JPH0319919A - Production of carbon fiber - Google Patents

Production of carbon fiber

Info

Publication number
JPH0319919A
JPH0319919A JP1152426A JP15242689A JPH0319919A JP H0319919 A JPH0319919 A JP H0319919A JP 1152426 A JP1152426 A JP 1152426A JP 15242689 A JP15242689 A JP 15242689A JP H0319919 A JPH0319919 A JP H0319919A
Authority
JP
Japan
Prior art keywords
organic compound
transition metal
laser beam
infrared laser
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1152426A
Other languages
Japanese (ja)
Inventor
Hidenori Yamanashi
山梨 秀則
Hitoshi Ushijima
均 牛島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP1152426A priority Critical patent/JPH0319919A/en
Publication of JPH0319919A publication Critical patent/JPH0319919A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a carbon fiber having high purity at a low cost by applying infrared laser beam to a gaseous mixture containing an organic compound as a carbon source and fine powder of a transition metal or an organic compound of a transition metal as a decomposition catalyst. CONSTITUTION:A closed reactor 2 is charged with an organic compound (e.g. methane or benzene) as a carbon source from an organic compound container 5 and fine powder of a transition metal (e.g. iron or nickel) or an organic compound of a transition metal as a decomposition catalyst from a catalyst container 8 together with a carrier gas. An infrared laser beam generated by an infrared laser beam generator 1 is introduced to the reactor through a window of the reactor 2 to obtain the objective homogeneous fiber free from contaminants such as soot in high yield.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は導電性材料や袖強性材料等として複合材料など
の製造に用いるに適した炭素繊維を製造する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing carbon fiber suitable for use in the production of composite materials as conductive materials, sleeve strength materials, and the like.

〔従来の技術〕[Conventional technology]

炭素繊維は軽量で機械的強度が優れ、また導電性も良好
なところから、金属やプラスチックスあるいは炭素材料
などを組合わせて複合材料とし、各種の応用分野に利用
されている。また、炭素繊維を高温処理することにより
黒鉛化物とし、あるいはまた、その黒鉛化物に対して種
々の物質を結合させて層間化合物とし、導電材料として
用いることも知られている。
Carbon fiber is lightweight, has excellent mechanical strength, and has good electrical conductivity, so it is used in a variety of application fields by combining metals, plastics, carbon materials, etc. into composite materials. It is also known to subject carbon fibers to a graphitized material by subjecting them to high-temperature treatment, or to combine various substances with the graphitized material to form an intercalation compound, which is then used as a conductive material.

かかる炭素繊維を製造する方法としては、炭素質化合物
を紡糸したのち熱分解する方法が知られており、たとえ
ばピッチの溶融紡糸を利用したり、合成繊維を炭化して
炭素質フィラメントを製造する方法がある。しかし、こ
のような方法で得られる繊維は比較的に太くて長いもの
であって、複雑な形状に自由に戒形することができる合
成樹脂組或物に対する補強用配合剤などに用いるために
は、短く切断する必要があり、またそのような目的に対
しては径が太すぎる。
Known methods for producing such carbon fibers include spinning a carbonaceous compound and then thermally decomposing it; for example, using pitch melt spinning, or carbonizing synthetic fibers to produce carbonaceous filaments. There is. However, the fibers obtained by this method are relatively thick and long, and cannot be used as a reinforcing compound for synthetic resin compositions, which can be freely formed into complex shapes. It must be cut short and the diameter is too large for such purposes.

これに対して、複合材料などに配合して用いるに適した
径と長さを有する炭素質ウィスカを製造する方法として
炭化水素類を高温下に気相熱分解する方法が知られてお
り、この場合に炭素繊維成長の触媒核として鉄、ニソケ
ルなどの金属の超徽粒子が用いられること(特公昭58
−22571等)、また触媒として有機遷移金属化合物
のガスを炭素化合物のガスとキャリヤガスの混合物に加
えて加熱すること(特開昭60−54999、特開昭6
1−132600等)なども知られている。
On the other hand, a method of vapor-phase pyrolysis of hydrocarbons at high temperatures is known as a method for producing carbonaceous whiskers with a diameter and length suitable for use in composite materials. In some cases, ultraviolet particles of metals such as iron and nitrogen are used as catalytic nuclei for carbon fiber growth (Japanese Patent Publication No. 58
-22571, etc.), or adding an organic transition metal compound gas as a catalyst to a mixture of a carbon compound gas and a carrier gas and heating it (JP-A-60-54999, JP-A-6
1-132600, etc.) are also known.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このような従来方法においては、たとえば管状の電気炉
の中にセラ旦ツクス製の反応管を設けて1000℃前後
の温度に保ち、その一方端から原料となる有機化合物や
分解触媒のガス状混合物を導入し、他方端から排ガスと
ともに生戒した炭素繊維を回収する手段を用いていたの
で、反応管の加熱や冷却に無駄な時間がかかるほか、繰
り返しの熱履歴により耐久性が損なわれる欠点があり、
また反応管の壁に粉状や粒状の炭素が生威して炭素繊維
の純度や品質を低下させる問題があった。
In such conventional methods, for example, a reaction tube made of ceramics is installed in a tubular electric furnace and kept at a temperature of around 1000 degrees Celsius, and a gaseous mixture of organic compounds and decomposition catalysts as raw materials is fed from one end of the tube. In this method, the carbon fibers were collected from the other end along with the exhaust gas, which resulted in unnecessary time being wasted in heating and cooling the reaction tube, as well as loss of durability due to repeated thermal history. can be,
There is also the problem that powdery or granular carbon grows on the walls of the reaction tube, degrading the purity and quality of the carbon fibers.

そこで本発明は、純度の高い炭素繊維を経済的に取得す
ることができる炭素織維の製造方法を提供しようとする
ものである。
Therefore, the present invention aims to provide a method for producing carbon woven fibers that can economically obtain carbon fibers with high purity.

〔課題を解決するための手段〕[Means to solve the problem]

このような本発明の目的は、炭素供給源の有機化合物と
分解触媒としての遷移金属微粒子または遷移金属有機化
合物とを含む気相混合物に対して赤外線レーザビームの
照射を行なうことを特徴とする炭素繊維の製造方法によ
って達戒することができる。
An object of the present invention is to irradiate a gas phase mixture containing an organic compound as a carbon source and transition metal fine particles or a transition metal organic compound as a decomposition catalyst with an infrared laser beam. The precepts can be achieved depending on the method of manufacturing the fiber.

本発明の方法を実施するにあたって用いられる装置は、
赤外線を透過する窓を備えた密閉型の反応器と、これに
原料および触媒等を{Jli給するための機器と、これ
から生威炭素繊維を回収するための機器と、赤外線レー
ザビーム発生装置とからなる。ここで用いられる赤外線
レーザビーム発生装置は、大きなエネルギーをもつビー
ムが発生できるものであればよく、たとえばCO2、C
O、CH, 、HCN,OHなどの励起を利用したガス
レーザ装置などであってよい。
The apparatus used to carry out the method of the present invention is:
A closed reactor equipped with a window that transmits infrared rays, equipment for supplying raw materials and catalysts, etc. to this reactor, equipment for recovering carbon fiber from this, an infrared laser beam generator, and Consisting of The infrared laser beam generator used here may be of any type as long as it can generate a beam with large energy, such as CO2, C
It may be a gas laser device using excitation of O, CH, , HCN, OH, or the like.

本発明の炭素繊維の製造方法において、炭素繊維の原料
となる気体混合物は、炭素供給源の有機化合物と分解触
媒としての遷移金属微粒子または遷移金属有機化合物と
を含むもので、非酸化性キャリヤガスにより適宜希釈さ
れた状態で反応器に導入される。かかる非酸化性キャリ
ヤガスとしては、水素やアルゴン等が用いられるが、こ
れらに限られるものではない。
In the method for producing carbon fibers of the present invention, the gas mixture serving as the raw material for carbon fibers contains an organic compound as a carbon source and transition metal fine particles or a transition metal organic compound as a decomposition catalyst, and a non-oxidizing carrier gas It is introduced into the reactor in an appropriately diluted state. Such non-oxidizing carrier gases include hydrogen, argon, etc., but are not limited to these.

炭素供給源となる有機化合物は、たとえばメタン、エタ
ン、プロパン、プロピレン等の脂肪族炭化水素類、ベン
ゼン、トルエン等の芳香族炭化水素類、シクロヘキサン
、シクロオクタン等の脂環族炭化水素類などが好ましく
用いられるが、エタノール、ブタノール、オクタノール
等のアルコール類、ラウリン酸やフタル酸等の酸類並び
にそれらの無水物、フタル酸プチル等のエステル類、エ
チルイソブチルケトンやシクロヘキサノン等のケトン類
、その他ヘキシルアミン等の含チッ素有機化合物、オク
チルメル力ブタン等の含イオウ有機化合物なども場合に
より用いることができる。
Examples of organic compounds that serve as carbon sources include aliphatic hydrocarbons such as methane, ethane, propane, and propylene, aromatic hydrocarbons such as benzene and toluene, and alicyclic hydrocarbons such as cyclohexane and cyclooctane. Preferably used include alcohols such as ethanol, butanol and octanol, acids such as lauric acid and phthalic acid and their anhydrides, esters such as butyl phthalate, ketones such as ethyl isobutyl ketone and cyclohexanone, and other hexylamines. Nitrogen-containing organic compounds such as, sulfur-containing organic compounds such as octylmer-butane, etc. can also be used depending on the case.

また、本発明において用いられる分解触媒は、鉄、ニッ
ケル、コバルトなどの遷移金属からなるものであり、金
属単体であるときは微粒子、特に粒径が300人以下の
超微粒子が好ましく、また金属有機化合物であるときは
液状または溶液状として用いることができるもの、その
中でもたとえばメタロセンなどの気化可能なものが好ま
しい。
Furthermore, the decomposition catalyst used in the present invention is made of transition metals such as iron, nickel, and cobalt, and when it is a single metal, it is preferably fine particles, especially ultrafine particles with a particle size of 300 μm or less; When the compound is a compound, one that can be used in a liquid or solution form is preferred, and among these, a vaporizable compound such as metallocene is preferred.

かかる炭素供給源の有機化合物は、前記のキャリヤガス
を含む気体混合物中に5〜60容星%の範囲で含まれる
ことが好ましく、また分解触媒は該有機化合物に対して
0.001〜1.0重量%の範囲で含まれることが好ま
しい。
The organic compound as a carbon source is preferably contained in the gas mixture containing the carrier gas in an amount of 5 to 60% by volume, and the decomposition catalyst is contained in an amount of 0.001 to 1% by volume based on the organic compound. It is preferably contained in a range of 0% by weight.

〔作 用〕[For production]

本発明の炭素繊維の製造方法は、前記のような密閉型の
反応器の中に原料の気体混合物を導入し、反応器の窓を
通して赤外線レーザビームを入射させる。この際、赤外
線レーザビームは拡散状態で窓を通過させ、反応器の中
央部で収束されるようにするのがよい。
In the carbon fiber manufacturing method of the present invention, a raw material gas mixture is introduced into a closed reactor as described above, and an infrared laser beam is incident through a window of the reactor. At this time, it is preferable that the infrared laser beam passes through the window in a diffused state and is focused at the center of the reactor.

反応器の中で赤外線により励起された分解触媒と炭素供
給源である有機化合物とは分解反応を起こして炭素繊維
が生或する。こうして生成した炭素繊維が浮遊状態で含
まれた気体混合物は回収器に導かれ、炭素繊維が分離回
収される。
In the reactor, the decomposition catalyst excited by infrared rays and the organic compound serving as the carbon source undergo a decomposition reaction to produce carbon fibers. The gas mixture containing the carbon fibers produced in this way is led to a recovery device, where the carbon fibers are separated and recovered.

〔実施例1〕 第1図に示すような装置を用いて炭素繊維の製造を実施
した。
[Example 1] Carbon fibers were produced using an apparatus as shown in FIG.

図において、■は103ワットの赤外線を発生すること
ができる炭酸ガスレーザ装置であり、反応器2に窓lO
を通して赤外線レーザビームを入射できるようにしてあ
る。キャリヤガスとしての水素は容器4から、炭素供給
源の有機化合物としてのメタンは容器5から、また分解
触媒としてのフエ口センを約2重量%を含むエタノール
溶液は触媒容器8から、それぞれ水素:メタン:エタノ
ールのモル比が65:25:10となるようにノズル9
を経て反応器2に導入された。
In the figure, ■ is a carbon dioxide laser device that can generate infrared rays of 103 watts, and a window lO
It is designed so that an infrared laser beam can be incident through it. Hydrogen as a carrier gas is supplied from vessel 4, methane as an organic compound as a carbon source is supplied from vessel 5, and an ethanol solution containing approximately 2% by weight of methane as a decomposition catalyst is supplied from catalyst vessel 8. Hydrogen: Nozzle 9 so that the molar ratio of methane:ethanol is 65:25:10.
It was introduced into reactor 2 through .

エネルギレベルが800ワットの赤外線レーザビームを
30分間照射した結果、長さ30〜100μm径lμ種
以下の炭素繊維約2gが捕集器3から回収された。
As a result of irradiation with an infrared laser beam having an energy level of 800 watts for 30 minutes, about 2 g of carbon fibers having a length of 30 to 100 μm and a diameter of less than 1 μm were collected from the collector 3.

(実施例2〕 実施例lで用いた装置において、炭素供給源としてメタ
ンの代わりにベンゼンをヒーター6によって加温された
蒸発器7に入れ、キャリヤガス容器4からの水素の流れ
とともに気化蒸発させた。
(Example 2) In the apparatus used in Example 1, benzene was put into the evaporator 7 heated by the heater 6 instead of methane as a carbon source, and was vaporized together with the flow of hydrogen from the carrier gas container 4. Ta.

また、分解触媒として径200人の微粒子状の鉄を約2
重量%含むエタノール分散液を触媒容器8から反応器2
に対してキャリヤガス容器4′からの水素の流れととも
に供給したほかは、実施例1と同様にして炭素繊維の製
造を実施した。
In addition, as a decomposition catalyst, approximately 200 particles of iron with a diameter of 200
The ethanol dispersion containing % by weight is transferred from the catalyst container 8 to the reactor 2.
Carbon fibers were produced in the same manner as in Example 1, except that hydrogen was supplied together with the flow of hydrogen from the carrier gas container 4'.

赤外線レーザビームを照射した結果、長さ30〜80μ
−、径lμm以下の炭素繊維約2gが捕集器3から回収
された。
As a result of irradiation with an infrared laser beam, the length is 30 to 80μ
-, about 2 g of carbon fibers with a diameter of 1 μm or less were collected from the collector 3.

〔発明の効果〕〔Effect of the invention〕

本発明の炭素繊維の製造方法によれば、得られる炭素繊
維が均質で煤などの混入がないほか収率も良く、また装
置は厳しい反応条件下にさらされることがないので、耐
熱性や耐蝕性に関して設計の自由度が大であって経済的
に構或できる利点もある.
According to the method for producing carbon fibers of the present invention, the carbon fibers obtained are homogeneous, free of soot, etc., and have a good yield.Also, since the equipment is not exposed to harsh reaction conditions, it has good heat resistance and corrosion resistance. It also has the advantage of having a large degree of freedom in design and being economically configurable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の炭素繊維の製造方法を実施するための
装置の例の概念図である。 1・・・赤外線レーザビーム発生装置、2・・・反応器
、3・・・捕集器、4,4′・・・キャリヤガス容器、
5・・・有機化合物容器、6・・・ヒーター、7・・・
蒸発器、8・・・触媒容器、9・・・ノズル、lO・・
・窓。
FIG. 1 is a conceptual diagram of an example of an apparatus for implementing the carbon fiber manufacturing method of the present invention. 1... Infrared laser beam generator, 2... Reactor, 3... Collector, 4, 4'... Carrier gas container,
5...Organic compound container, 6...Heater, 7...
Evaporator, 8...Catalyst container, 9...Nozzle, lO...
·window.

Claims (2)

【特許請求の範囲】[Claims] (1)炭素供給源の有機化合物と分解触媒としての遷移
金属微粒子または遷移金属有機化合物とを含む気相混合
物に対して赤外線レーザビームの照射を行なうことを特
徴とする炭素繊維の製造方法。
(1) A method for producing carbon fibers, which comprises irradiating a gas phase mixture containing an organic compound as a carbon source and transition metal fine particles or a transition metal organic compound as a decomposition catalyst with an infrared laser beam.
(2)気相混合物が非酸化性キャリヤガスで希釈された
5〜60容量%の有機化合物と該有機化合物に対して0
.001〜1.0重量%の分解触媒とを含む請求項(1
)記載の炭素繊維の製造方法。
(2) The gas phase mixture contains 5 to 60% by volume of an organic compound diluted with a non-oxidizing carrier gas and 0% relative to the organic compound.
.. 001 to 1.0% by weight of a decomposition catalyst.
) The method for producing carbon fiber described in
JP1152426A 1989-06-16 1989-06-16 Production of carbon fiber Pending JPH0319919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1152426A JPH0319919A (en) 1989-06-16 1989-06-16 Production of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1152426A JPH0319919A (en) 1989-06-16 1989-06-16 Production of carbon fiber

Publications (1)

Publication Number Publication Date
JPH0319919A true JPH0319919A (en) 1991-01-29

Family

ID=15540260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1152426A Pending JPH0319919A (en) 1989-06-16 1989-06-16 Production of carbon fiber

Country Status (1)

Country Link
JP (1) JPH0319919A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591312A (en) * 1992-10-09 1997-01-07 William Marsh Rice University Process for making fullerene fibers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591312A (en) * 1992-10-09 1997-01-07 William Marsh Rice University Process for making fullerene fibers

Similar Documents

Publication Publication Date Title
KR20010032588A (en) Catalysts for carbon production
Terranova et al. The world of carbon nanotubes: an overview of CVD growth methodologies
Awasthi et al. Synthesis of carbon nanotubes
KR900004784B1 (en) Novel carbon fibrils method for producing it and compositions containing same
CN101456074B (en) Method for filling carbon nano tube with magnetic nano metal iron particles
EP3391715B1 (en) Apparatus and method for plasma synthesis of carbon nanotubes
CA2758694A1 (en) Method for producing solid carbon by reducing carbon oxides
US4749557A (en) Graphite fiber growth employing nuclei derived from iron pentacarbonyl
JPS62242B2 (en)
WO2003038163A1 (en) Rf plasma method for production of single walled carbon nanotubes
Bai et al. Effects of temperature and catalyst concentration on the growth of aligned carbon nanotubes
JP3817703B2 (en) Method and apparatus for producing coiled carbon fiber
JPH0319920A (en) Production of carbon fiber
Kim et al. Thermal plasma synthesis of ceramic nanomaterials
JPH0319919A (en) Production of carbon fiber
JP3071571B2 (en) Method for producing vapor grown carbon fiber
US20060018820A1 (en) Magnetic stimulated nucleation of single crystal diamonds
Kalaiselvan et al. Morphology of entangled multiwalled carbon nanotubes by catalytic spray pyrolysis using Madhuca longifolia oil as a precursor
Karthikeyan et al. Morphology and structural studies of multi-walled carbon nanotubes by spray pyrolysis using Madhuca Longifolia oil
Veloz-Castillo et al. Carbon nanotubes and carbon fibers in a flash: An easy and convenient preparation of carbon nanostructures using a conventional microwave
Shivanna et al. Fe-Ni nanoparticle-catalyzed controlled synthesis of multi-walled carbon nanotubes on CaCO3
Zhu Detonation of molecular precursors as a tool for the assembly of nano-sized materials
JP2531739B2 (en) Method for producing vapor grown carbon fiber
Rajarao et al. Study of effect of temperature on the synthesis of carbon nanotubes by floating catalyst method
Alexandrescu et al. Recent developments in the synthesis of iron-based nanostructures by laser pyrolysis: Integrating structural analysis with the experimental method