JPH0316422B2 - - Google Patents

Info

Publication number
JPH0316422B2
JPH0316422B2 JP63050234A JP5023488A JPH0316422B2 JP H0316422 B2 JPH0316422 B2 JP H0316422B2 JP 63050234 A JP63050234 A JP 63050234A JP 5023488 A JP5023488 A JP 5023488A JP H0316422 B2 JPH0316422 B2 JP H0316422B2
Authority
JP
Japan
Prior art keywords
silicon
carbon
sic
fiber fabric
composite fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63050234A
Other languages
Japanese (ja)
Other versions
JPH01229874A (en
Inventor
Shigeru Ikeda
Hiroshi Shioyama
Shoji Hori
Masakazu Adachi
Rokuro Fujii
Takeshi Tanamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP63050234A priority Critical patent/JPH01229874A/en
Publication of JPH01229874A publication Critical patent/JPH01229874A/en
Publication of JPH0316422B2 publication Critical patent/JPH0316422B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • C04B30/02Compositions for artificial stone, not containing binders containing fibrous materials

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、新規な構成を有するケイ素−炭素複
合繊維からなる織物乃至編物およびその製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a woven or knitted fabric made of silicon-carbon composite fibers having a novel structure and a method for producing the same.

従来技術とその問題点 炭素繊維からなる織物乃至編物(以下特に必要
でない限り単に織物という)をケイ素または炭化
ケイ素で被覆することにより、その物性改善を図
ることは、従来から試みられている。例えば、
CVD,PVD、溶射法などにより、炭素繊維織物
の表面にケイ素または炭化ケイ素の被覆層を形成
することが可能であるが、この場合には、織物の
外面に被覆層が形成されるだけで、内部に存在す
る糸や繊維の表面には、被覆層は全く形成されな
い。従つて、勿論繊維表面の改質などはまつたく
行なわれず、これらの方法では、炭素繊維織物の
物性を実質的に改善することは、出来ない。ま
た、糸の形状において、上記加工を行なつた場
合、コスト高は勿論、糸物性の変化により、製織
工程が著しく困難となり、厚物乃至三次元織物で
は、製織不能である。
Prior Art and Problems There have been attempts in the past to improve the physical properties of woven or knitted fabrics (hereinafter simply referred to as woven fabrics unless otherwise required) made of carbon fibers by coating them with silicon or silicon carbide. for example,
It is possible to form a coating layer of silicon or silicon carbide on the surface of a carbon fiber fabric by CVD, PVD, thermal spraying, etc., but in this case, the coating layer is only formed on the outer surface of the fabric. No coating layer is formed on the surface of the threads or fibers present inside. Therefore, of course, the surface of the fibers cannot be modified at all, and these methods cannot substantially improve the physical properties of the carbon fiber fabric. Further, when the above-mentioned processing is performed on the shape of the thread, not only the cost increases but also the weaving process becomes extremely difficult due to changes in the physical properties of the thread, making it impossible to weave thick or three-dimensional fabrics.

問題点を解決するための手段 本発明者は、炭素繊維織物の内部の構成繊維に
までケイ素または炭化ケイ素の被覆層を形成させ
るべく鋭意研究を重ねた結果、炭素繊維織物にケ
イ素または炭化ケイ素の蒸気を接触させる場合に
は、炭素繊維織物の内部に存在する繊維の表面界
面にまでケイ素または炭化ケイ素の被覆層が形成
されること、その結果得られるケイ素−炭素複合
繊維織物の物性が著しく改善されることを見出し
た。
Means for Solving the Problems The present inventor has conducted extensive research to form a coating layer of silicon or silicon carbide even on the constituent fibers inside a carbon fiber fabric, and as a result, the present inventor has found that a coating layer of silicon or silicon carbide can be formed on a carbon fiber fabric. When contacting with steam, a coating layer of silicon or silicon carbide is formed even on the surface interface of the fibers existing inside the carbon fiber fabric, and as a result, the physical properties of the resulting silicon-carbon composite fiber fabric are significantly improved. I found out that it can be done.

すなわち、本発明は、下記のケイ素−炭素複合
繊維織物およびその製造方法を提供するものであ
る: 炭素繊維からなる織物乃至編物の繊維表面に
ケイ素および/または炭化ケイ素被覆層を有
し、かつ該繊維の少なくとも一部がケイ素化合
物に変換されていることを特徴とするケイ素−
炭素複合繊維織物乃至編物。
That is, the present invention provides the following silicon-carbon composite fiber fabric and its manufacturing method: A woven or knitted fabric made of carbon fibers has a silicon and/or silicon carbide coating layer on its fiber surface, and Silicon- characterized in that at least a part of the fiber is converted into a silicon compound.
Carbon composite fiber woven or knitted fabric.

炭素繊維からなる織物乃至編物を、密閉容器
内においてケイ素および/または炭化ケイ素の
蒸気に接触させることを特徴とする特許請求の
範囲第1項に記載のケイ素−炭素複合繊維織物
乃至編物の製造方法。
The method for producing a silicon-carbon composite fiber woven or knitted fabric according to claim 1, characterized in that the woven or knitted fabric made of carbon fibers is brought into contact with silicon and/or silicon carbide vapor in a closed container. .

炭素繊維からなる織物乃至編物を、密閉容器
内においてケイ素および/または炭化ケイ素の
蒸気に接触させた後、1300〜2600℃で熱処理す
ることを特徴とする特許請求の範囲第1項に記
載のケイ素−炭素複合繊維織物乃至編物の製造
方法。
Silicon according to claim 1, characterized in that the woven or knitted fabric made of carbon fibers is brought into contact with silicon and/or silicon carbide vapor in a closed container, and then heat-treated at 1300 to 2600°C. - A method for producing carbon composite fiber woven or knitted fabrics.

本発明において基材として使用する炭素繊維織
物は、PAN系、ピツチ系、レーヨン系、気相成
長炭素系などのいずれであつても良い。また、織
物乃至編物の製造方法にも、一切制限はない。
The carbon fiber fabric used as the base material in the present invention may be any one of PAN type, pitch type, rayon type, vapor grown carbon type, etc. Furthermore, there are no restrictions on the method of manufacturing the woven or knitted material.

本発明のケイ素−炭素複合繊維織物は、炭素繊
維織物とSi源となる物質、または炭素繊維織物と
SiC源となる物質とを密閉容器内に入れ、Si蒸気
またはSiC蒸気が発生する温度条件下に加熱し、
発生した該蒸気と炭素繊維織物とを接触させるこ
とにより、製造される。Si源としては、Siが使用
される。Si源は、平均粒径5mm以下程度の小塊乃
至粉末の形態で使用することが好ましい。また、
SiC源としては、SiCの蒸気が形成される限り、
特に限定されないが、SiC,SiO2と炭素材料との
混合物、Siと炭素材料との混合物などが例示され
る。SiC源としてのSi成分とC成分との配合比
は、必要に応じて任意に選択され、特に限定され
ない。SiC源としても、平均粒径5mm以下程度の
小塊乃至粉末の形態であることが好ましい。SiC
源用の炭素材料としてピツチを使用する場合に
は、ピツチ中にSiO2などあらかじめ分散させて
おくことが好ましい。Si源およびSiC源を併用し
ても良い。また、炭素繊維織物の空隙内にSi源ま
たはSiC源の粉末を充填した状態で加熱する場合
には、織物を構成するそれぞれの糸、繊維へのSi
および/またはSiCの付着が効率良く行われ、Si
被覆層またはSiC被覆層が均一に形成される。ま
た、後記する様に、界面部分の炭素繊維の一部が
ケイ素化合物に変換される。炭素繊維織物とSiま
たはSiCの蒸気との接触時の温度は、SiCの蒸気
が形成される限り、特に限定されないが、使用す
るSi源またはSiC源材料の種類、蒸気面積、蒸気
圧など適宜考慮して、通常1300〜2600℃程度の範
囲内とする。接触時間は、所望の被覆層厚さ、織
物を構成するそれぞれの糸、繊維の太さ、織物の
形成方法などに応じて定めれば良く、特に限定さ
れない。
The silicon-carbon composite fiber fabric of the present invention combines a carbon fiber fabric and a substance that serves as a Si source, or a carbon fiber fabric and a substance that serves as a Si source.
A substance that is a SiC source is placed in a sealed container and heated under temperature conditions that generate Si vapor or SiC vapor,
It is produced by bringing the generated steam into contact with a carbon fiber fabric. Si is used as the Si source. The Si source is preferably used in the form of small lumps or powder with an average particle size of about 5 mm or less. Also,
As a SiC source, as long as SiC vapor is formed,
Examples include, but are not limited to, SiC, a mixture of SiO 2 and a carbon material, and a mixture of Si and a carbon material. The blending ratio of the Si component and the C component as a SiC source is arbitrarily selected as required and is not particularly limited. The SiC source is also preferably in the form of small lumps or powder with an average particle size of about 5 mm or less. SiC
When using pitch as a source carbon material, it is preferable to previously disperse SiO 2 in the pitch. A Si source and a SiC source may be used together. In addition, when heating the carbon fiber fabric with Si source or SiC source powder filled in the voids, Si
and/or SiC adhesion is performed efficiently and Si
The coating layer or SiC coating layer is uniformly formed. Furthermore, as will be described later, a portion of the carbon fibers at the interface are converted into silicon compounds. The temperature at which the carbon fiber fabric contacts Si or SiC vapor is not particularly limited as long as SiC vapor is formed, but the type of Si source or SiC source material used, vapor area, vapor pressure, etc. should be taken into consideration as appropriate. The temperature is usually within the range of 1300 to 2600℃. The contact time is not particularly limited, and may be determined depending on the desired thickness of the coating layer, the thickness of each thread and fiber constituting the woven fabric, the method of forming the woven fabric, and the like.

本発明では、上記した方法で得られたケイ素−
炭素複合繊維織物を更に、1300〜2600℃で熱処理
することにより、Si被覆層またはSiC被覆層と炭
素繊維との反応を進行させることができる。この
熱処理においては、温度および時間に応じて、Si
被覆層またはSiC被覆層と炭素繊維および糸との
反応が進行して、炭素繊維の少なくとも一部が
SiC化される。この熱処理工程は、前段のSiまた
はSiC蒸気との接触工程と完全に独立した状態で
実施する必要はなく、該蒸気との接触工程を終え
た炭素繊維織物を同一密閉容器内で引き続き加熱
しても良い。この熱処理時間は、炭素繊維の表面
と被覆層との界面層のSi又はCの拡散による固相
反応量を規制するものである。この界面相の厚さ
は、用途に応じて定められるものであるから、熱
処理時間は、特に限定されない。
In the present invention, silicon-
By further heat-treating the carbon composite fiber fabric at 1300 to 2600°C, the reaction between the Si coating layer or the SiC coating layer and the carbon fibers can proceed. In this heat treatment, Si
The reaction between the coating layer or the SiC coating layer and the carbon fibers and yarn progresses, and at least a portion of the carbon fibers are
Converted to SiC. This heat treatment step does not need to be carried out completely independently of the previous step of contacting with Si or SiC vapor, and the carbon fiber fabric that has undergone the contact step with the vapor can be continuously heated in the same closed container. Also good. This heat treatment time regulates the amount of solid phase reaction due to the diffusion of Si or C in the interface layer between the surface of the carbon fiber and the coating layer. Since the thickness of this interfacial phase is determined depending on the application, the heat treatment time is not particularly limited.

本発明によるケイ素−炭素複合繊維織物は、Si
および/またはSiC被覆層の厚さ、熱処理の程度
などにより、第1図に糸の1/4断面として概念的
に示す〜の“種の類型に大別される。第1図
において、ハツチング部分は、不定比組成層また
は界面層を示す。また、破線で示す部分は、本発
明の処理前の炭素繊維の部分である。なお、図示
した各層の厚さは、必ずしも炭素繊維における実
際の相対的な厚さを示すものではない。また、不
定比組成層または界面層においては、Siの濃度
は、表面側から内部側に向けて低くなつている。
The silicon-carbon composite fiber fabric according to the present invention has Si
Depending on the thickness of the SiC coating layer and/or the degree of heat treatment, etc., it can be roughly divided into ``types'' shown conceptually as a 1/4 cross section of the thread in Figure 1.In Figure 1, the hatched part indicates a non-stoichiometric composition layer or an interface layer. Also, the part indicated by the broken line is the part of the carbon fiber before the treatment of the present invention.The thickness of each layer shown does not necessarily correspond to the actual relative thickness of the carbon fiber. Furthermore, in the non-stoichiometric composition layer or the interface layer, the Si concentration decreases from the surface side toward the inside.

類型のものは、炭素繊維Cの表面まSiの被覆
層が存在しており、両層の間には、薄いSiC層が
形成されている。
In this type, a Si coating layer is present on the surface of carbon fiber C, and a thin SiC layer is formed between the two layers.

類型のものは、炭素繊維の表面に当初形成さ
れていたSi層が、熱処理により、中心部の炭素C
と反応して、中心部にSiC層が形成されたもので
あり、表面の薄いSi層と内側のSiC層とからなつ
ている。
In this type of carbon fiber, the Si layer originally formed on the surface of the carbon fiber is heated and the carbon C in the center is removed.
A SiC layer is formed in the center by the reaction, and consists of a thin Si layer on the surface and an inner SiC layer.

類型のものは、炭素繊維の表面に当初形成さ
れていたSiC層が、熱処理により、中心部の炭素
Cと反応して、表面のSiC層と中心部のC層との
間にSiCとCとからなる混合層が形成されたもの
である。
In this type of carbon fiber, the SiC layer initially formed on the surface of the carbon fiber reacts with the carbon C in the center through heat treatment, resulting in the formation of SiC and C between the SiC layer on the surface and the C layer in the center. A mixed layer consisting of

類型のものは、炭素繊維の表面に当初形成さ
れていたSiまたはSiC層が、熱処理により、中心
部の炭素Cと反応して、全体がSiC層となつたも
のである。
In this type of carbon fiber, the Si or SiC layer originally formed on the surface of the carbon fiber reacts with carbon C in the center through heat treatment, and the entire surface becomes an SiC layer.

発明の効果 本発明のケイ素−炭素複合繊維織物は、耐酸化
性、機械的強度などに優れているので、例えば、
セラミツクス(ガラス、窒化物、炭化物など)、
金属(アルミニウム、チタンなど)などと組み合
わせて得られる複合材料における強化基材とし
て、有用である。
Effects of the Invention The silicon-carbon composite fiber fabric of the present invention has excellent oxidation resistance and mechanical strength, so for example,
Ceramics (glass, nitride, carbide, etc.),
It is useful as a reinforcing base material in composite materials obtained in combination with metals (aluminum, titanium, etc.).

実施例 以下実施例を示し、本発明の特徴とするところ
をより一層明らかにする。
Examples Examples will be shown below to further clarify the features of the present invention.

実施例 1 PAN系炭素繊維の織物3.0gの空隙内にSi粉末
(200メツシユ通過)3.0gを充填し、密閉黒鉛容
器内に入れ、昇温速度8℃/分で1700℃まで昇温
し、同温度で20分間保持した。
Example 1 3.0 g of Si powder (passed through 200 meshes) was filled into the voids of 3.0 g of PAN-based carbon fiber fabric, placed in a sealed graphite container, and heated to 1700°C at a heating rate of 8°C/min. It was kept at the same temperature for 20 minutes.

上記の過程において、炭素繊維の表面に先ずSi
が堆積し、これが炭素と反応して、SiとCとの間
にSiCからなる界面層が形成され、第1図の類型
に相当するケイ素−炭素複合繊維織物が得られ
た。
In the above process, Si is first applied to the surface of the carbon fiber.
was deposited and reacted with carbon to form an interfacial layer of SiC between Si and C, resulting in a silicon-carbon composite fiber fabric corresponding to the type shown in FIG.

また、得られたケイ素−炭素複合繊維織物を粉
砕し、粉末をX線回折に供した結果は、第1表に
示す通りであつた。
Further, the obtained silicon-carbon composite fiber fabric was pulverized and the powder was subjected to X-ray diffraction, and the results were as shown in Table 1.

第 1 表 2θ 該当物質 相対強度 26.4 C 100 28.4 Si 30 35.6 SiC 80 41.4 SiC 20 47.3 Si 5 54.6 C 20 実施例 2 ピツチ系炭素繊維の織物5.0gとSi塊(平均粒
径3mm)15gとを密閉黒鉛容器内に収容し、昇温
速度15℃/分で2100℃まで昇温し、同温度で30分
間保持した。
Table 1 2θ Applicable substance Relative strength 26.4 C 100 28.4 Si 30 35.6 SiC 80 41.4 SiC 20 47.3 Si 5 54.6 C 20 Example 2 5.0 g of pitch carbon fiber fabric and 15 g of Si lumps (average particle size 3 mm) are sealed. It was placed in a graphite container, heated to 2100°C at a heating rate of 15°C/min, and held at the same temperature for 30 minutes.

上記の過程において、炭素繊維の表面に先ずSi
が堆積し、これが炭素と反応して、SiとCとの間
にSiCからなる界面層が形成され、次いでこの界
面層の厚さが次第に増大して、最終的に第1図の
類型に相当するケイ素−炭素複合繊維織物が得
られた。
In the above process, Si is first applied to the surface of the carbon fiber.
is deposited and reacts with carbon to form an interfacial layer consisting of SiC between Si and C.Then, the thickness of this interfacial layer gradually increases, and finally it corresponds to the type shown in Figure 1. A silicon-carbon composite fiber fabric was obtained.

また、得られたケイ素−炭素複合繊維織物を粉
砕し、粉末をX線回折に供した結果は、第2表に
示す通りであつた。
Further, the obtained silicon-carbon composite fiber fabric was pulverized and the powder was subjected to X-ray diffraction, and the results were as shown in Table 2.

第 2 表 2θ 該当物質 相対強度 28.4 Si 20 35.6 SiC 100 41.4 SiC 25 47.3 Si 3 実施例 3 PAN系炭素繊維の織物3.0gとSiC粉末(100メ
ツシユ通過)5.0gとを密閉黒鉛容器内に収容し、
昇温速度15℃/分で1800℃まで昇温し、同温度で
30分間保持した。
Table 2 2θ Applicable substance Relative strength 28.4 Si 20 35.6 SiC 100 41.4 SiC 25 47.3 Si 3 Example 3 3.0 g of PAN-based carbon fiber fabric and 5.0 g of SiC powder (passed through 100 meshes) were placed in a sealed graphite container. ,
The temperature was raised to 1800℃ at a heating rate of 15℃/min, and at the same temperature
Hold for 30 minutes.

上記の過程において、炭素繊維の表面に先ず
SiCが堆積し、これが炭素とわずかに反応して、
Si/Cの不定比組成を有する界面層(SiC+C)
が形成され、第1図の類型に相当するケイ素−
炭素複合繊維織物が得られた。
In the above process, the surface of the carbon fiber is first
SiC is deposited, which reacts slightly with carbon,
Interface layer with non-stoichiometric composition of Si/C (SiC+C)
is formed, and silicon corresponding to the type shown in Figure 1 is formed.
A carbon composite fiber fabric was obtained.

また、得られたケイ素−炭素複合繊維織物を粉
砕し、粉末をX線回折に供した結果は、第3表に
示す通りであつた。
Further, the obtained silicon-carbon composite fiber fabric was pulverized and the powder was subjected to X-ray diffraction, and the results were as shown in Table 3.

第 3 表 2θ 該当物質 相対強度 26.4 C 100 35.6 SiC 80 41.4 SiC 20 54.6 C 20 第2図は、本実施例により得られたケイ素−炭
素複合繊維織物の繊維糸の断面形状を示す走査型
電子顕微鏡写真(炭素繊維の断面直径:約7μm)
である。繊維の表面に約0.8μmの均一なSiC被覆
層が形成されており、破断面は、その被覆膜を通
つて同一平面を有していることから、繊維糸と膜
との間にSi/Cの不定比組成を有する界面層が存
在していることが明らかである。
Table 3 2θ Applicable substance Relative strength 26.4 C 100 35.6 SiC 80 41.4 SiC 20 54.6 C 20 Figure 2 is a scanning electron microscope image showing the cross-sectional shape of the fiber yarn of the silicon-carbon composite fiber fabric obtained in this example. Photo (Cross-sectional diameter of carbon fiber: approx. 7μm)
It is. A uniform SiC coating layer of about 0.8 μm is formed on the surface of the fiber, and the fracture surface has the same plane through the coating film, so there is no Si/SiC coating between the fiber thread and the membrane. It is clear that an interfacial layer with a non-stoichiometric composition of C is present.

次に、本実施例で得られたケイ素−炭素複合繊
維織物を750℃に保持しつつ、N280%−O220%の
混合ガスを流量800ml/分で流通させて、耐酸化
性を測定した。結果を曲線Aとして第3図に示
す。無処理の炭素繊維織物についての同様な試験
結果を示す曲線Bに比して、酸化による重量減少
はほとんど認められない。
Next, while maintaining the silicon-carbon composite fiber fabric obtained in this example at 750°C, a mixed gas of 80% N 2 - 20% O 2 was passed through at a flow rate of 800 ml/min to improve its oxidation resistance. It was measured. The results are shown as curve A in FIG. Compared to curve B showing similar test results for untreated carbon fiber fabric, almost no weight loss due to oxidation is observed.

また、本実施例で得られたケイ素−炭素複合繊
維織物の曲げ強度を測定した。結果を第4図に
()として示す。無処理の炭素繊維織物につい
ての結果およびCVD法によるSiC被覆した炭素繊
維織物についての結果(CVD)に比して、本発
明品の曲げ強度が著しく向上していることが明ら
かである。
In addition, the bending strength of the silicon-carbon composite fiber fabric obtained in this example was measured. The results are shown in parentheses in Figure 4. It is clear that the bending strength of the product of the present invention is significantly improved compared to the results for untreated carbon fiber fabrics and the results for carbon fiber fabrics coated with SiC by CVD method (CVD).

実施例 4 ピツチ系炭素繊維の織物5.0gとSi塊(平均粒
径3mm)15gとを密閉黒鉛容器内に収容し、昇温
速度15℃/分で2100℃まで昇温し、同温度で3時
間保持した。
Example 4 5.0 g of pitch-based carbon fiber fabric and 15 g of Si lumps (average particle size 3 mm) were placed in a sealed graphite container, heated to 2100°C at a rate of 15°C/min, and heated to 2100°C at the same temperature. Holds time.

上記の過程において、炭素繊維の表面に先ずSi
が堆積し、これが2100℃での保持により炭素と反
応して、SiとCとの間にSiCからなる界面層が形
成され、次いでこの界面層の厚さが次第に増大し
て、最終的には炭素繊維の全てがSiCとなつた第
1図の類型に相当するケイ素−炭素複合繊維織
物が得られた。
In the above process, Si is first applied to the surface of the carbon fiber.
is deposited, which reacts with carbon when held at 2100°C to form an interface layer consisting of SiC between Si and C, and then the thickness of this interface layer gradually increases until finally A silicon-carbon composite fiber fabric corresponding to the type shown in FIG. 1 in which all of the carbon fibers were SiC was obtained.

また、得られたケイ素−炭素複合繊維織物を粉
砕し、粉末をX線回折に供した結果は、第4表に
示す通りであつた。
Further, the obtained silicon-carbon composite fiber fabric was pulverized and the powder was subjected to X-ray diffraction, and the results were as shown in Table 4.

第 4 表 2θ 該当物質 相対強度 35.6 SiC 100 41.4 SiC 25 第5図は、本実施例により得られたケイ素−炭
素複合繊維織物の繊維糸の断面形状を示す走査型
電子顕微鏡写真である。繊維の内部まで全面にわ
たつて完全にSiC層が形成されていることが明ら
かである。
Table 4 2θ Applicable substance Relative strength 35.6 SiC 100 41.4 SiC 25 FIG. 5 is a scanning electron micrograph showing the cross-sectional shape of the fiber yarn of the silicon-carbon composite fiber fabric obtained in this example. It is clear that the SiC layer is completely formed all over the inside of the fiber.

次に、本実施例で得られたケイ素−炭素複合繊
維織物を750℃に保持しつつ、N280%−O220%の
混合ガスを流量800ml/分で流通させて、耐酸化
性を測定した。結果を曲線Cとして第6図に示
す。無処理の炭素繊維織物についての同様な試験
結果を示す曲線Dに比して、酸化による重量減少
は全く認められない。本実施例品の場合には、表
面層でのSiC→SiO2の反応により、むしろ若干の
重量増加が認められる。
Next, while maintaining the silicon-carbon composite fiber fabric obtained in this example at 750°C, a mixed gas of 80% N 2 - 20% O 2 was passed through at a flow rate of 800 ml/min to improve its oxidation resistance. It was measured. The results are shown as curve C in FIG. Compared to curve D, which shows similar test results for untreated carbon fiber fabric, no weight loss due to oxidation is observed. In the case of the product of this example, a slight increase in weight is rather observed due to the reaction of SiC→SiO 2 in the surface layer.

実施例 5 予めSiO2粉末(平均粒径2μm)120gをピツチ
(軟化点87℃,QI=0.01%)100gに分散させ、オ
ートクレーブ中で温度300℃、圧力40Kg/cm2の条
件下にPAN系炭素繊維織物200gの空隙内に含浸
させた後、昇温速度2℃/分で1000℃まで昇温
し、初圧40Kg/cm2で加圧炭化処理した。
Example 5 120 g of SiO 2 powder (average particle size 2 μm) was dispersed in 100 g of pitch (softening point 87°C, QI = 0.01%) in advance, and a PAN system was prepared in an autoclave at a temperature of 300°C and a pressure of 40 kg/cm 2 . After it was impregnated into the voids of 200 g of carbon fiber fabric, the temperature was raised to 1000° C. at a rate of 2° C./min and carbonized under pressure at an initial pressure of 40 Kg/cm 2 .

次いで、炭化処理した炭素繊維織物を密閉黒鉛
容器内に収容し、昇温速度15℃/分で2500℃まで
昇温し、同温度で30分間保持した。
Next, the carbonized carbon fiber fabric was placed in a sealed graphite container, and the temperature was raised to 2500°C at a heating rate of 15°C/min and held at the same temperature for 30 minutes.

上記の過程において、炭素繊維の表面に先ず
SiCが堆積し、これが2500℃での保持により炭素
とわずかに反応して、Si/Cの不定比組成を有す
る界面層が形成され、第1図の類型に相当する
ケイ素−炭素複合繊維織物が得られた。
In the above process, the surface of the carbon fiber is first
SiC is deposited, and when kept at 2500°C, it slightly reacts with carbon to form an interfacial layer with a non-stoichiometric composition of Si/C, resulting in a silicon-carbon composite fiber fabric corresponding to the type shown in Figure 1. Obtained.

また、得られたケイ素−炭素複合繊維織物を粉
砕し、粉末をX線回折に供した結果は、第5表に
示す通りであつた。
Further, the obtained silicon-carbon composite fiber fabric was pulverized and the powder was subjected to X-ray diffraction, and the results were as shown in Table 5.

第 5 表 2θ 該当物質 相対強度 26.4 C 50 35.6 SiC 100 41.4 SiC 25 54.6 C 10 実施例 6 予めSi粉末(200ムツシユ通過)28gをピツチ
(軟化点87℃,QI=0.01%)18gに分散させ、オ
ートクレーブ中で温度300℃、圧力40Kg/cm2の条
件下にピツチ系炭素繊維の織物20gの空隙内に含
浸させた後、昇温速度2℃/分で800℃まで昇温
し、初圧40Kg/cm2で炭化処理した。
Table 5 2θ Applicable substance Relative strength 26.4 C 50 35.6 SiC 100 41.4 SiC 25 54.6 C 10 Example 6 28 g of Si powder (passed through 200 mushrooms) was dispersed in 18 g of pitch (softening point 87°C, QI = 0.01%), After impregnating into the voids of 20g of pitch-based carbon fiber fabric in an autoclave at a temperature of 300℃ and a pressure of 40Kg/ cm2 , the temperature was raised to 800℃ at a heating rate of 2℃/min, and the initial pressure was 40Kg. / cm2 .

次いで、炭化処理した炭素繊維織物を密閉黒鉛
容器内に収容し、昇温速度20℃/分で1500℃まで
昇温し、同温度で2時間保持した。
Next, the carbonized carbon fiber fabric was placed in a sealed graphite container, heated to 1500°C at a rate of 20°C/min, and held at the same temperature for 2 hours.

上記の過程において、炭素繊維の表面に先ず
SiCが堆積し、これが1500での保持により炭素と
わずかに反応して、Si/Cの不定比組成を有する
界面層が形成され、第1図の類型に相当するケ
イ素−炭素複合繊維織物が得られた。
In the above process, the surface of the carbon fiber is first
SiC is deposited, which reacts slightly with carbon by holding at 1500° C. to form an interfacial layer having a non-stoichiometric composition of Si/C, resulting in a silicon-carbon composite fiber fabric corresponding to the type shown in Figure 1. It was done.

また、得られたケイ素−炭素複合繊維織物を粉
砕し、粉末をX線回折に供した結果は、第6表に
示す通りであつた。
Further, the obtained silicon-carbon composite fiber fabric was pulverized and the powder was subjected to X-ray diffraction, and the results were as shown in Table 6.

第 6 表 2θ 該当物質 相対強度 26.4 C 100 35.6 SiC 60 41.4 SiC 15 54.6 C 20 実施例 7 予めSiO2粉末(平均粒径5μm)5.0gをノボラ
ツク型フエノール樹脂7gに分散させ、オートク
レーブ中で温度150℃でレーヨン系炭素繊維の編
物4.0gの空隙内に含浸硬化させた後、密閉黒鉛
容器内に収容し、昇温速度0.3℃/分で1300℃ま
で昇温し、同温度で15時間保持した。
Table 6 2θ Applicable substance Relative strength 26.4 C 100 35.6 SiC 60 41.4 SiC 15 54.6 C 20 Example 7 5.0 g of SiO 2 powder (average particle size 5 μm) was dispersed in 7 g of novolak type phenolic resin in advance, and the mixture was heated in an autoclave at a temperature of 150 After impregnating and curing the voids of 4.0 g of knitted rayon-based carbon fiber at ℃, it was placed in a sealed graphite container, heated to 1300 ℃ at a heating rate of 0.3 ℃/min, and held at the same temperature for 15 hours. .

上記の過程において、炭素繊維の表面に先ず
SiCが堆積し、これが1300℃での保持により炭素
とわずかに反応して、Si/Cの不定比組成を有す
る界面層が形成され、第1図の類型に相当する
ケイ素−炭素複合繊維織物が得られた。
In the above process, the surface of the carbon fiber is first
SiC is deposited, and when held at 1300°C, it slightly reacts with carbon to form an interfacial layer with a non-stoichiometric composition of Si/C, resulting in a silicon-carbon composite fiber fabric corresponding to the type shown in Figure 1. Obtained.

また、得られたケイ素−炭素複合繊維織物を粉
砕し、粉末をX線回折に供した結果は、第7表に
示す通りであつた。
Further, the obtained silicon-carbon composite fiber fabric was pulverized and the powder was subjected to X-ray diffraction, and the results were as shown in Table 7.

第 7 表 2θ 該当物質 相対強度 26.4 C 80 35.6 SiC 80 41.4 SiC 20 54.6 C 18 Table 7 2θ Applicable substance Relative intensity 26.4 C 80 35.6 SiC 80 41.4 SiC 20 54.6 C 18

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明によるケイ素−炭素複合繊維
織物の構成繊維のケイ素化の状況を〜の4種
の類型に大別して概念的に示す断面である。第2
図および第5図は、本発明実施例により得られた
ケイ素−炭素複合繊維織物の繊維の断面形状を示
す走査型電子顕微鏡写真である。第3図および第
6図は、本発明実施例により得られたケイ素−炭
素複合繊維織物の耐酸化性を示すグラフである。
第4図は、本発明実施例により得られたケイ素−
炭素複合繊維織物の曲げ強度を示すグラフであ
る。
FIG. 1 is a cross-sectional view conceptually showing the state of siliconization of the constituent fibers of the silicon-carbon composite fiber fabric according to the present invention, roughly divided into four types. Second
The figure and FIG. 5 are scanning electron micrographs showing the cross-sectional shape of the fibers of the silicon-carbon composite fiber fabric obtained in the example of the present invention. FIGS. 3 and 6 are graphs showing the oxidation resistance of the silicon-carbon composite fiber fabrics obtained according to the examples of the present invention.
FIG. 4 shows silicon-
It is a graph showing the bending strength of carbon composite fiber fabric.

Claims (1)

【特許請求の範囲】 1 炭素繊維からなる織物乃至編物の繊維表面
にケイ素および/または炭化ケイ素被覆層を有
し、かつ該繊維の少なくとも一部がケイ素化合
物に変換されていることを特徴とするケイ素−
炭素複合繊維織物乃至編物。 炭素繊維からなる織物乃至編物を、密閉容器
内においてケイ素および/または炭化ケイ素の
蒸気に接触させることを特徴とする特許請求の
範囲第1項に記載のケイ素−炭素複合繊維織物
乃至編物の製造方法。 炭素繊維からなる織物乃至編物を密閉容器内
においてケイ素および/または炭化ケイ素の蒸
気に接触させた後、1300〜2600℃で熱処理する
ことを特徴とする特許請求の範囲第1項に記載
のケイ素−炭素複合繊維織物乃至編物の製造方
法。
[Claims] 1. A woven or knitted fabric made of carbon fibers, characterized in that the fiber surface has a silicon and/or silicon carbide coating layer, and at least a portion of the fibers are converted into a silicon compound. Silicon-
Carbon composite fiber woven or knitted fabric. The method for producing a silicon-carbon composite fiber woven or knitted fabric according to claim 1, characterized in that the woven or knitted fabric made of carbon fibers is brought into contact with silicon and/or silicon carbide vapor in a closed container. . The silicon-based material according to claim 1, wherein the woven or knitted fabric made of carbon fibers is brought into contact with silicon and/or silicon carbide vapor in a closed container, and then heat-treated at 1300 to 2600°C. A method for producing carbon composite fiber woven or knitted fabrics.
JP63050234A 1988-03-02 1988-03-02 Woven and knitted cloth consisting of silicon-carbon conjugated fiber and production thereof Granted JPH01229874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63050234A JPH01229874A (en) 1988-03-02 1988-03-02 Woven and knitted cloth consisting of silicon-carbon conjugated fiber and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63050234A JPH01229874A (en) 1988-03-02 1988-03-02 Woven and knitted cloth consisting of silicon-carbon conjugated fiber and production thereof

Publications (2)

Publication Number Publication Date
JPH01229874A JPH01229874A (en) 1989-09-13
JPH0316422B2 true JPH0316422B2 (en) 1991-03-05

Family

ID=12853321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63050234A Granted JPH01229874A (en) 1988-03-02 1988-03-02 Woven and knitted cloth consisting of silicon-carbon conjugated fiber and production thereof

Country Status (1)

Country Link
JP (1) JPH01229874A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5572426B2 (en) * 2010-03-12 2014-08-13 グンゼ株式会社 Method for producing carbon fiber reinforced silicon carbide composite material
US9005702B2 (en) * 2012-07-18 2015-04-14 The Boeing Company Re-usable high-temperature resistant softgoods for aerospace applications

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5029528A (en) * 1973-02-15 1975-03-25
JPS5322198A (en) * 1976-08-12 1978-03-01 Agency Of Ind Science & Technol Production of water-containing calcium borate
JPS5831167A (en) * 1981-08-19 1983-02-23 工業技術院長 Surface coated carbon fiber
JPS5959976A (en) * 1982-09-22 1984-04-05 信越化学工業株式会社 Production of silicon carbide coated carbon fiber
JPS59112028A (en) * 1982-12-15 1984-06-28 Mitsubishi Rayon Co Ltd Carbon fiber coated with silica compound and ceramic reinforced therewith
JPS59179875A (en) * 1983-03-26 1984-10-12 工業技術院長 Surface coated carbon fiber and production thereof
JPS605682A (en) * 1983-06-23 1985-01-12 Mitsubishi Electric Corp Charge transfer solid-state image pickup device
JPS6082344A (en) * 1983-10-11 1985-05-10 株式会社クラレ Inorganic composite material
JPH01104879A (en) * 1987-10-15 1989-04-21 Ibiden Co Ltd Composite carbon fiber and its production

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5029528A (en) * 1973-02-15 1975-03-25
JPS5322198A (en) * 1976-08-12 1978-03-01 Agency Of Ind Science & Technol Production of water-containing calcium borate
JPS5831167A (en) * 1981-08-19 1983-02-23 工業技術院長 Surface coated carbon fiber
JPS5959976A (en) * 1982-09-22 1984-04-05 信越化学工業株式会社 Production of silicon carbide coated carbon fiber
JPS59112028A (en) * 1982-12-15 1984-06-28 Mitsubishi Rayon Co Ltd Carbon fiber coated with silica compound and ceramic reinforced therewith
JPS59179875A (en) * 1983-03-26 1984-10-12 工業技術院長 Surface coated carbon fiber and production thereof
JPS605682A (en) * 1983-06-23 1985-01-12 Mitsubishi Electric Corp Charge transfer solid-state image pickup device
JPS6082344A (en) * 1983-10-11 1985-05-10 株式会社クラレ Inorganic composite material
JPH01104879A (en) * 1987-10-15 1989-04-21 Ibiden Co Ltd Composite carbon fiber and its production

Also Published As

Publication number Publication date
JPH01229874A (en) 1989-09-13

Similar Documents

Publication Publication Date Title
US7384663B2 (en) Method of making a three-dimensional fiber structure of refractory fibers
TWI359221B (en) A method of making a fiber preform for manufacturi
US5217657A (en) Method of making carbon-carbon composites
US5067999A (en) Method for providing a silicon carbide matrix in carbon-fiber reinforced composites
JPH01249659A (en) Production of carbon/carbon composite material having oxidation resistance
KR20110109697A (en) A method for coating oxidation protective layer for carbon/carbon composite, a carbon heater, and cooker
Klett et al. Flexible towpreg for the fabrication of high thermal conductivity carbon/carbon composites
JP3167738B2 (en) Method for producing carbon fiber reinforced ceramic composite material
JP3211203B2 (en) High strength fiber reinforced composite material and method for producing the same
JPH0316422B2 (en)
EP0495095A1 (en) Process for forming crack-free pyrolytic boron nitride on a carbon structure and article.
JPH0648872A (en) Production of oxidation-resistant c/c composite material
JP2607409B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites.
JPH0292886A (en) Production of carbon fiber-reinforced composite material having oxidation resistance
JP2579563B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites.
RU2058964C1 (en) Method for production of composite material based on carbon fiber and silicon carbide
JP2644648B2 (en) Processing of composite materials
JP2001289226A (en) Screw made of carbon fiber reinforced carbon composite material
JPH0952777A (en) Production of oxidation resistant c/c composite material
JPH05229886A (en) Method for antioxidizing treatment of carbon-fiber reinforced carbon material
JP3548605B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites
JP3548597B2 (en) Oxidation-resistant treatment method of carbon fiber reinforced carbon composite
JPH0769763A (en) Anti-oxidation treatment of carbon fiber-reinforced carbon material
JP3599791B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites
JPH11199354A (en) Oxidation-resistant c/c composite material and its production

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term