JPH03196959A - Surface polishing method of abrasive robot - Google Patents

Surface polishing method of abrasive robot

Info

Publication number
JPH03196959A
JPH03196959A JP33215489A JP33215489A JPH03196959A JP H03196959 A JPH03196959 A JP H03196959A JP 33215489 A JP33215489 A JP 33215489A JP 33215489 A JP33215489 A JP 33215489A JP H03196959 A JPH03196959 A JP H03196959A
Authority
JP
Japan
Prior art keywords
polishing
tool
polishing tool
range
polished
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33215489A
Other languages
Japanese (ja)
Inventor
Shinsaku Tsutsui
筒井 真作
Kunio Kashiwagi
柏木 邦雄
Tooru Kurenuma
透 榑沼
Kazunori Yamada
一徳 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP33215489A priority Critical patent/JPH03196959A/en
Publication of JPH03196959A publication Critical patent/JPH03196959A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PURPOSE:To enable it to polish the whole polished surface of a work with a constant cutting allowance at all times by adjusting the extent of pressing force being given to a working tool in response to a relative position with a polishing range circumferential part as grasping a positional relationship between the polishing range circumferential part and the working tool. CONSTITUTION:A polishing range 9a is polished by a first abrasive tool 7 in keeping up constant pressing force as measuring a distance between a circumferential part 9b of this polishing range 9a and the first abrasive tool 7. Next, the abrasive tool is replaced with a second small abrasive tool, the polishing range 9a is polished by this second abrasive tool in controlling the pressing force of the second abrasive tool by a controller 10 so as to make reaction larger in proportion as making a distance between the circumferential part 9b of the polishing range 9a and the second abrasive tool smaller, as measuring the distance between the circumferential part 9b of the polishing range 9a and the second abrasive tool.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は研磨ロボットの平面研磨方法に関し、特に力制
御ロボットや力制御テーブルを利用して構成された金型
研磨作業等に使用される研磨ロボットにおいて平面部に
設定された研磨範囲の外周部を良好な精度で研磨し研磨
範囲の平面性を向上させる研磨ロボットの平面研磨方法
に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a surface polishing method using a polishing robot, and particularly to a polishing method used in mold polishing work, etc., configured using a force control robot or a force control table. The present invention relates to a flat surface polishing method for a polishing robot that improves the flatness of the polishing range by polishing the outer periphery of the polishing range set on the flat surface of the robot with good accuracy.

〔従来の技術〕[Conventional technology]

最近のNC工作機械や溶接ロボット等の発展は顕著であ
り、これらを利用して各種作業の自動化が進められてい
る。しかし、一方で例えば金型の研磨作業では自動化が
遅れる傾向にある。これは、通常のNC工作機械や溶接
ロボットによる作業では位置や速度の制御だけで作業を
実行できるのに対し、研磨作業では位置や速度の制御だ
けでは不十分であり、力加減を制御しなければ作業を自
動的に実行することができないからである。すなわち、
位置及び速度だけの制御では、砥石の磨耗、ティーチン
グした工具の軌跡と実際のワークの位置との間に誤差等
が生じ、これに起因して工具をワークに強く押付けすぎ
たり、或いは工具がワークから離れたりして作業が不完
全になり、自動化を完全に達成することができない。
Recent advances in NC machine tools, welding robots, and the like are remarkable, and automation of various tasks is progressing using these tools. However, on the other hand, automation tends to be delayed, for example in the polishing work of molds. This is because when working with normal NC machine tools or welding robots, work can be carried out by simply controlling the position and speed, but in polishing work, controlling the position and speed alone is not sufficient, and the amount of force must be controlled. This is because the work cannot be executed automatically. That is,
Controlling only the position and speed causes wear of the grinding wheel and errors between the taught tool trajectory and the actual workpiece position, which may cause the tool to be pressed too strongly against the workpiece, or the tool may The work may be incomplete due to separation from the staff, and complete automation cannot be achieved.

かかる問題点を克服して研磨作業の自動化を達成するた
め、従来、特開昭60−207769号及び特開昭63
−2659号による研磨装置が提案されている。特開昭
60−207769号は砥石に近接して永久磁石を配設
し、ワークと砥石との間で磁気回路を形成し、磁気吸引
力によって砥石をワークに圧接するようにした研磨工具
を開示している。また、特開昭63−2659号は、般
に研磨時において砥石を一定速度で送った場合、砥石の
面圧(砥石をワークに押付ける力を砥石とワークの接触
面積で割った値)とワークにおける切削体積とがほぼ比
例するという経験的知見に基づいて、砥石を空圧シリン
ダで支持し、空圧シリンダに供給する空気圧力を一定に
制御して砥石をワークに押付ける力を一定とし、均一の
研磨を行うようにした研磨機を開示している。
In order to overcome such problems and achieve automation of polishing work, Japanese Patent Application Laid-Open Nos. 60-207769 and 63
A polishing device according to No. 2659 has been proposed. JP-A No. 60-207769 discloses a polishing tool in which a permanent magnet is disposed close to a grindstone, a magnetic circuit is formed between the workpiece and the grindstone, and the grindstone is pressed against the workpiece by magnetic attraction. are doing. In addition, JP-A No. 63-2659 generally states that when a grinding wheel is fed at a constant speed during polishing, the surface pressure of the grinding wheel (the value obtained by dividing the force pressing the grinding wheel against the workpiece by the contact area between the grinding wheel and the workpiece) Based on the empirical knowledge that the cutting volume of the workpiece is approximately proportional to the cutting volume, the grinding wheel is supported by a pneumatic cylinder, and the air pressure supplied to the pneumatic cylinder is controlled at a constant level to maintain a constant force pressing the grinding wheel against the workpiece. discloses a polishing machine that performs uniform polishing.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

特開昭60−207769号による研磨工具での構成で
は、ワークが非磁性体であると磁気吸引力が発生しない
ので研磨作業を実行することができず、また磁気によっ
て力を発生するため大きな押付は力を得ることができな
いという不具合を有する。これに対して特開昭63−2
659号では特開昭60−207769号における上記
不具合を解消することができる。しかしながら、特開昭
63−2659号の構成によれば、例えば第7図に示す
ように砥石100は、研磨範囲101の外周部102ま
でA方向に一定シリンダ圧力、一定速度を保ちながら移
動し、その後B方向に一定シリンダ圧力、一定速度を保
って移動し、ワーク103を研磨する。今、砥石100
(長さしとする)を例えばn等分して小さい砥石G、〜
G、の集合体であると考えると、砥石G1で削り取られ
るワーク103の深さ(切込み量)di(X)は次の式
で表される。
In the configuration of the polishing tool disclosed in Japanese Patent Application Laid-Open No. 60-207769, if the workpiece is a non-magnetic material, no magnetic attraction force is generated, so polishing cannot be performed, and the force generated by magnetism makes it impossible to perform the polishing operation. has the problem of not being able to obtain power. On the other hand, JP-A-63-2
No. 659 can eliminate the above-mentioned problems in JP-A No. 60-207769. However, according to the structure of JP-A No. 63-2659, as shown in FIG. 7, for example, the grindstone 100 moves in the direction A to the outer circumference 102 of the polishing range 101 while maintaining a constant cylinder pressure and constant speed. Thereafter, the workpiece 103 is polished by moving in the B direction while maintaining a constant cylinder pressure and constant speed. Now, 100 whetstones
(length) is divided into, for example, n equal parts and a small grindstone G, ~
G, the depth (depth of cut) di(X) of the workpiece 103 to be ground by the grindstone G1 is expressed by the following equation.

d 1 (x)= (f/S)a/n ただし、X≧0 ここで、fニジリンダ圧力で生じる押付は力S:砥石底
面積 α:比例定数 これの状態を図示したのが第8図(a)である。
d 1 (x) = (f/S) a/n However, X≧0 Here, the pressing force caused by f Nijilinda pressure is force S: Grinding wheel bottom area α: proportionality constant Figure 8 illustrates this state. (a).

第8図(a)では横軸がx1縦軸がdi  (x)を示
している。
In FIG. 8(a), the horizontal axis represents x and the vertical axis represents di(x).

次に、砥石G2によって生じる切込み量d2(x)は次
の式で表される。
Next, the depth of cut d2(x) produced by the grindstone G2 is expressed by the following formula.

X≧L/nの場合には、 dz  (x)= (f/S)a/n x < L / nの場合には、 d2 (x)=。In the case of X≧L/n, dz (x) = (f/S) a/n In the case of x<L/n, d2 (x)=.

これを同様に第8図(b)に示す。This is similarly shown in FIG. 8(b).

以上の操作をn回繰返してdi(x)〜d。Repeat the above operation n times to obtain di(x) to d.

(X)のすべてを求め、加算することによって砥石10
0全体による切込み量d (x)を求めると次式で与え
られる。
By finding all of (X) and adding them together, the grindstone 10
The depth of cut d (x) for the entire 0 is determined by the following equation.

d(X)=d1 (x)+d2 (X)+・・・・・・
+d、、(x) これを図で示すと第8図(C)のようになる。この図で
明らかなように、X≧Lでは切込み量は一定であるが、
xくLではXが小さくなるに従って切込み量は減少して
いる。従って、ワーク103を一定シリンダ圧力および
一定送り速度で研磨すると、研磨範囲101の外周部1
02では切込み量が減少するという不具合が発生する。
d(X)=d1 (x)+d2 (X)+・・・・・・
+d,,(x) This is shown in a diagram as shown in FIG. 8(C). As is clear from this figure, the depth of cut is constant when X≧L, but
For x x L, the depth of cut decreases as X becomes smaller. Therefore, when the workpiece 103 is polished at a constant cylinder pressure and a constant feed rate, the outer peripheral part 1 of the polishing range 101
In 02, a problem occurs in that the depth of cut decreases.

このことは、第7図の破線で示すように研磨範囲の外周
部では常に削り代不足が生じることを意味する。研磨面
において削り代不足が発生すると、フライス加工等の前
加工で生じた切削条痕が残り、これにより製作された製
品は極めて美観が損なわれる。
This means that, as shown by the broken line in FIG. 7, there is always insufficient machining allowance at the outer periphery of the polishing range. When insufficient machining allowance occurs on the polished surface, cutting marks caused by pre-processing such as milling remain, and the resulting product becomes extremely aesthetically unsightly.

このため特開昭60−2659号公報に開示された従来
の研磨装置では、研磨作業終了後において研磨範囲の外
周部で削り代の修正作業が必要とされる。
For this reason, in the conventional polishing apparatus disclosed in Japanese Patent Application Laid-Open No. 60-2659, it is necessary to correct the cutting allowance at the outer periphery of the polishing range after the polishing operation is completed.

本発明の目的は、被研磨部材の平面部を研磨する場合に
おいて、研磨範囲の外周部の被研磨面の削り代もその他
の被研磨面の削り代と同じになるようにした研磨ロボッ
トの平面研磨方法を提供することにある。
An object of the present invention is to provide a flat surface of a polishing robot that, when polishing a flat surface of a member to be polished, allows the machining allowance of the surface to be polished at the outer periphery of the polishing range to be the same as the machining allowance of other surfaces to be polished. The object of the present invention is to provide a polishing method.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る第1の研磨ロボットの平面研磨方法は、研
磨工具を被研磨部材に押し付けて研磨する研磨作業が行
われるとき、手先部に設けられた力センサで検出される
研磨工具が受ける反力と、位置センサの出力信号で検出
される研磨工具と被研磨部材の相対的位置とに基づいて
研磨工具の位置及び押付は力を設定し研磨作業を実行す
る研磨ロボットの研磨方法において、被研磨部材におけ
る研磨範囲と研磨経路のデータを与え、最初に、研磨工
具として第1の研磨工具を用意し、研磨範囲の外周部と
第1の研磨工具との距離を計測しながら、第1の研磨工
具で研磨範囲を一定の押付は力を保って研磨し、次に研
磨工具を小型の第2の研磨工具に交換し、研磨範囲の外
周部と第2の研磨工具との距離を計測しながら、第2の
研磨工具で研磨範囲を、研磨範囲の外周部と第2の研磨
工具との距離が小さくなるにつれて反力が大きくなるよ
うに第2の研磨工具の押付は力を変化させるようにして
研磨することを特徴とする。
In the first surface polishing method for a polishing robot according to the present invention, when a polishing operation is performed in which a polishing tool is pressed against a workpiece to be polished, the polishing tool receives a reaction detected by a force sensor provided at the hand. In the polishing method of a polishing robot, which sets the force and executes the polishing work, the position and pressing of the polishing tool is determined based on the force and the relative position of the polishing tool and the workpiece detected by the output signal of the position sensor. Provide data on the polishing range and polishing path on the polishing member, first prepare a first polishing tool as the polishing tool, and measure the distance between the outer circumference of the polishing range and the first polishing tool. Polish the polishing area with a constant pressure with the polishing tool, then replace the polishing tool with a smaller second polishing tool, and measure the distance between the outer periphery of the polishing area and the second polishing tool. At the same time, the pressing force of the second polishing tool is changed so that the reaction force increases as the distance between the outer periphery of the polishing range and the second polishing tool becomes smaller. It is characterized by being polished.

本発明に係る第2の研磨ロボットの平面研磨方法研磨工
具を圧力シリンダの押圧作用で被研磨部材に押し付けて
研磨する研磨作業が行われるとき、位置センサの出力信
号で検出される研磨工具と被研磨部材の相対的位置に基
づいて研磨工具の位置及び圧力シリンダに供給される圧
力を設定し研磨作業を実行する研磨ロボットの研磨方法
において、被研磨部材における研磨範囲と研磨経路のデ
ータを与え、最初に、研磨工具として第1の研磨工具を
用意し、研磨範囲の外周部と第1の研磨工具との距離を
計測しながら、第1の研磨工具で研磨範囲を圧力を一定
に保って研磨し、次に研磨工具を小型の第2の研磨工具
に交換し、研磨範囲の外周部と第2の研磨工具との距離
を計測しながら、第2の研磨工具で研磨範囲を、研磨範
囲の外周部と第2の研磨工具との距離が小さくなるにつ
れて圧力が大きくなるように変化させて研磨することを
特徴とする。
Second surface polishing method for a polishing robot according to the present invention When a polishing operation is performed in which a polishing tool is pressed against a workpiece to be polished by the pressing action of a pressure cylinder, the polishing tool and workpiece detected by the output signal of a position sensor are used. In a polishing method for a polishing robot that executes a polishing operation by setting the position of a polishing tool and the pressure supplied to a pressure cylinder based on the relative position of a polishing member, the present invention provides data on a polishing range and a polishing path on a member to be polished; First, prepare a first polishing tool as a polishing tool, and while measuring the distance between the outer circumference of the polishing area and the first polishing tool, polish the polishing area with the first polishing tool while keeping the pressure constant. Then, replace the polishing tool with a smaller second polishing tool, and while measuring the distance between the outer periphery of the polishing area and the second polishing tool, use the second polishing tool to cover the polishing area. It is characterized in that polishing is performed by changing the pressure so that it increases as the distance between the outer peripheral part and the second polishing tool becomes smaller.

〔作用〕[Effect]

第1及び第2の本発明によれば、いずれの場合にも、研
磨作業の工程を2回に分け、最初の研磨工程では大型の
研磨工具を使用して被研磨面を研磨し、次の研磨工程で
は小型の研磨工具を用いて特に外周部の研磨を行い、外
周部の研磨面の削り代を中央部等その他の研磨面と同じ
にするようにした。
According to the first and second aspects of the present invention, in both cases, the polishing process is divided into two steps, and in the first polishing process, a large polishing tool is used to polish the surface to be polished, and in the next polishing process, the surface to be polished is polished using a large polishing tool. In the polishing process, a small polishing tool was used to particularly polish the outer periphery, so that the cutting allowance on the polished surface of the outer periphery was the same as that of other polished surfaces such as the center.

〔実施例〕〔Example〕

以下に、本発明の実施例を添付図面に基づいて説明する
Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図〜第3図は本発明に係る平面研磨方法の第1実施
例を示し、第1図は研磨ロボットの要部構成を示す概要
図、第2図は電気系の構成図、第3図は平面研磨方法の
手順を示すフローチャートである。1は多関節型の研磨
装置で、研磨装置は複数のアーム2.3を有し、これら
のアーム間の連結部である関節部分に位置センサ4,5
や図示されない駆動装置を備えている。6は手先部に設
けられた力センサであり、この方センサ6の先部に、砥
石7を有した作業工具8を取り付けている。
1 to 3 show a first embodiment of the surface polishing method according to the present invention, FIG. 1 is a schematic diagram showing the main part configuration of a polishing robot, FIG. 2 is a configuration diagram of the electrical system, and FIG. The figure is a flowchart showing the procedure of a surface polishing method. Reference numeral 1 denotes a multi-joint polishing device, which has a plurality of arms 2.3, and position sensors 4, 5 are installed at the joints that connect these arms.
and a drive device (not shown). Reference numeral 6 denotes a force sensor provided at the tip of the hand, and a working tool 8 having a grindstone 7 is attached to the tip of the sensor 6.

9は被研磨部材であるワーク、9aはワーク9における
被研磨面、9bは研磨範囲の外周部(境界線)を示すも
のである。砥石7はその底面の研磨面がワーク9の被研
磨面9aに対向するように配置される。作業工具8は砥
石7を回転又は振動させることによりワーク9を研磨す
ることができる。
Reference numeral 9 indicates a workpiece that is a member to be polished, 9a indicates a surface to be polished in the workpiece 9, and 9b indicates an outer circumference (boundary line) of the polishing range. The grindstone 7 is arranged so that its bottom polishing surface faces the polished surface 9a of the workpiece 9. The work tool 8 can polish the workpiece 9 by rotating or vibrating the grindstone 7.

砥石7は、ワーク9に対し研磨範囲の外周部9bから離
れた所定の研磨作業開始位置にセットされ、その後、被
研磨面9aを研磨しつつA方向に移動するように位置制
御される。
The grindstone 7 is set on the workpiece 9 at a predetermined polishing start position away from the outer circumference 9b of the polishing range, and then its position is controlled so that it moves in the A direction while polishing the surface to be polished 9a.

10は研磨装置1に対し所要の研磨動作を命令するコン
トローラである。研磨作業中においてワーク9から作業
工具8に与えられる反力は、力センサ6で検出され、力
センサ6の出力信号11はコントローラ10にフィード
バックされる。また同様に複数の位置センサ4,5等の
出力信号12はコントローラ10にフィードバックされ
、これらの位置検出信号によって作業工具8、すなわち
砥石7の位置を知ることができる。一方、コントローラ
10は、フィードバックによって入力された反力検出信
号11及び位置検出信号12、並びに予め内部の記憶部
に用意された制御演算プログラム及びワーク形状の情報
に基づいて砥石7の位置に応じて砥石7のワーク9に押
付ける力を所要の値にするよう演算・処理し、その結果
得られた指令値を駆動指令信号13として研磨装置1の
各駆動装置に送給する。
10 is a controller that instructs the polishing apparatus 1 to perform a required polishing operation. The reaction force applied from the workpiece 9 to the power tool 8 during the polishing operation is detected by the force sensor 6, and the output signal 11 of the force sensor 6 is fed back to the controller 10. Similarly, output signals 12 from the plurality of position sensors 4, 5, etc. are fed back to the controller 10, and the position of the working tool 8, that is, the grindstone 7, can be known from these position detection signals. On the other hand, the controller 10 adjusts the position of the grinding wheel 7 based on the reaction force detection signal 11 and position detection signal 12 input by feedback, as well as the control calculation program and workpiece shape information prepared in advance in the internal storage section. The force of the grindstone 7 against the workpiece 9 is calculated and processed to a required value, and the command value obtained as a result is sent to each drive device of the polishing apparatus 1 as a drive command signal 13.

なお14は、作業オペレータがコントローラ10の記憶
部に研磨作業において必要とされるデータ或いは研磨作
業の手順についてのプログラムをストアさせるために使
用する操作部である。15は、コントローラ10の側か
らその演算・処理結果、或いは作業経過について必要に
応じてオペレータに対し情報を与えるための表示部であ
る。
Reference numeral 14 denotes an operation unit used by the operation operator to store data required for the polishing operation or a program regarding the procedure of the polishing operation in the storage unit of the controller 10. Reference numeral 15 denotes a display unit for providing information from the controller 10 side to the operator regarding the calculation/processing results or the progress of the work as necessary.

第1図に示された研磨ロボットにおけるコントローラ1
0を含む電気系の構成のみを示すと第2図のブロック図
のようになる。第2図において、20は前記位置センサ
4,5を含む複数の位置センサのグループである。6は
前記力センサである。
Controller 1 in the polishing robot shown in FIG.
The block diagram of FIG. 2 shows only the configuration of the electrical system including 0. In FIG. 2, 20 is a group of a plurality of position sensors including the position sensors 4 and 5. 6 is the force sensor.

21は各アームの適宜な箇所に配設された複数の駆動装
置のグループである。また14は前記操作部、15は前
記表示部である。コントローラ10は、インタフェース
機能を形成する入出力部22と、演算部23と制御部2
4を含むCPU25と、記憶部26とから構成される。
Reference numeral 21 denotes a group of a plurality of drive devices arranged at appropriate locations on each arm. Further, 14 is the operation section, and 15 is the display section. The controller 10 includes an input/output section 22 forming an interface function, an arithmetic section 23, and a control section 2.
4 and a storage section 26.

記憶部26には後述する平面研磨方法を実行するための
プログラムがストアされている。
The storage unit 26 stores a program for executing a surface polishing method to be described later.

位置センサ20と、力センサ6の検出信号と、オペレー
タによって操作部14から入力された操作信号及び各種
データは入出力部22を介してCPU25内に送られ、
これらのデータ及び予め用意された制御・演算プログラ
ムに基づいてCPU25で演算・処理され、その結果得
られたデータは必要に応じて記憶部26にストアされ、
更に入出力部22を介して駆動装置21又は表示部15
に送給される。
Detection signals from the position sensor 20 and force sensor 6, operation signals input by the operator from the operation unit 14, and various data are sent to the CPU 25 via the input/output unit 22.
The CPU 25 calculates and processes these data and a control/calculation program prepared in advance, and the resulting data is stored in the storage unit 26 as necessary.
Furthermore, the drive device 21 or the display section 15 is connected via the input/output section 22.
will be sent to

以上の構成を有する研磨ロボットにおいて実行される平
面研磨方法を、第1図及び第2図、更に第3図のフロー
チャートに基づき説明する。
The surface polishing method executed by the polishing robot having the above configuration will be explained based on the flowcharts shown in FIGS. 1, 2, and 3.

第3図において、先ず最初のステップ31で、ワーク9
において研磨する研磨範囲及び研磨時の砥石7の研磨経
路を入力し設定する。この研磨範囲及び研磨経路の情報
は、通常、操作部14を介してオペレータによって入力
される。入力された研磨範囲等の情報は記憶部26にス
トアされる。
In FIG. 3, in the first step 31, the workpiece 9
Input and set the polishing range to be polished and the polishing path of the grindstone 7 during polishing. Information on the polishing range and polishing path is normally input by an operator via the operation unit 14. The input information such as the polishing range is stored in the storage unit 26.

その他の設定形式として、例えばすべての研磨作業を管
理するホストコンピュータから各研磨作業ごとに研磨範
囲等の情報がコントローラ1oに提供されるように構成
することもできる。次に、コントローラ10は、各駆動
装置21に対して位置・速度・力の各指令値を作成し、
これらの指令値に基づいて駆動指令信号を出力すること
により、研磨を行う(ステップ32.33)。この研磨
作業では、先ず砥石7をワーク9の上の研磨開始位置に
セットし、第4図(A)に示すように前記研磨範囲の外
周部9bと砥石7の先端部7aとの距離を変数Xとおい
て設定する(ステップ32)。
As another setting format, for example, the controller 1o may be configured to be provided with information such as the polishing range for each polishing operation from a host computer that manages all polishing operations. Next, the controller 10 creates command values for position, speed, and force for each drive device 21,
Polishing is performed by outputting a drive command signal based on these command values (steps 32 and 33). In this polishing operation, the grindstone 7 is first set at the polishing start position above the workpiece 9, and the distance between the outer circumference 9b of the polishing range and the tip 7a of the grindstone 7 is set as a variable as shown in FIG. 4(A). Set as X (step 32).

この変数Xは砥石7の位置が変化するのに応じてその値
が変化する。その後、ステップ31で設定された研磨範
囲に従って研磨作業が開始される(ステップ33)。
The value of this variable X changes as the position of the grindstone 7 changes. Thereafter, polishing work is started according to the polishing range set in step 31 (step 33).

研磨作業においては、第4図(A)に示すように、砥石
7には図示しない駆動装置よってFという押付は力が加
えられながら研磨経路に沿って被研磨面9a上を砥石の
先端部7aが研磨範囲の外周部9bと重なるまではA方
向に移動し、その後移動方向を変更してB方向に移動す
る。この実施例では、砥石7の進行方向の長さ寸法はL
′であり、前述の通り砥石7の先端部7aと研磨範囲の
外周部9bとの距離がXと設定されている。かかる状態
で研磨作業が行われる砥石7において、研磨範囲の外周
部9bに対する砥石7の位置、すなわち距離Xに応じて
、砥石7に加えられる押付は力Fはコントローラ10か
らの力指令値に関する駆動指令信号に基づいて次のよう
に制御される。
In the polishing operation, as shown in FIG. 4(A), a force F is applied to the grindstone 7 by a drive device (not shown), and the tip 7a of the grindstone moves along the polishing path onto the surface to be polished 9a. It moves in the A direction until it overlaps with the outer peripheral part 9b of the polishing range, and then changes the moving direction and moves in the B direction. In this embodiment, the length dimension of the grinding wheel 7 in the advancing direction is L
', and as described above, the distance between the tip 7a of the grindstone 7 and the outer circumference 9b of the polishing range is set as X. In the grindstone 7 where the polishing work is performed in such a state, the pressing force F applied to the grindstone 7 is determined according to the position of the grindstone 7 with respect to the outer circumference 9b of the polishing range, that is, the distance X. It is controlled as follows based on the command signal.

X≧O:  F=F。X≧O: F=F.

X<0   :   F=0 この条件ですべての研磨範囲を研磨しくステップ34.
35)、研磨範囲のすべてが研磨された後には一時的に
動作を停止する(ステップ34゜36)。次に砥石を図
示されていないより小型のものに交換し、外周部9bの
周辺の被研磨面を第4図(B)に示す押付は力を与えて
第2回目の研磨作業を再び開始する(ステップ37)。
X<0: F=0 Polish all the polishing areas under these conditions Step 34.
35), the operation is temporarily stopped after the entire polishing range has been polished (steps 34 and 36). Next, the grindstone is replaced with a smaller one (not shown), and the pressing force shown in FIG. 4(B) is applied to the surface to be polished around the outer circumferential portion 9b, and the second polishing operation is started again. (Step 37).

この研磨作業では次の条件を満たすように押付は力は制
御される。この条件は第4図(B)に示される特性を式
で表したものである。
In this polishing work, the pressing force is controlled so as to satisfy the following conditions. This condition is a formula representing the characteristics shown in FIG. 4(B).

0≦X≦L’  : F=−K (X−L”)ただし、
X=0 の時F2 X=L’の時F1 X>L’  :F=O X<0  7F=0 小型の砥石に交換された後の研磨作業は、研磨範囲の外
周部9bの周辺を中心に研磨を行い、ステップ38でX
の範囲を判断しながら前記の式に従って押付は力を定め
て研磨を行う。すなわち、0≦X<L’のときには切込
み量補正の制御が行われ(ステップ39)、X>L′で
は削過ぎを防ぐために、またX〈0では研磨範囲を逸脱
するので、それぞれFを0にして研磨作業を終了する。
0≦X≦L': F=-K (X-L") However,
F2 when X=0 F1 when X=L'X>L' :F=O , and in step 38
Polishing is performed by determining the pressing force according to the above formula while determining the range of . That is, when 0≦X<L', the depth of cut correction is controlled (step 39), and when X>L', F is set to 0 to prevent over-cutting, and when X<0, the polishing range is exceeded. to finish the polishing work.

切込み補正作業における研磨特性を示した第4図(B)
では研磨範囲の外周部9bの位置を原点としている。切
込み補正量制御では砥石が外周部に接近するに従って押
付は力Fを直線的に大きくする。
Figure 4 (B) shows the polishing characteristics in the depth of cut correction work.
Here, the position of the outer circumferential portion 9b of the polishing range is set as the origin. In the depth of cut correction amount control, the pressing force F increases linearly as the grindstone approaches the outer circumference.

なお、以上の平面研磨作業の制御が実行されるにあたっ
ては、コントローラ10が、作業工具8を所要の一定速
度で移動させ、作業工具8の位置を所要の位置に変更し
ながら、作業工具8に所要の押付は力を与える制御を行
うことが前提となる。
In addition, when controlling the above-mentioned surface polishing work, the controller 10 moves the work tool 8 at a required constant speed and changes the position of the work tool 8 to a required position. The premise is that the required pressing is controlled by applying force.

そのため、コントローラ10は、リアルタイムで逐次、
位置、力の各指令値を書換えて決定し、これらの指令値
を各駆動装置21を駆動させるための駆動信号13に変
換し、各駆動装置を動作させている。
Therefore, the controller 10 sequentially performs the following in real time:
Each command value of position and force is rewritten and determined, and these command values are converted into a drive signal 13 for driving each drive device 21 to operate each drive device.

次に第5図及び第6図に基づき本発明の第2実施例を説
明する。51はアーム2,3等からなる多関節型の研磨
装置、8は砥石7を先部に備える作業工具Z9は被研磨
面9a及び研磨範囲外周部9bを有するワーク、10は
コントローラ、14は操作部、15は表示部である。研
磨装置51には図示しない複数の位置センサと駆動装置
が配設され、位置センサの検出信号12はコントローラ
10にフィードバックされ、各駆動装置にはコントロー
ラ10から駆動指令信号13が送給される。
Next, a second embodiment of the present invention will be described based on FIGS. 5 and 6. 51 is an articulated polishing device consisting of arms 2, 3, etc.; 8 is a work tool Z9 having a grinding wheel 7 at its tip; 10 is a controller; 14 is an operation tool; 15 is a display section. The polishing device 51 is provided with a plurality of position sensors and drive devices (not shown), and a detection signal 12 from the position sensor is fed back to the controller 10, and a drive command signal 13 is sent from the controller 10 to each drive device.

以上の構成は第1図で示された第1実施例と基本的に同
じである。更に、研磨装置51は図示しない圧力源から
供給される油圧又は空圧で作動するシリンダ52をアー
ム3の先部に備え、シリンダ52の先端に前記作業工具
8を取り付けている。
The above configuration is basically the same as the first embodiment shown in FIG. Further, the polishing device 51 includes a cylinder 52 at the tip of the arm 3 that is operated by hydraulic or pneumatic pressure supplied from a pressure source (not shown), and the working tool 8 is attached to the tip of the cylinder 52.

かかる構成を有する研磨装置51では、研磨作業におけ
る砥石7の押付は力Fはシリンダ52によって与えられ
る圧力により発生する。またコントローラ10からシリ
ンダ52にはこのシリンダに供給される圧力を調整する
ための制御信号53が与えられ、シリンダ52から作業
工具8に与えられる前記圧力はこの制御信号53によっ
て制御される。
In the polishing device 51 having such a configuration, force F is generated by pressure applied by the cylinder 52 when pressing the grindstone 7 during polishing work. Further, a control signal 53 for adjusting the pressure supplied to the cylinder 52 is given from the controller 10 to the cylinder 52, and the pressure given to the power tool 8 from the cylinder 52 is controlled by this control signal 53.

上記の第2実施例による研磨方法では、前記第1実施例
の場合と同様にコントローラ10の制御指令によって第
3図で示されたプログラムに従って、前記距離Xの範囲
に応じて最初の砥石7及びその後交換された小型の砥石
のそれぞれについて押付は力を制御する。そのため、研
磨時の押付は力を決定する指令値の与え方については第
1実施例と全く同じである。ただし、この実施例の場合
には、砥石7の押付は力を発生させるために、油圧又は
空圧のシリンダ52を使用しているので、前記式におい
てF、F、、F2の代わりに圧力制御信号P及びその所
定値PI、P2を使用すると共に、X<O及びX>L’
の範囲ではF=0の代わりに圧力制御信号Pとして所定
の値Pl  (<o)を与えるように構成される。すな
わち、Xく0及びX>L’の範囲においては圧力制御信
号として負の指令値P3を与え、研磨終了後に砥石とワ
ーク9が接触しないようにシリンダ52を収縮させる。
In the polishing method according to the second embodiment described above, the first grindstone 7 and The press controls the force for each of the smaller wheels that are then replaced. Therefore, the method of giving the command value that determines the pressing force during polishing is exactly the same as in the first embodiment. However, in the case of this embodiment, a hydraulic or pneumatic cylinder 52 is used to generate force for pressing the grindstone 7, so pressure control is used instead of F, F, , F2 in the above equation. Using the signal P and its predetermined values PI and P2, X<O and X>L'
In the range of , the pressure control signal P is configured to give a predetermined value Pl (<o) instead of F=0. That is, in the range of Xku0 and X>L', a negative command value P3 is given as a pressure control signal, and the cylinder 52 is contracted so that the grindstone and the workpiece 9 do not come into contact after polishing is completed.

第6図は距離Xを横軸とし、制御信号53の圧力値Pを
縦軸として描いたグラフである。
FIG. 6 is a graph in which the distance X is plotted on the horizontal axis and the pressure value P of the control signal 53 is plotted on the vertical axis.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかなように本発明によれば、力制御が
要求される研磨作業を自動的に実行する研磨ロボットに
おいて、研磨対象であるワークの被研磨面が平面であり
、且つ研磨範囲がワークの中央部である場合、研磨範囲
外周部と作業工具の位置関係を把握しながら研磨範囲外
周部との相対的位置に対応して作業工具に与えられる押
付は力を調整できる研磨方法を実現したため、ワークの
被研磨面全体を常に一定の削り代で研磨できるという効
果が発揮される。
As is clear from the above description, according to the present invention, in a polishing robot that automatically performs polishing work that requires force control, the surface to be polished of the workpiece to be polished is flat, and the polishing range is In the case of the center part of the workpiece, we have realized a polishing method that can adjust the force applied to the work tool according to its relative position to the outer circumference of the polishing area while grasping the positional relationship between the outer circumference of the polishing area and the work tool. As a result, the entire surface of the workpiece to be polished can be polished with a constant cutting allowance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の平面研磨方法が適用される研磨ロボッ
トの構成を示す概要図、第2図は電気系の構成を示すブ
ロック図、第3図は平面研磨方法の第1実施例を示すフ
ローチャート、第4図は平面の研磨作業の状況を説明す
る図、第5図は第2実施例が適用される他の構成を有す
る研磨ロボットを示す概要図、第6図は平面研磨方法の
第2実施例における圧力変化を示す特性図、第7図及び
第8図は従来の平面研磨方法の問題点を説明するための
図である。 [符号の説明] 1.51・・・・・研磨装置 2.3・・・・・・アーム 4.5.20・・・位置センサ 6・・・・・・・・力センサ 7.100・・・・砥石 8・・・・・・・・作業工具 9・φφ・・・・・ワーク 9a、101・・・被研磨面 9b・・・・・・・研磨範囲外周部 10・・・・・・・コントローラ 14・・・・・・・操作部 15・・・・・・・表示部 25・・・・・噛・CPU 26・・・・・・・記憶部 52・・・・・・・油圧又は空圧のシリンダ第 図 第 4 図 Δ 第 図 第7 図
FIG. 1 is a schematic diagram showing the configuration of a polishing robot to which the surface polishing method of the present invention is applied, FIG. 2 is a block diagram showing the configuration of the electrical system, and FIG. 3 is a first embodiment of the surface polishing method. Flowchart, FIG. 4 is a diagram explaining the situation of flat surface polishing work, FIG. 5 is a schematic diagram showing a polishing robot having another configuration to which the second embodiment is applied, and FIG. 6 is a diagram illustrating the flat surface polishing method. Characteristic diagrams showing pressure changes in the second embodiment, FIGS. 7 and 8 are diagrams for explaining problems in the conventional surface polishing method. [Explanation of symbols] 1.51... Polishing device 2.3... Arm 4.5.20... Position sensor 6... Force sensor 7.100. ... Grindstone 8 ... Work tool 9 φφ ... Workpieces 9a, 101 ... Surface to be polished 9b ... Polishing range outer periphery 10 ... ... Controller 14 ..... Operation section 15 ..... Display section 25 .... CPU 26 ..... Memory section 52 ....・Hydraulic or pneumatic cylinder Figure 4 Figure Δ Figure 7

Claims (2)

【特許請求の範囲】[Claims] (1)研磨工具を被研磨部材に押し付けて研磨する研磨
作業が行われるとき、手先部に設けられた力センサで検
出される前記研磨工具が受ける反力と、位置センサの出
力信号で検出される前記研磨工具と前記被研磨部材の相
対的位置とに基づいて前記研磨工具の位置及び押付け力
を設定し前記研磨作業を実行する研磨ロボットの研磨方
法において、前記被研磨部材における研磨範囲と研磨経
路のデータを与え、最初に、前記研磨工具として第1の
研磨工具を用意し、前記研磨範囲の外周部と第1の研磨
工具との距離を計測しながら、前記第1の研磨工具で前
記研磨範囲を一定の押付け力を保って研磨し、次に研磨
工具を小型の第2の研磨工具に交換し、前記研磨範囲の
外周部と第2の研磨工具との距離を計測しながら、第2
の研磨工具で前記研磨範囲を、研磨範囲の外周部と第2
の研磨工具との距離が小さくなるにつれて反力が大きく
なるように第2の研磨工具の押付け力を変化させるよう
にして研磨することを特徴とする研磨ロボットの平面研
磨方法。
(1) When a polishing operation is performed in which a polishing tool is pressed against a workpiece to be polished, the reaction force received by the polishing tool is detected by a force sensor installed at the tip of the hand, and the output signal of a position sensor is detected. In the polishing method for a polishing robot, the position and pressing force of the polishing tool are set based on the relative positions of the polishing tool and the member to be polished, and the polishing operation is performed by setting the position and pressing force of the polishing tool based on the relative position of the polishing tool and the member to be polished. First, a first polishing tool is prepared as the polishing tool, and while measuring the distance between the outer periphery of the polishing range and the first polishing tool, Polish the polishing area while maintaining a constant pressing force, then replace the polishing tool with a small second polishing tool, and measure the distance between the outer periphery of the polishing area and the second polishing tool. 2
The polishing tool is used to polish the polishing area between the outer periphery of the polishing area and the second
A surface polishing method for a polishing robot, characterized in that polishing is performed by changing the pressing force of a second polishing tool so that the reaction force increases as the distance from the second polishing tool decreases.
(2)研磨工具を圧力シリンダの押圧作用で被研磨部材
に押し付けて研磨する研磨作業が行われるとき、位置セ
ンサの出力信号で検出される前記研磨工具と前記被研磨
部材の相対的位置に基づいて前記研磨工具の位置及び前
記圧力シリンダに供給される圧力を設定し前記研磨作業
を実行する研磨ロボットの研磨方法において、前記被研
磨部材における研磨範囲と研磨経路のデータを与え、最
初に、前記研磨工具として第1の研磨工具を用意し、前
記研磨範囲の外周部と第1の研磨工具との距離を計測し
ながら、前記第1の研磨工具で前記研磨範囲を前記圧力
を一定に保って研磨し、次に研磨工具を小型の第2の研
磨工具に交換し、前記研磨範囲の外周部と第2の研磨工
具との距離を計測しながら、第2の研磨工具で前記研磨
範囲を、研磨範囲の外周部と第2の研磨工具との距離が
小さくなるにつれて前記圧力が大きくなるように変化さ
せて研磨することを特徴とする研磨ロボットの平面研磨
方法。
(2) When polishing is performed by pressing a polishing tool against a workpiece to be polished by the pressing action of a pressure cylinder, based on the relative position of the polishing tool and workpiece detected by the output signal of a position sensor. In the polishing method for a polishing robot, which sets the position of the polishing tool and the pressure supplied to the pressure cylinder and executes the polishing operation, data on the polishing range and polishing path on the member to be polished are provided, and the A first polishing tool is prepared as a polishing tool, and while measuring the distance between the outer periphery of the polishing range and the first polishing tool, the pressure is kept constant over the polishing range with the first polishing tool. Polishing, then replace the polishing tool with a small second polishing tool, and while measuring the distance between the outer periphery of the polishing range and the second polishing tool, polish the polishing range with the second polishing tool, A surface polishing method for a polishing robot, characterized in that polishing is performed by changing the pressure so that it increases as the distance between the outer periphery of the polishing range and the second polishing tool becomes smaller.
JP33215489A 1989-12-21 1989-12-21 Surface polishing method of abrasive robot Pending JPH03196959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33215489A JPH03196959A (en) 1989-12-21 1989-12-21 Surface polishing method of abrasive robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33215489A JPH03196959A (en) 1989-12-21 1989-12-21 Surface polishing method of abrasive robot

Publications (1)

Publication Number Publication Date
JPH03196959A true JPH03196959A (en) 1991-08-28

Family

ID=18251756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33215489A Pending JPH03196959A (en) 1989-12-21 1989-12-21 Surface polishing method of abrasive robot

Country Status (1)

Country Link
JP (1) JPH03196959A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999037442A1 (en) * 1998-01-22 1999-07-29 Nitta Corporation Grinder pressing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999037442A1 (en) * 1998-01-22 1999-07-29 Nitta Corporation Grinder pressing device
AU747820B2 (en) * 1998-01-22 2002-05-23 Yasuhiro Hayakawa Grinder pressing device

Similar Documents

Publication Publication Date Title
KR0167021B1 (en) Automatic grinding apparatus
JP2637488B2 (en) Numerically controlled grinding machine
KR940009090B1 (en) Grinder robot
US5565749A (en) Method of controlling a grinder robot
US20200290207A1 (en) Real-time identification of burr size and location for robotic deburring process
CN114274047A (en) Efficient precise polishing track optimization method based on force sensing measurement
JPH03196959A (en) Surface polishing method of abrasive robot
JPH0698567B2 (en) Free curved surface processing machine
JPH0355158A (en) Method for grinding edge with grinding robot
JP2019098445A (en) Processing device and processing method
JPH10230493A (en) Force control robot and its control method
Li et al. Design and modeling of belt grinding tool for industrial robot application
JP3205827B2 (en) Processing data creation device for non-circular workpieces
JPH02180555A (en) Deburring robot
JPH0386461A (en) Control method for robot of grinder work
JP2000052211A (en) Excess weld metal removing method for welding bead and its device
JPH10549A (en) Polishing device
US10466682B2 (en) Controller
JPH03184758A (en) Edge part polishing method of abrasive robot
JPS61188075A (en) Grinding control method
JPH03149171A (en) Tool locus control device for industrial robot
JPH0357421Y2 (en)
JPH0488504A (en) Tool effective position correcting method
JPH0649272B2 (en) Grinding control device
JPS61182770A (en) Work method of surface grinding machine