JPH02303381A - Cogeneration facility - Google Patents

Cogeneration facility

Info

Publication number
JPH02303381A
JPH02303381A JP1124003A JP12400389A JPH02303381A JP H02303381 A JPH02303381 A JP H02303381A JP 1124003 A JP1124003 A JP 1124003A JP 12400389 A JP12400389 A JP 12400389A JP H02303381 A JPH02303381 A JP H02303381A
Authority
JP
Japan
Prior art keywords
thermoelectric
thermoelectric module
cooling
cooling pipe
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1124003A
Other languages
Japanese (ja)
Inventor
Masaki Ikeuchi
正毅 池内
Tsuneo Yumikura
弓倉 恒雄
Kazunari Nakao
一成 中尾
Eiichi Ozaki
永一 尾崎
Takeshi Doi
全 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1124003A priority Critical patent/JPH02303381A/en
Publication of JPH02303381A publication Critical patent/JPH02303381A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a large electrical output by arranging a thermoelectric module directly in discharge gas and heating the heating face thereof with the discharge gas. CONSTITUTION:An engine 13 operating with fuel being fed from a fuel feed system 17 provides the output through a shaft 14 to a generator 15 in order to produce power and discharges gas after combustion. The discharge gas is led to a thermoelectric generating section 20 where the heating face of a thermoelectric module 2 fixed on the outer wall face 3a of a flat cooling pipe 3 is heated to a high temperature, then the discharge gas is discharged through a smokestack 12. Cooling water is flowing through the flat cooling pipe 3 and cools the cooling face (outer wall face 3a side of the flat cooling pipe 3) of the thermoelectric module 2. Consequently, current is produced according to the temperature difference between the opposite faces of the thermoelectric module 2 and a large electrical output can be produced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、熱電素子と排熱とを利用して発電を行うコ
ージェネレーシ曹ン装置に関するものである。 〔従来の技術〕 第5図は、例えば応用物理学会第12回熱電変換研究会
(1986年12月22日於科学技術館)の資料に示さ
れた熱電発電をコージエネレーシ璽ンに採用した従来の
コージェネレーション装置の一例を示す構成図であり、
図において、1は熱電発電部、2はN型半導体とP型半
導体とを一組として構成される熱電モジュール、3はこ
の熱電モジュール2の冷却面2aに接合している偏平冷
却管で、この偏平冷却管3中には冷却効果を向上させる
ためのフィン4が設けられ、偏平冷却管3中を冷却媒体
である冷却水が流れて、熱電モジュール2の一方側であ
る冷却面2aを冷却している。 5は熱電発電部1の下部に設けられた蒸発部6からの水
蒸気が流通する熱通路となる水蒸気通路で、熱電モジュ
ール2の加熱面2bK接合している。 7は熱電素子以外に無駄な熱を鋺さないための断熱材で
、偏平冷却管3と水蒸気通路5との間を断熱している。 8は熱電モジュール20表面で凝縮・液化し蒸発部6へ
流れていく凝縮水である。 そして、上記熱電モジュール2、フィン4を有する偏平
冷却管3、水蒸気通路5および断熱材7によって熱電発
電部1を構成し、ケーブル9を介して熱電発電部1より
電力を取り出している。10は排ガスの通る排ガス管で
、この排ガス管10の外部に熱水貯溜部11が形成され
て蒸発部6が構成されている。12は蒸発部6の一方に
接続された煙突、13は蒸発部6の他方に接続された例
えばガスエンジンなどのエンジンで、このエンジン13
は軸14を、介して発電機15とカップリングしており
、ケーブル16を通して電力を取り出す。 なお、エンジン13には燃料供給系17と、冷却水系1
8とが接続されている。   次に動作について説明する。・燃料供給系17から燃料
を供給され、運転中にあるエンジン13は、その出力を
軸14を通して発電機15に伝え発電するとともに、燃
焼後の排ガスを放出する。この排ガスは、熱電発電装置
の蒸発部6に設けられた排ガス管10を通って煙突12
から放出される。 このとき、排ガス管10の外周部に存在している熱水が
加熱されて水蒸気を発生し、この水蒸気が熱電発電部1
の水蒸気通路5に導びかれ、熱電モジュール2の加熱面
に接触する。このため、水蒸気は熱電モジュール2上で
凝縮し、凝縮水8となって再び排ガス管10の外周部に
戻る。熱電モジュール2は加熱面が水蒸気により加熱さ
れるが、冷却面は偏平冷却管3内を流れる冷却水により
冷却されるため、この温度差により直列接続された複数
の熱電モジュール20両端に電圧が生じる。 これら熱電モジュール2を複数個直列に電気的に接続す
ることにより電力を取り出すことができる。 〔発明が解決しようとする課題〕 従来ノコージエネレーシ冒ン装置は以上のように構成さ
れ、エンジンよりの排ガスを蒸発部により熱交換して水
蒸気な熱電発電部に導いて熱電モジシールの加熱面を間
接的に加熱しているので、熱電モジュールの加熱面であ
る高温側温度が低くなってしまうという問題点があった
。 この発明は、上記のような問題点を解消するためKなさ
れたもので、熱電モジュールの加熱面をより高い温度で
加熱するようにして、大きい電気出力を得ることのでき
るコージエネレーシ璽ン装置を得ることを目的とする。 〔課題を解決するための手段〕 コノ発明ニ係るフージエネレーシ嘗ン装装置は熱電モジ
ュールを直接排ガス中に設置し、加熱面を排ガスで加熱
するようKしたものである。 〔作 用〕 この発明におけるコージエネレーシ1ノ装置は、熱電モ
ジュールを排ガス中に設置したことにより、装置構成が
簡単になるとともに、熱電モジュールの高温部と、冷却
面である低温度との温度差を太き(して大きな電力を得
るようにする。 〔実施例〕 以下、この発明の一実施例を図につい【説明する。第1
図はこの発明の一実施例を示す構成図で、第1図におい
て第5図と同一または均等な構成部分には同一符号を付
して重複説明を省略する。第1図において、20は熱電
発電部で、この熱電発電部2Gは内部に冷却水の流れる
偏平冷却管3およびこの偏平冷却管3の外壁面3aに接
合してN型半導体とP型半導体とから構成される熱電モ
ジ、−ル2が設置され、この熱電モジニール2の外周に
熱通路5が形成されている。また、熱電発電部20は一
方がエンジン13の排ガス放出部13aに、他方が煙突
12に接続されている。第2図は、偏平冷却管3の壁面
3a上におかれた熱電モジシール2の詳細を示す斜視図
であり、偏平冷却管3の壁面3aのうち熱電モジュール
2と接触していない部分は、排ガスと冷却水との間で熱
交換を行わないように断熱材7で断熱されているが、第
2図は断熱材を取り除いて示している。 次に動作について説明する。燃料供給系17かも燃料を
供給され運転中にあるエンジン13は、その出力を軸1
4を通して発電機15に伝え発電するとともに、燃焼後
の排ガスを放出する。この排ガスは、熱電発電部20に
導かれ、ここで偏平冷却管3の外壁面3a上に取り付け
られた熱電モジュール2の加熱面2bを加熱し高温とし
たあと煙突12から放出される。また、偏平冷却管3内
には冷却水が流れており、この冷却水により熱電モジュ
ール2の冷却面2a(偏平冷却管3の外壁面3a側)が
冷却され、熱電モジュール20両面の温度差に応じて電
流が発生する。したがって、熱電モジュール2を電気的
に複数個直列接続することにより電力を取り出すことが
できる。 なお、上記実施例では冷却管忙偏平冷却管を用いたが、
これに限定されることなく、第3図に示すご、とく円筒
状冷却管21を用いて、周囲に熱電モジー−ルを巻き付
けてもよい。また、第4図に示すように、管内側に排ガ
スを流し、外側に冷却媒体を流しても上記実施例と同様
の効果を奏する。 〔発明の効果〕 以上のように、この発明によれば熱電モジュールの加熱
面を直接排ガスで加熱すると共に、熱電モジュールの冷
却面を直接冷却媒体で冷却するように構成したので、装
置が簡単になるとともK。 熱電モジー−ルの加熱面と冷却面との温度差を太き(と
ることができ、よって大きい電気出力が得られる効果が
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a cogeneration system that generates electricity using thermoelectric elements and waste heat. [Prior art] Figure 5 shows, for example, a thermoelectric power generation system that employs thermoelectric power generation as shown in materials from the 12th Thermoelectric Conversion Study Group of the Japan Society of Applied Physics (December 22, 1986, Science Museum). It is a block diagram showing an example of a conventional cogeneration device,
In the figure, 1 is a thermoelectric power generating section, 2 is a thermoelectric module configured as a set of an N-type semiconductor and a P-type semiconductor, and 3 is a flat cooling tube connected to the cooling surface 2a of this thermoelectric module 2. Fins 4 are provided in the flat cooling pipe 3 to improve the cooling effect, and cooling water as a cooling medium flows through the flat cooling pipe 3 to cool the cooling surface 2a on one side of the thermoelectric module 2. ing. Reference numeral 5 denotes a water vapor passage serving as a heat passage through which water vapor from the evaporation part 6 provided at the lower part of the thermoelectric power generating part 1 flows, and is connected to the heating surface 2bK of the thermoelectric module 2. Reference numeral 7 denotes a heat insulating material to prevent wasted heat from being absorbed into anything other than the thermoelectric element, which insulates the space between the flat cooling pipe 3 and the water vapor passage 5. 8 is condensed water that condenses and liquefies on the surface of the thermoelectric module 20 and flows to the evaporator 6. The thermoelectric module 2, the flat cooling pipe 3 having the fins 4, the steam passage 5, and the heat insulating material 7 constitute a thermoelectric power generation section 1, and electric power is extracted from the thermoelectric power generation section 1 via a cable 9. Reference numeral 10 denotes an exhaust gas pipe through which exhaust gas passes, and a hot water storage section 11 is formed outside the exhaust gas pipe 10 to constitute the evaporation section 6 . 12 is a chimney connected to one side of the evaporator 6; 13 is an engine, such as a gas engine, connected to the other side of the evaporator 6;
is coupled to a generator 15 via a shaft 14 and extracts power through a cable 16. Note that the engine 13 includes a fuel supply system 17 and a cooling water system 1.
8 is connected. Next, the operation will be explained. - The engine 13, which is supplied with fuel from the fuel supply system 17 and is in operation, transmits its output to the generator 15 through the shaft 14 to generate electricity, and emits exhaust gas after combustion. This exhaust gas passes through the exhaust gas pipe 10 provided in the evaporation section 6 of the thermoelectric generator and passes through the chimney 12.
released from. At this time, the hot water existing on the outer periphery of the exhaust gas pipe 10 is heated to generate water vapor, and this water vapor is transferred to the thermoelectric power generation section 1.
, and comes into contact with the heating surface of the thermoelectric module 2 . Therefore, the water vapor condenses on the thermoelectric module 2, becomes condensed water 8, and returns to the outer periphery of the exhaust gas pipe 10 again. The heating surface of the thermoelectric module 2 is heated by water vapor, but the cooling surface is cooled by the cooling water flowing in the flat cooling tube 3, so this temperature difference generates a voltage across the plurality of thermoelectric modules 20 connected in series. . Electric power can be extracted by electrically connecting a plurality of these thermoelectric modules 2 in series. [Problems to be Solved by the Invention] Conventional nokoji energy blowing devices are constructed as described above, and the exhaust gas from the engine is heat-exchanged by the evaporator and guided to the thermoelectric power generation section in the form of water vapor, and the heated surface of the thermoelectric modiseal is heated. Since the thermoelectric module is heated indirectly, there is a problem in that the temperature on the high temperature side, which is the heating surface of the thermoelectric module, becomes low. This invention was made in order to solve the above-mentioned problems, and provides a cogeneration energy generating device that can obtain a large electrical output by heating the heating surface of a thermoelectric module at a higher temperature. The purpose is to obtain. [Means for Solving the Problems] The fusi energy injection device according to the present invention is such that a thermoelectric module is installed directly in the exhaust gas, and the heating surface is heated by the exhaust gas. [Function] By installing the thermoelectric module in the exhaust gas, the Cozi Energy 1 device according to the present invention has a simple device configuration, and the temperature between the high-temperature part of the thermoelectric module and the low-temperature cooling surface is reduced. [Embodiment] An embodiment of the present invention will be described below with reference to the figures.
The figure is a configuration diagram showing an embodiment of the present invention, and in FIG. 1, the same or equivalent components as in FIG. In FIG. 1, reference numeral 20 denotes a thermoelectric power generation section, and this thermoelectric power generation section 2G is connected to a flat cooling pipe 3 through which cooling water flows and an outer wall surface 3a of this flat cooling pipe 3, and is connected to an N-type semiconductor and a P-type semiconductor. A thermoelectric module 2 consisting of a thermoelectric module 2 is installed, and a heat passage 5 is formed around the outer periphery of the thermoelectric module 2. Further, the thermoelectric power generating section 20 is connected to the exhaust gas discharge section 13a of the engine 13 at one end and to the chimney 12 at the other end. FIG. 2 is a perspective view showing details of the thermoelectric modiseal 2 placed on the wall surface 3a of the flat cooling pipe 3. The portion of the wall surface 3a of the flat cooling pipe 3 that is not in contact with the thermoelectric module 2 is a Although it is insulated with a heat insulating material 7 to prevent heat exchange between it and the cooling water, FIG. 2 shows the heat insulating material removed. Next, the operation will be explained. The fuel supply system 17 also supplies fuel to the engine 13, which is in operation, and outputs its output to the shaft 1.
4 to the generator 15 to generate electricity and discharge exhaust gas after combustion. This exhaust gas is led to the thermoelectric power generation unit 20, where the heating surface 2b of the thermoelectric module 2 attached to the outer wall surface 3a of the flat cooling pipe 3 is heated to a high temperature, and then released from the chimney 12. In addition, cooling water flows in the flat cooling pipe 3, and this cooling water cools the cooling surface 2a of the thermoelectric module 2 (the outer wall surface 3a side of the flat cooling pipe 3), thereby reducing the temperature difference between both sides of the thermoelectric module 20. A current is generated accordingly. Therefore, electric power can be extracted by electrically connecting a plurality of thermoelectric modules 2 in series. In addition, in the above embodiment, a flat cooling pipe was used as the cooling pipe, but
Without being limited thereto, a thermoelectric module may be wound around the cylindrical cooling pipe 21, as shown in FIG. Further, as shown in FIG. 4, the same effect as in the above embodiment can be obtained even if the exhaust gas is allowed to flow inside the tube and the cooling medium is allowed to flow outside. [Effects of the Invention] As described above, according to the present invention, the heating surface of the thermoelectric module is directly heated by the exhaust gas, and the cooling surface of the thermoelectric module is directly cooled by the cooling medium, so that the device can be easily constructed. Narutomo K. It is possible to increase the temperature difference between the heating surface and the cooling surface of the thermoelectric module, which has the effect of obtaining a large electrical output.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の一実施例によるコージェネレーシ
璽ン装置を示す構成図、第2図は第1図に示す熱電モジ
島−ルを拡大して示す斜視図、第3図はこの発明の他の
実施例を示す熱電モジュールの斜視図、第4図はこの発
明に係るコージェネレーシ璽ン装置の他の実施例を示す
構成図、第5図は従来のコージェネレーシ目ン装置を示
す構成図である。 1は熱電発電部、2は熱電モジュール、2aは冷却面、
2bは加熱面、3は冷却管、5は熱通路、13はエンジ
ン、である。 なお、図中、同一符号は同一、又は相当部分を示す。 特許出願人  三菱電機株式会社 代理人 弁理士   1)澤 博 昭 (外2名) 17:;’i4イ六((1系 第2図 第3図 21、巴箭珠冷坪管
FIG. 1 is a block diagram showing a cogeneration system according to an embodiment of the present invention, FIG. 2 is an enlarged perspective view of the thermoelectric module shown in FIG. 1, and FIG. FIG. 4 is a configuration diagram showing another embodiment of the cogeneration system according to the present invention, and FIG. 5 is a configuration diagram showing a conventional cogeneration system. It is a diagram. 1 is a thermoelectric power generation unit, 2 is a thermoelectric module, 2a is a cooling surface,
2b is a heating surface, 3 is a cooling pipe, 5 is a heat passage, and 13 is an engine. In addition, in the figures, the same reference numerals indicate the same or equivalent parts. Patent applicant Mitsubishi Electric Co., Ltd. agent Patent attorney 1) Hiroshi Sawa (2 others) 17: ;'i4 Iroku ((1 series, Figure 2, Figure 3,

Claims (1)

【特許請求の範囲】[Claims]  燃料の燃焼により駆動するエンジンと、このエンジン
からの熱媒体を一方に接触させると共に、冷却媒体を他
方に接触させ、熱電素子に作用する温度差により電力を
発生する熱電モジュールを有する熱電発電部とを備えた
コージェネレーション装置において、上記熱電発電部は
上記エンジンからの排ガスが直接導出される熱通路を上
記熱モジュールの加熱面に接触させ、かつ上記冷却媒体
が通過する冷却管を上記熱電モジュールの冷却面に接触
させて形成されていることを特徴とするコージェネレー
ション装置。
A thermoelectric power generation section having an engine driven by combustion of fuel, and a thermoelectric module that generates electric power by a temperature difference acting on a thermoelectric element by bringing a heat medium from the engine into contact with one side and a cooling medium into contact with the other side. In the cogeneration system, the thermoelectric power generating unit has a heat passage through which exhaust gas from the engine is directly led out in contact with the heating surface of the thermal module, and a cooling pipe through which the cooling medium passes through in contact with the heating surface of the thermoelectric module. A cogeneration device characterized by being formed in contact with a cooling surface.
JP1124003A 1989-05-17 1989-05-17 Cogeneration facility Pending JPH02303381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1124003A JPH02303381A (en) 1989-05-17 1989-05-17 Cogeneration facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1124003A JPH02303381A (en) 1989-05-17 1989-05-17 Cogeneration facility

Publications (1)

Publication Number Publication Date
JPH02303381A true JPH02303381A (en) 1990-12-17

Family

ID=14874632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1124003A Pending JPH02303381A (en) 1989-05-17 1989-05-17 Cogeneration facility

Country Status (1)

Country Link
JP (1) JPH02303381A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004092662A1 (en) * 2003-04-17 2004-10-28 Toyota Jidosha Kabushiki Kaisha Energy recovery system
WO2006073613A2 (en) * 2005-01-06 2006-07-13 Caterpillar Inc. Thermoelectric heat exchange element
CN102064744A (en) * 2010-11-08 2011-05-18 华南理工大学 Power generation device by waste heat of gas water heater
JP2012130242A (en) * 2010-12-15 2012-07-05 Benteler Automobiltechnik Gmbh Heat exchanger
JP2015116005A (en) * 2013-12-10 2015-06-22 トヨタ自動車株式会社 Thermoelectric generator
JP2015154640A (en) * 2014-02-17 2015-08-24 トヨタ自動車株式会社 Thermoelectricity generation device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004092662A1 (en) * 2003-04-17 2004-10-28 Toyota Jidosha Kabushiki Kaisha Energy recovery system
CN1311209C (en) * 2003-04-17 2007-04-18 丰田自动车株式会社 Energy recovery system
US7629530B2 (en) 2003-04-17 2009-12-08 Toyota Jidosha Kabushiki Kaisha Energy recovery system
WO2006073613A2 (en) * 2005-01-06 2006-07-13 Caterpillar Inc. Thermoelectric heat exchange element
WO2006073613A3 (en) * 2005-01-06 2007-03-29 Caterpillar Inc Thermoelectric heat exchange element
GB2434920A (en) * 2005-01-06 2007-08-08 Caterpillar Inc Thermoelectric heat exchange element
US7254953B2 (en) 2005-01-06 2007-08-14 Caterpillar Inc Thermoelectric heat exchange element
GB2434920B (en) * 2005-01-06 2008-05-21 Caterpillar Inc Thermoelectric heat exchange element
CN102064744A (en) * 2010-11-08 2011-05-18 华南理工大学 Power generation device by waste heat of gas water heater
JP2012130242A (en) * 2010-12-15 2012-07-05 Benteler Automobiltechnik Gmbh Heat exchanger
JP2015116005A (en) * 2013-12-10 2015-06-22 トヨタ自動車株式会社 Thermoelectric generator
JP2015154640A (en) * 2014-02-17 2015-08-24 トヨタ自動車株式会社 Thermoelectricity generation device

Similar Documents

Publication Publication Date Title
US5959240A (en) Thermoelectric converter for heat-exchanger
US4639542A (en) Modular thermoelectric conversion system
KR100735617B1 (en) Thermoelectric generator using for waste heat
JP2009247206A (en) Improved efficiency thermoelectrics utilizing convective heat flow
JPH03181302A (en) Distilling apparatus
JPH10504960A (en) Multi-stage heat power generation
US6854273B1 (en) Apparatus and method for steam engine and thermionic emission based power generation system
RU2122642C1 (en) Combined-cycle steam power plant
JP2002199761A (en) Thermoelectric element power generator
JPH02303381A (en) Cogeneration facility
JP2007019260A (en) Thermoelectric conversion system
JP2004140202A (en) Thermoelectric conversion system
JP3442862B2 (en) Thermoelectric generation unit
US3460524A (en) Thermionic power and heat source
KR100452909B1 (en) Apparatus for generating thermoelectric semiconductor using of exhaust gas heat
US6495749B2 (en) Hybrid combustion power system
JPH0898569A (en) Power generation apparatus for enhancement of efficiency of thermal power generation
JP3626798B2 (en) Thermoelectric power generation equipment
JPS63262075A (en) Discharge gas heat thermoelectric conversion generator
JPH10190073A (en) Thermoelectric converter for furnace wall
KR0138698B1 (en) High effect heater using generation by thermoelectric theory
JP3586505B2 (en) Thermoelectric generator
JPH10141668A (en) Alcohol stove including thermoelectric converter
JPH0679168U (en) Exhaust heat power generator
JPH10150787A (en) Thermoelectric generator for outdoor use