the regular rim R and filled with the regular internal pressure, and the tire bead part AI when loaded with the regular load, it is found that the tire bead part AI when loaded is Part A1 is the bead part AO when no load is applied.
As shown in FIG. It has been found that the smaller the bead deformation 11ho-hl, which is the difference between the lengths between the outer surface of AO1A1 and the edge of the rim flange Ra, that is, the initial height hO1 and the load height hl, is lower. Furthermore, bead deformation amount ho
It has also been found that increasing the rigidity by increasing the thickness of the bead portion, particularly the clinch thickness, which is the thickness of the inflection point portion, in order to lower -hl, rather increases the heat generation of the bead portion.

本発明者らは、さらにビード部変形量hl−h0の減少
について研究を重ねた結果、前記ビード部変形量hl−
hoはショルダ一部のトレッド部全厚さが影響すること
、しかも従来タイヤに比してショルダー側のトレッド部
全厚さをタイヤ赤道上のトレッド部全厚さ以下とするこ
とにより、前記ビード変形11hl−hOを滅じうるこ
とに気付いた。
As a result of further research on reducing the bead portion deformation amount hl-h0, the present inventors found that the bead portion deformation amount hl-h0
ho is affected by the total thickness of the tread part of the shoulder part, and by making the total thickness of the tread part on the shoulder side less than the total thickness of the tread part on the tire equator compared to conventional tires, the bead deformation can be reduced. It was noticed that 11hl-hO could be destroyed.

従って本発明はビード部曲げ変形とビード発熱とを低減
でき、ビード損傷を抑制しうる高速重荷重用タイヤの提
供を目的としている。
Therefore, an object of the present invention is to provide a high-speed, heavy-load tire that can reduce bead bending deformation and bead heat generation, and can suppress bead damage.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、トレッド部からサイドウオール部をへてビー
ド部のビードコアの廻りで折返されるラジアル構造のカ
ーカスと、該カーカスのタイヤ半径方向外側かつトレッ
ド部内方に配されるベルト層とを具えるとともに、タイ
ヤ赤道A上のトレッド部全厚さTAと、タイヤを正規リ
ムに取付けかつ正規内圧を充填するとともに正規荷重を
付加した正規状態におけるタイヤ軸方向の接地端までの
タイヤ赤道Aからの長さしの90%を前記タイヤ赤道A
から隔てる90%接地点Bにおけるトレッド部全厚さT
Bとの厚さ比TB/TAを1以下とした高速重荷重用タ
イヤである。
The present invention includes a carcass with a radial structure that extends from the tread portion through the sidewall portion and is folded back around the bead core of the bead portion, and a belt layer disposed outside the carcass in the tire radial direction and inside the tread portion. In addition, the total thickness TA of the tread on the tire equator A, and the length from the tire equator A to the ground contact edge in the axial direction of the tire in the normal state when the tire is mounted on a normal rim, filled with the normal internal pressure, and the normal load is applied. 90% of the length is the tire equator A
The total thickness T of the tread portion at the 90% grounding point B separated from
This is a high-speed heavy load tire with a thickness ratio TB/TA of 1 or less.

〔作用〕[Effect]

90%接地点Bにおけるトレッド部全厚さTBと、タイ
ヤ赤道上のトレッド部全厚さTAとの厚さ比TB/TA
を1以下とし、ショルダ一部の全厚さを従来タイヤに比
して減じることにより、ショルダ一部の曲げ剛さが相対
的に減少する。従って、内圧充填に伴い、第2図に実線
で示すように、ショルダ一部における曲率半径R3は、
破線で示す従来タイヤの曲率半径rsよりも大となる反
面、ビード部を外向きにせり出させうる。又このせり出
しによって、前記初期高さhoが従来タイヤの初期高さ
hosに比べて減じることになり、ビード変形1ho−
hlを減少させ、ビード発熱を抑制しうるのである。
Thickness ratio TB/TA between the total tread thickness TB at the 90% grounding point B and the total tread thickness TA at the tire equator
By setting 1 or less and reducing the total thickness of the shoulder part compared to conventional tires, the bending stiffness of the shoulder part is relatively reduced. Therefore, as the internal pressure is filled, the radius of curvature R3 at a portion of the shoulder, as shown by the solid line in FIG.
Although the radius of curvature rs is larger than the radius of curvature rs of the conventional tire shown by the broken line, the bead portion can be made to protrude outward. Also, due to this protrusion, the initial height ho is reduced compared to the initial height hos of the conventional tire, and the bead deformation 1ho-
This reduces hl and suppresses bead heat generation.

〔実施例〕〔Example〕

以下本発明の一実施例をタイヤサイズ46×17R20
の航空機用タイヤの場合を例にとり、図面に基づき説明
する。
An embodiment of the present invention will be described below with tire size 46×17R20.
This will be explained based on the drawings, taking as an example the case of an aircraft tire.

正規リムRに装着されかつ正規内圧を付加したときのタ
イヤ軸を含むタイヤ断面を示す第1図において、高速重
荷重用タイヤ1(以下タイヤ1という)は、ビードコア
2が通るビード部3と、該ビード部3に連なりかつタイ
ヤ半径方向外向きにのびるサイドウオール部4と、その
外端間を継ぐトレッド部5とを具えている。
In FIG. 1, which shows a cross section of the tire including the tire shaft when mounted on a regular rim R and applying regular internal pressure, a high-speed heavy load tire 1 (hereinafter referred to as tire 1) has a bead portion 3 through which a bead core 2 passes, and a bead portion 3 through which a bead core 2 passes. The tire includes a sidewall part 4 that is continuous with the bead part 3 and extends outward in the tire radial direction, and a tread part 5 that connects the outer ends of the sidewall part 4.

さらにタイヤ1には、ビードコア2を、タイヤの内側か
ら外側に折返す複数枚、例えば4枚のインナープライか
らなる内層7Aと、この内層7Aの折返し部を囲みタイ
ヤの外側から内側に巻下す複数枚、例えば2枚のアウタ
ーブライからなる外層7Bとを有するカーカス7が設け
られる。
Furthermore, the tire 1 includes an inner layer 7A consisting of a plurality of layers, for example, four inner plies, in which the bead core 2 is folded from the inside to the outside of the tire, and a plurality of inner layers surrounding the folded portion of the inner layer 7A and wound from the outside to the inside of the tire. A carcass 7 is provided having an outer layer 7B consisting of two outer layers, for example two outer layers.

前記内層7Aは、サイドウオール部、トレッド部を通り
トロイド状をなす本体部70にビードコア2をタイヤ内
側から外側に折返す折返し部71を有し、又外層7Bは
トロイド状の本体部73にビードコア2の外から内に巻
下ろした巻下ろし部74を具える。
The inner layer 7A has a folded part 71 that passes through the sidewall part and the tread part and folds the bead core 2 from the inside to the outside of the tire on a toroid-shaped body part 70, and the outer layer 7B has a toroid-shaped body part 73 with a bead core 2 folded back. It is provided with an unwinding part 74 which is unwound from the outside of the 2 to the inside.

インナープライ及びアウタープライは本例では有機繊維
コードからなるカーカスコードを用いており、該カーカ
スコードはタイヤ赤道に対して70度〜90度の傾きを
有するラジアル方向に配置されるとともに、カーカス7
は、隣り合うカーカスプライ間において、夫々カーカス
コードが円周方向に対して交互に交叉して傾いている。
In this example, carcass cords made of organic fiber cords are used as the inner ply and the outer ply.
In this case, the carcass cords are alternately crossed and inclined with respect to the circumferential direction between adjacent carcass plies.

なお有機繊維コードとして、レーヨン、ポリエステル、
ビニロン、ナイロン、芳香族ポリアミド等を用いうる。
In addition, organic fiber cords include rayon, polyester,
Vinylon, nylon, aromatic polyamide, etc. can be used.

又前記カーカス7の内層7Aの本体部70と折返し部7
1との間にはビードコア2の上方において半径方向外向
きにのびるビードエーペックスゴム9が配される。又ビ
ード部3において、カーカス7の外層7Bの本体部73
には、その外側面に沿って半径方向内外にのびる小厚さ
のサイドバッキングゴム15が配される。なおサイドバ
ッキングゴム15の下端15aは、外層7Bの前記巻下
ろし部7層下面をのびる補強フィシ16の上端で途切れ
るとともに、サイドバッキングゴム15は、ビード部3
からサイドウオール部4に亘ってタイヤ外側面をなすサ
イドウオールゴム17により覆われる。
Moreover, the main body part 70 and the folded part 7 of the inner layer 7A of the carcass 7
A bead apex rubber 9 extending radially outward above the bead core 2 is disposed between the bead core 2 and the bead core 2 . Also, in the bead portion 3, the main body portion 73 of the outer layer 7B of the carcass 7
A small-thick side backing rubber 15 is disposed along the outer surface of the holder, extending radially inward and outward. Note that the lower end 15a of the side backing rubber 15 is interrupted at the upper end of the reinforcing fin 16 extending on the lower surface of the unrolled portion 7 layer of the outer layer 7B, and the side backing rubber 15 is
The sidewall portion 4 is covered with sidewall rubber 17 that forms the outer surface of the tire.

又トレッド部5には、その内部にカーカス7の半径方向
外側に位置してベルト層10が設けられ、又本例では、
前記ベルト層10と前記カーカス7との間には、カット
ブレーカ14が介在し、しかもベルト層7は、その外面
を保護層18により覆われることにより、耐カツト性能
を高めている。
Further, the tread portion 5 is provided with a belt layer 10 inside thereof located outside the carcass 7 in the radial direction, and in this example,
A cut breaker 14 is interposed between the belt layer 10 and the carcass 7, and the outer surface of the belt layer 7 is covered with a protective layer 18 to improve cut resistance.

前記ベルト層10は、前記カットブレーカ14に略接し
て配した複数枚、例えば8枚のベルトプライからなる。
The belt layer 10 is composed of a plurality of belt plies, for example eight belt plies, which are arranged substantially in contact with the cut breaker 14.

前記カットブレーカ14は、2層のカットブレーカプラ
イを用いる一方、このカットブレーカ14は、タイヤ赤
道を挟んだ該トレッド面の中央部であるクラウン部分2
0では、カーカス7に沿うとともに、その外方で該カー
カス7から徐々に離間してその外端は、タイヤ全巾Wの
65γ85%程度の位置、好ましくは70〜78%程度
の範囲の位置で終端する。
The cut breaker 14 uses a two-layer cut breaker ply, and the cut breaker 14 has a crown portion 2 which is the central portion of the tread surface across the tire equator.
0, along the carcass 7 and gradually away from the carcass 7 on the outside thereof, the outer end is at a position of about 65γ85% of the total width W of the tire, preferably at a position in the range of about 70 to 78%. terminate.

さらにベルト層10は、カットブレーカ14に接しかつ
その外端は、カットブレーカ14の外端を外方に越えて
延在するとともにタイヤ外表面に沿う斜面に合わせて側
端面が整一する。又ベルト巾は、タイヤ全巾Wの70〜
85%程度の範囲であって、ベルト側端面からタイヤ外
表面までの最短距離L1が3〜15fi程度の範囲とな
るように設定される。
Further, the belt layer 10 is in contact with the cut breaker 14, and its outer end extends outward beyond the outer end of the cut breaker 14, and its side end surfaces are aligned with the slope along the outer surface of the tire. Also, the belt width is 70~ of the total tire width W.
85%, and the shortest distance L1 from the belt side end face to the tire outer surface is set to be in the range of about 3 to 15 fi.

ベルトブライを形成するベルトコードは、低伸長性の弾
性コードを用い、かつベルトコードはタイヤ赤道に対し
て0〜20度の角度で傾けて並置している。
The belt cords forming the belt brie are made of low-extensibility elastic cords, and the belt cords are arranged side by side at an angle of 0 to 20 degrees with respect to the tire equator.

そして本発明においては、タイヤ赤道A上のトレッド部
全厚さTAと、タイヤを正規リムRに取付けかつ正規内
圧を充填するとともに正規荷重を付加した正規状態にお
けるタイヤ軸方向の接地端Cまでのタイヤ赤道Aからの
長さしの90%を前記タイヤ赤道Aがら隔てる90%接
地点Bにおけるトレッド部全厚さTBとの厚さ比TB/
TAを1以下としている。なおトレッド部全厚さTA、
TBとは、トレッド面に直交する向きに測定した値であ
り、トレッド面から、タイヤ内腔に向く内面までの全厚
さをいう。
In the present invention, the total thickness TA of the tread part on the tire equator A and the contact point C in the axial direction of the tire in the normal state when the tire is mounted on the normal rim R, filled with the normal internal pressure, and the normal load is applied. Thickness ratio TB/ of the total thickness TB of the tread portion at the 90% grounding point B that separates 90% of the length from the tire equator A from the tire equator A.
TA is set to 1 or less. In addition, the total thickness of the tread part TA,
TB is a value measured in a direction perpendicular to the tread surface, and refers to the total thickness from the tread surface to the inner surface facing the inner cavity of the tire.

90%接地点Bにおけるトレッド部全厚さTBと、タイ
ヤ赤道A上のトレッド部全厚さTAとの厚さ比TB/T
Aを1以下とすることにより、ショルダ一部の厚さを、
従来タイヤに比して減じることになる。これによって、
ショルダ一部の曲げ剛さが相対的に減少し、内圧充填に
伴い、第2図に実線で示すように、ショルダ一部21に
おける曲率半径R3を破線で示す従来タイヤの曲率半径
rsよりも大となると同時に、ビード部3を外向きにせ
り出させ、下膨らみ状を呈することが判明した。又この
せり出しによって、前記初期高さhOを減じるのは明ら
かであり、その結果、ビード変形量ho−hlを減少さ
せ、ビード発熱を抑制しうるのである。
Thickness ratio TB/T between the total tread thickness TB at the 90% grounding point B and the total tread thickness TA at the tire equator A
By setting A to 1 or less, the thickness of part of the shoulder can be
This is a reduction compared to conventional tires. by this,
The bending stiffness of the shoulder part is relatively reduced, and as the internal pressure is filled, the radius of curvature R3 at the shoulder part 21 becomes larger than the radius of curvature rs of the conventional tire, shown by the broken line, as shown by the solid line in FIG. It has been found that at the same time, the bead portion 3 protrudes outward and takes on a downwardly bulging shape. Furthermore, it is clear that the initial height hO is reduced by this protrusion, and as a result, the amount of bead deformation ho-hl can be reduced and bead heat generation can be suppressed.

又本実施例のタイヤ1においては、前記サイドバッキン
グゴムの100%伸長時のモジュラスMPを53〜95
 kg/cm” 、前記ビードエーペツクスゴムの10
0%伸長時のモジュラスMAを78〜120kg/cm
”かつ前記サイドウオールゴムの100%伸長時のモジ
ュラスMSを14〜50kg/crs”、Lかも各モジ
ュラスMPSMA、MSをMS<MP<MAとしている
Further, in the tire 1 of this embodiment, the modulus MP of the side backing rubber at 100% elongation is 53 to 95.
kg/cm”, 10 of the bead apex rubber.
Modulus MA at 0% elongation is 78 to 120 kg/cm
"And the modulus MS of the sidewall rubber at 100% elongation is 14 to 50 kg/crs", and the L and modulus MPSMA and MS are MS<MP<MA.

このようにビードエーペックスゴム9として、100%
伸長時のモジュラス(以下100%モジュラスという)
が78〜120 )cg/cm”の高硬度ゴムを用いて
いる。これによってもビード部の剛性を高め、ビード変
形jihO−hlを波じうる。
In this way, as Bead Apex Rubber 9, 100%
Modulus during elongation (hereinafter referred to as 100% modulus)
A high hardness rubber having a hardness of 78 to 120) cg/cm is used. This also increases the rigidity of the bead portion and makes it possible to wave the bead deformation.

さらにサイドウオールゴム17として100%モジュラ
スが14〜50kg/cm”の比較的軟質のものを用い
るとともに、その間に100%モジュラスが53〜95
kg/c1c″であって、ビードエーペックスゴム9よ
りも小かつサイドウオールゴム17よりも大のサイドバ
ッキングゴム15を介在させる。これによっても剛性を
高めると同時に剛性段差を減じ、剪断応力を緩和しビー
ド部耐久性を高めうる。
Furthermore, a relatively soft material with a 100% modulus of 14 to 50 kg/cm" is used as the sidewall rubber 17, and a material with a 100% modulus of 53 to 95 kg/cm" is used.
kg/c1c'', which is smaller than the bead apex rubber 9 and larger than the sidewall rubber 17, is interposed.This also increases the rigidity and at the same time reduces the rigidity step and alleviates the shear stress. It can improve the durability of the bead part.

さらに、前記サイドバッキングゴム15は、その上端1
5bのビード底面3Aからの半径方向の高さHPが、前
記ビードエーペックスゴム9の上端9aのビード底面3
Aからの高さf(Aよりも大かつタイヤ断面高さHの区
よりも小とするとともに、前記ビードエーペックスゴム
9の上端9aの前記高さ)IAはリムフランジ高さHR
よりも大としている。
Further, the side backing rubber 15 has an upper end 1
5b from the bead bottom surface 3A is the bead bottom surface 3 of the upper end 9a of the bead apex rubber 9.
The height f from A (larger than A and smaller than the tire cross-sectional height H, and the height of the upper end 9a of the bead apex rubber 9) IA is the rim flange height HR
It is larger than that.

これは、ビード部の曲げ剛さを大とするには、ビードエ
ーペックスゴム9の上端9aの高さHAはリムフランジ
Raの高さHRよりも大であることが必要であり、又こ
の高さHRよりもサイドバッキングゴム15の上端15
bの高さHPを大とすることによって、ビード折曲がり
部の剛性を効果的に高めうる。又この高さHPを、タイ
ヤ断面高さHのAよりも大となることは不要である。
This is because, in order to increase the bending stiffness of the bead portion, the height HA of the upper end 9a of the bead apex rubber 9 needs to be greater than the height HR of the rim flange Ra, and this height Upper end 15 of side backing rubber 15 than HR
By increasing the height HP of b, the rigidity of the bead bending portion can be effectively increased. Further, it is not necessary for this height HP to be larger than A of the tire cross-sectional height H.

〔具体例〕〔Concrete example〕

第1図に示すタイヤ構造を有しかつタイヤサイズが46
X17R20である航空機用タイヤについて、第3図に
示す厚さ比TB/TAのタイヤを試作し、初期高さho
を測定した。なお初期高さhOは、タイヤ断面高さHの
0.2倍の高さを100とする指数表示で示しており、
厚さ比TB/TAが1以下であるとき初期高さhoが減
じるのがわかる。なお第3図から前記比が0.9よりも
小とするのは初期高さhoを再び増加させることが推察
される。
It has the tire structure shown in Figure 1 and the tire size is 46.
Regarding the aircraft tire X17R20, a tire with the thickness ratio TB/TA shown in FIG.
was measured. Note that the initial height hO is expressed as an index with 100 being the height that is 0.2 times the tire cross-sectional height H.
It can be seen that the initial height ho decreases when the thickness ratio TB/TA is less than 1. From FIG. 3, it can be inferred that setting the ratio smaller than 0.9 increases the initial height ho again.

〔発明の効果〕〔Effect of the invention〕

以上のごとく本発明の高速重荷重用タイヤは、タイヤ内
部構造を変更することなくかつ走行性能等を低下させる
ことなくビード変形量及びビード発生を効果的に抑制で
きビード損傷を大巾に低減しうる。
As described above, the high-speed, heavy-load tire of the present invention can effectively suppress bead deformation and bead generation without changing the internal structure of the tire and without deteriorating running performance, etc., and can significantly reduce bead damage. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す断面図、第2図はタイ
ヤの内圧充填による変形を例示する線図、第3図は測定
結果を示す線図、第4図はビード部の曲げ変形状態を示
す略腺図、第5図はビード外面高さho、hlとビード
部温度との関係を示す線図である。 2−ビードコア、  3・−ビード部、3B−ビード底
面、  4・−・サイドウオール部、5・−・トレッド
部、    7・〜・カーカス、10・−・・ベルト層
、    R−リム。
Fig. 1 is a sectional view showing an embodiment of the present invention, Fig. 2 is a diagram illustrating deformation due to internal pressure filling of the tire, Fig. 3 is a diagram showing measurement results, and Fig. 4 is a bending of the bead portion. FIG. 5, which is a schematic diagram showing the deformed state, is a diagram showing the relationship between bead outer surface heights ho and hl and bead temperature. 2-bead core, 3--bead part, 3B-bead bottom, 4--sidewall part, 5--tread part, 7--carcass, 10--belt layer, R-rim.

Claims (1)

【特許請求の範囲】[Claims] 1 トレッド部からサイドウォール部をへてビード部の
ビードコアの廻りで折返されるラジアル構造のカーカス
と、該カーカスのタイヤ半径方向外側かつトレッド部内
方に配されるベルト層とを具えるとともに、タイヤ赤道
A上のトレッド部全厚さTAと、タイヤを正規リムに取
付けかつ正規内圧を充填するとともに正規荷重を付加し
た正規状態におけるタイヤ軸方向の接地端までのタイヤ
赤道Aからの長さLの90%を前記タイヤ赤道Aから隔
てる90%接地点Bにおけるトレッド部全厚さTBとの
厚さ比TB/TAを1以下とした高速重荷重用タイヤ。
1. A tire comprising: a carcass having a radial structure that extends from the tread portion through the sidewall portion and is folded back around the bead core of the bead portion; and a belt layer disposed outside the carcass in the tire radial direction and inside the tread portion; The total thickness TA of the tread on the equator A, and the length L from the tire equator A to the ground contact edge in the axial direction of the tire in the normal state when the tire is mounted on a normal rim, filled with the normal internal pressure, and a normal load is applied. A high-speed heavy load tire having a thickness ratio TB/TA of 1 or less with respect to the total thickness TB of a tread portion at a 90% grounding point B that separates 90% from the tire equator A.
JP1342115A 1989-12-27 1989-12-27 High speed heavy load tire Pending JPH03200402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1342115A JPH03200402A (en) 1989-12-27 1989-12-27 High speed heavy load tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1342115A JPH03200402A (en) 1989-12-27 1989-12-27 High speed heavy load tire

Publications (1)

Publication Number Publication Date
JPH03200402A true JPH03200402A (en) 1991-09-02

Family

ID=18351265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1342115A Pending JPH03200402A (en) 1989-12-27 1989-12-27 High speed heavy load tire

Country Status (1)

Country Link
JP (1) JPH03200402A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019097927A1 (en) * 2017-11-20 2019-05-23 横浜ゴム株式会社 Pneumatic tire
JP2019142456A (en) * 2018-02-23 2019-08-29 横浜ゴム株式会社 Run-flat tire
WO2022264449A1 (en) * 2021-06-15 2022-12-22 株式会社ブリヂストン Radial tire for aircraft

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019097927A1 (en) * 2017-11-20 2019-05-23 横浜ゴム株式会社 Pneumatic tire
JP6540915B1 (en) * 2017-11-20 2019-07-10 横浜ゴム株式会社 Pneumatic tire
US11951772B2 (en) 2017-11-20 2024-04-09 The Yokohama Rubber Co., Ltd. Pneumatic tire
JP2019142456A (en) * 2018-02-23 2019-08-29 横浜ゴム株式会社 Run-flat tire
WO2022264449A1 (en) * 2021-06-15 2022-12-22 株式会社ブリヂストン Radial tire for aircraft

Similar Documents

Publication Publication Date Title
JP2793672B2 (en) High speed heavy duty tire
JP4856374B2 (en) Aircraft pneumatic tire
EP0393966A1 (en) Pneumatic radial tire
JP2899198B2 (en) High speed heavy duty tire
JPH03200402A (en) High speed heavy load tire
JPH07223276A (en) Pneumatic tire and production thereof
JP2786804B2 (en) High speed heavy duty tire
JP3578554B2 (en) Pneumatic radial tire for heavy load for driving on rough terrain
JP2001191756A (en) Pneumatic tire
JPH03125611A (en) Tire for high speed heavy load
JPH03204304A (en) Tire for high-speed heavy-load use
JP2786805B2 (en) High speed heavy duty tire
US5253690A (en) High speed heavy duty tire including bead part with side packing rubber
JPH0481301A (en) Tire for high speed and heavy load
JPH04237607A (en) Tire for high-speed heavy load
JP3081732B2 (en) Radial tire for high speed heavy load
JP2768425B2 (en) Pneumatic tire
JP2688498B2 (en) Radial tire for high speed heavy load
JP3005042B2 (en) High speed heavy duty tire
JPH01215606A (en) Aircraft pneumatic radial tire
JP3419881B2 (en) Pneumatic tire
JPS6157406A (en) Tire for airplane
JPH11180109A (en) Pneumatic tire for heavy loads
JP3053290B2 (en) Cross ply tire for high speed heavy load
JP3358857B2 (en) Pneumatic tire