JPS5959976A - Production of silicon carbide coated carbon fiber - Google Patents

Production of silicon carbide coated carbon fiber

Info

Publication number
JPS5959976A
JPS5959976A JP16549882A JP16549882A JPS5959976A JP S5959976 A JPS5959976 A JP S5959976A JP 16549882 A JP16549882 A JP 16549882A JP 16549882 A JP16549882 A JP 16549882A JP S5959976 A JPS5959976 A JP S5959976A
Authority
JP
Japan
Prior art keywords
silicon carbide
carbon
producing
compound
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16549882A
Other languages
Japanese (ja)
Other versions
JPS6262188B2 (en
Inventor
守信 遠藤
高見沢 稔
本宮 達彦
小林 泰史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP16549882A priority Critical patent/JPS5959976A/en
Priority to US06/533,649 priority patent/US4560589A/en
Publication of JPS5959976A publication Critical patent/JPS5959976A/en
Publication of JPS6262188B2 publication Critical patent/JPS6262188B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明げ炭泳峨絣表面をり、す化けい素で被覆し“Cな
る炭化けい木被覆炭素偵維の製造方法に1’、4+する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is an improvement to the method for producing carbon fibers coated with silicon carbide, which is referred to as "C", by coating the surface of carbon fibers with silicon sulfide.

炭Mm 維がレーヨン、ポリrグリロニトリル。Charcoal Mm fiber is rayon, polyr grillonitrile.

リグニン−レジナスピッチなどの不活性ガス中での加部
分解で作られることは”[でによく知られたところであ
り、これは高強度、耐熱性であるといつこと刀・ら近年
工業材料とし“〔も注目を集め、こねについてはプラス
チック、金Mとの複合林料への応用も試みられている。
It is well known that lignin is made by hydrolysis in an inert gas such as resinous pitch, and has recently been used as an industrial material for swords and swords due to its high strength and heat resistance. 〔 is also attracting attention, and attempts are being made to apply the dough to composite forest materials with plastic and gold M.

しかし、この炭素繊維にに商1ill+での師1酸化性
に限度があり、プラスチラグ、金1++5との濡れ性が
わるく、金属とμ高l晶で反応するという欠点がある几
め、これには神々の複雑な表面処理が行なわれている。
However, this carbon fiber has the disadvantages of having limited oxidation properties at 1ill+, poor wettability with Plastilag and gold 1++5, and reacting with metals with high μ crystals. The gods have intricate surface treatments.

他方、この押の耐熱性fa#IFとして近年111光さ
牙1、た炭化けい素繊維は高温における耐酸化性が強く
On the other hand, silicon carbide fibers, which have been developed in recent years as heat-resistant fa#IF, have strong oxidation resistance at high temperatures.

ブラスチッグ、金属との濡わもよく、金属と反応しない
という特性をもつものであるけれども、これにはその製
造臘料力珪”「殊なη機けい索車合体とされること、そ
の製ス々にはID−る重合体を合成し、ついでこれを紡
糸、不融化、焼成という袂雑な工程が必要とされるため
に、これ汀非常に凸側ILものになるという欠点がある
Blastig has the characteristics of being well wetted with metals and not reacting with metals, but there are several reasons for its manufacturing process, including the fact that it is a special type of machine that is used to combine traction vehicles. Each method requires a complex process of synthesizing an ID polymer, then spinning it, making it infusible, and sintering, which has the disadvantage that it results in a very convex IL.

七のために、この耐熱性繊維1でついてげ、予じめ製造
した炭素繊維の表面上で81014 、H8101jな
どのけい素化合物を熱分解させて、この繊維の表面に金
1mけい素を析出させ、ついでこれを同温で焼成して炭
化けい素繊維とする方法(特開昭50−38700号公
報参照)が提案さハ、ているが、これは工)呈が複雑で
あり、117痛を必ミ桂″とするといつことから未だ実
用化はされていない。
7, silicon compounds such as 81014 and H8101j were thermally decomposed on the surface of carbon fibers prepared in advance using this heat-resistant fiber 1, and 1 m of gold was deposited on the surface of the fibers. A method has been proposed (see Japanese Unexamined Patent Application Publication No. 50-38700) to produce silicon carbide fibers by firing the fibers at the same temperature. Assuming that it is necessary, it has not yet been put into practical use.

本発明ばこのよう/j不利を解決した炭化けいf?+1
!情炭車繊維σ〕製造方?iξに関′[るもので、これ
に1、侵素繊維上でSiX  rXt、1:ハロゲン1
阜子ま几は酸卑原モ)結合を含オない有機けい素化合物
を比較rl’J (1,& i1’、、i !!j ′
″C気相熱分解させて、炭紮繊維看面に炭化けい素を主
体とする被膜を形11νさせることを特徴とするもので
ある。
Carbonized silicon that solves the disadvantages of this invention /j f? +1
! How to make Jotansha Textile σ? iξ, in which 1, SiX rXt on the invasive fiber, 1: halogen 1
Compare organosilicon compounds that do not contain acid-base bonds rl'J (1, &i1',,i!!j'
``C'' is characterized by vapor-phase pyrolysis to form a coating mainly composed of silicon carbide on the surface of the charcoal fibers.

こitを説明すると、本発明者らにさきに上記したSi
X結合を含有しない有機けい卑化含馴を金1川または金
回化合物の微粒子を種触媒として気相熱分解させれば炭
化けい素繊維を得ることができることを見出した(特願
昭57−113689号参照)が、この有機けい素化合
物を予じめ製造した炭素繊維上で気相熱分解させ念とこ
ろ、炭化けい素を主体とする被膜が炭素ILll緋上に
形成され、得られた繊維に強度の低下が殆んどなく、■
・↑酸化性、プラスチック金属との濡れ性にすぐれ、金
属との反応性もなく、耐熱材料、FRM、FRPなどの
材料としてh用であることを確認して本弁明を完成させ
た。
To explain this, the inventors previously described the Si
It has been discovered that silicon carbide fibers can be obtained by subjecting organic silicon carbide fibers containing no X bonds to gas-phase pyrolysis using fine particles of Kinichikawa or Kinkai compounds as a seed catalyst (Patent Application 1987- 113689), this organosilicon compound was vapor-phase pyrolyzed on carbon fibers prepared in advance, and a coating mainly composed of silicon carbide was formed on the carbon fibers. There is almost no decrease in strength, and ■
・↑This defense was completed by confirming that it has excellent oxidation properties and wettability with plastic metals, has no reactivity with metals, and can be used as a material for heat-resistant materials, FRM, FRP, etc.

本発明の方法で使用さに1.る炭素繊維にボリアグリロ
ニトリル、レーヨン、ピッチ、リグニンナトの焼成によ
って得られる有機系炭素繊維はもとよシ、気相熱分解z
Hにより得られる繊維状炭素であってもよく、本発明の
方法にこの炭素繊維の製造工程で使用される焼成炉中で
の始発材料の炭化または黒4′()化工程に続いて、同
じ焼成炉中にi4j R,Jする有機け(゛素化合物f
導入し、気相熱分解させれはよいので、こJl、によれ
ば極めて容具に炭化けい素を主体とする補填炭素繊維f
t得ることができろという利点が与えられる。
For use in the method of the present invention: 1. In addition to organic carbon fibers obtained by firing boriagrilonitrile, rayon, pitch, and lignin, gas-phase pyrolysis
The carbonization or blackening step of the starting material in the calcining furnace used in the process of producing carbon fibers in the method of the invention may be followed by the carbonization or blackening step of the carbon fibers obtained by H. In the firing furnace, i4j R, J organic compound (element compound f
According to Jl., supplementary carbon fibers mainly composed of silicon carbide are used in the container.
This gives you the advantage of being able to get t.

他方1本発明の方法で使用される有機けい素化合物は、
その竹子中にSIX結合を含むものとすると、これが1
500℃以上の高温でないと充分な熱分解が行なわれず
、この場合にはその熱分解によって得られる炭化けい素
が均一な被覆とならず−これに、は微量のSiXが残漬
し、得られt被覆繊維が強度劣化を起すので、これにそ
の分子中に81X 結合を含まないものとする必要があ
る。
On the other hand, the organosilicon compound used in the method of the present invention is
Assuming that the bamboo contains a SIX bond, this is 1
Sufficient thermal decomposition will not occur unless the temperature is 500°C or higher, and in this case, the silicon carbide obtained by the thermal decomposition will not be coated uniformly - this will leave a trace amount of SiX behind and the resulting Since the T-coated fiber causes strength deterioration, it is necessary that the t-coated fiber does not contain 81X bonds in its molecules.

この41機けい素化合物は例えば一般式Rtn+t(8
1λn〔ことlcR[水素原子、またはメチル糸、エチ
ル基、プロピル基、フェニル基。
This 41 silicon compound has the general formula Rtn+t(8
1λn [also lcR [hydrogen atom, or methyl thread, ethyl group, propyl group, phenyl group.

ビニル系など力λら選ばれる1価の炭化水素基、nは1
〜4の正数〕で示されるシランまたはポリシラン類、お
よび一般式 に同じ+ R’  にメチレン基またはフエニレンノk
Monovalent hydrocarbon group selected from λ such as vinyl type, n is 1
silane or polysilane represented by [a positive number of ~4], and a methylene group or phenylene group in the same general formula + R'
.

mは1〜2の正数〕で示されろシルアルキレン化合物ま
たはシルフェニレン化合物あるいは同−分手中にこの両
名の主骨格をもつ化合物などがあげらitイ)が、これ
はその分子中に少なくとも1個の水素−けい素結合を含
むものとすると、これが比較的低い温I11で熱分解す
ることができるので、この三5iHj、%を含むものと
することがよい。なお、この有機けい素化合物としてに
べ式: %式% ( で示されろシラン、ポリ−フランが例示さ罎11、これ
らはその1棟またぼ2種かあるいは2棟以上の混合物と
して使用されるが、これらについてμ式(ここにxIゴ
正数]で示さ(するジメチルポリシランを350℃以七
の高度で熱分1?’rさせて佑られるメチルハイド自ジ
エンポリiノランイJlが好ましいものとされる。
m is a positive number of 1 to 2], and examples include silalkylene compounds, silphenylene compounds, and compounds having both of these main skeletons in the same molecule. If it contains at least one hydrogen-silicon bond, it can be thermally decomposed at a relatively low temperature I11, so it is preferable that it contains 35 iHj,%. In addition, examples of this organic silicon compound include silane and poly-furan, which are represented by the following formula: However, regarding these, methyl hyde diene polysilane Jl, which is prepared by heating dimethylpolysilane to a heat content of 1? be done.

本発明の方715に上記した有機けい理化合物を所定温
口tπ加八へ7斤炭素i% ffイfを含むノヌL+’
、、化j、、i・にj77人して9i相熱分解させるの
であるが、この反応帯域温度げ700℃す、下では有機
けい素化合物の熱分解が遅<、140(1℃思士でにこ
の熱分解が速くなって炭オニ繊維上でのムjシ化けい累
被覆の形成が均一に1.rすπく\なり、繊維の物性が
低Fするσ)で、これは700”−1400℃の+11
囲−好ましくは900〜1300℃の範囲と1−ること
がよい。また、この有機けい素化合物の反兄・帯域への
i、F;1人は。
According to the present invention, the above-mentioned organosilicon compound is added to a predetermined warm port tπ and 7 kg of carbon i%.
The thermal decomposition of organosilicon compounds is slow when the reaction zone temperature is raised to 700°C. This thermal decomposition becomes faster and the formation of a mushy silica coating on the charcoal fibers becomes uniform and the physical properties of the fibers become low (Fσ), which is 700%. ”-1400℃ +11
The temperature range is preferably 900 to 1300°C. Also, i, F; 1 person to the anti-older band of this organosilicon compound.

キャリヤーガスとして71(亦ガスまたは望素、ヘリウ
ムなどの不活性ガスを使111シて行なえばよい。
This may be carried out using 71 (or 111) gas or an inert gas such as helium or the like as a carrier gas.

この有機けい素化合物の熱分解によって生成するt、4
累けい素皮膜の厚さe′J、、そ伯、がo、oiμm以
Fでにそれが充分な耐峻化性を示さないし、これが31
+m以上になると繊維掻が太くなってその物性イ1(下
をもたらすので、この実施に当っては炭化はイ素皮1’
4が001〜3/1mの範囲となるようにこの有機けい
素化合物の導入端1反応温1娃1反応時間を調整するこ
とがよい。
t,4 produced by thermal decomposition of this organosilicon compound
When the thickness of the silicon film is less than 0,0 μm, it does not exhibit sufficient stiffening resistance, and this is 31
When it exceeds +m, the fiber strands become thicker, resulting in lower physical properties, so in carrying out this process, carbonization is
It is preferable to adjust the introduction end 1 reaction temperature 1 reaction time of this organosilicon compound so that the ratio 4 is in the range of 001 to 3/1 m.

1fお、本発明の方7ノニは上記した有機けい素化合物
t?:、熱分解性の炭化水素化合物を混合して、これら
を同時に熱分解させて、炭紫繊卸上に炭化けいS・、と
炭素のン昆合被OLをh貨けるようにしてもよい。
1f Oh, the present invention 7 noni is the above-mentioned organosilicon compound t? : It is also possible to mix thermally decomposable hydrocarbon compounds and simultaneously thermally decompose them, so that silicon carbide S, and carbon-containing OL can be loaded onto the charcoal fiber. .

この場合の炭化水素化合物に沸点が250℃以下であれ
は飽和、不飽和のいずれであってもよく、メタン、エタ
ン、プロパン、アセチレン、ベンゼン、トルエンなどが
例示されるが、この添加−IMi炭素#A維上に形成さ
れる炭化けい素・炭素の混合被覆中における炭素/炭化
けい素のモル比が1以下となる範囲とすることがよく、
この範囲でろ旧。
In this case, the hydrocarbon compound may be either saturated or unsaturated as long as it has a boiling point of 250°C or less, and examples include methane, ethane, propane, acetylene, benzene, and toluene. The molar ratio of carbon/silicon carbide in the mixed coating of silicon carbide and carbon formed on #A fibers is preferably within a range of 1 or less,
Within this range, old.

ばこれによって被覆された炭素繊維が耐酸化性において
、また金庫との反応性において本発明の目的を損なうこ
とはない。
Therefore, the object of the present invention is not impaired in terms of the oxidation resistance of the carbon fiber coated with this or the reactivity with the safe.

つぎに本発明の実施例をあげる。Next, examples of the present invention will be given.

実施例 1゜ 管状−、気炉の中に内径50−1長さ1000 mの石
英製炉心管を水3ILに保ち、この炉心管の中に平均I
i4径lOIIm−比重1.75のポリアグリロニトリ
ル糸【h@度炭素長繊維トレカT−30OA〔東しC株
)社製・商品名)0.213gを充填し、窒累ガス中で
1030℃に加熱した。つぎにこの炉心清にジメチルシ
ラン((OHy)MS I Hz )をlO谷財係含む
水素ガスをI O(l CD、7分の割合で30分間佛
人したのら、加熱を止めて炉内に氷水ガスだけfr−導
入(ッ、冷却後に繊維を取り出した。
Example 1 A quartz core tube with an inner diameter of 50 mm and a length of 1000 m is kept in a 1° tubular air furnace at 3 IL of water, and an average I.
Filled with 0.213 g of polyagrylonitrile yarn [h @ degree carbon long fiber Torayka T-30OA [manufactured by Toshi C Co., Ltd., trade name]] with a specific gravity of 1.75, and heated to ℃. Next, hydrogen gas containing dimethylsilane ((OHy) MSI Hz) was added to this reactor core at a rate of IO (l CD, 7 minutes) for 30 minutes, then the heating was stopped and the inside of the reactor was heated. Then, only ice water gas was introduced. After cooling, the fibers were taken out.

この繊維にや\艶の7.Cい黒色を呈しており、こJl
を電子顕微鏡で観察すると共VcX 獅回折でしらべた
ところ−これは炭素繊維表面に約0,4μmのβ−8i
O被覆をもつものであり、これについての′吻性をδ用
了したところ、このものの弓目1うり強度は始発刑とし
ての炭素繊維の引張り強度265Kf/−と殆んど変り
ない263ド2/−であり、これは800℃で24時間
加熱後も258Kp/−の値を示し、耐酸化性にすぐれ
たものであった。
7. This fiber is glossy. It has a dark black color.
When observed with an electron microscope and examined by VcX diffraction, it was found that approximately 0.4 μm of β-8i was present on the surface of the carbon fiber.
It has an O-coating, and after examining the ``rotability'' of this material, it was found that the tensile strength of this material was 263 de2, which is almost the same as the tensile strength of carbon fiber, which was used as the starting material, at 265 Kf/-. /-, and this showed a value of 258 Kp/- even after heating at 800° C. for 24 hours, indicating excellent oxidation resistance.

実施例 2゜ 実施例1と同じ反応待買を使用し、この炉心管中にピッ
チ系の高弾性炭素長繊維KCF−200〔呉羽化学(株
)社製・商品名〕を約0.21介崩し、これを980℃
に加熱した。つぎに−この炉心管にテトラメチルジシラ
ン 1 0、T(s  OHy 5容箪%を含む水素ガスを100 a、e、 7分の割
合で40分間1人したのら、加熱を止y)で炉内に水素
ガスだけを水入し、冷却後にこの繊維を取シfilした
Example 2 Using the same reaction mixture as in Example 1, pitch-based high modulus long carbon fiber KCF-200 [manufactured by Kureha Chemical Co., Ltd., trade name] was placed in the furnace core tube by approximately 0.21 μm. Break it up and heat it to 980℃
heated to. Next, hydrogen gas containing 10% tetramethyldisilane (5% by volume) of T (s OHy) was poured into this furnace tube at a rate of 100% by volume for 40 minutes, after which the heating was stopped. Only hydrogen gas was introduced into the furnace, and after cooling, the fibers were filtered.

この繊維を市5子顕微梯およびX F!?回折でしらべ
たところ、これは炭素繊維表面に約0.311m のβ
S x O被覆をもつものであり、このものは炭素繊維
の初期の引張り強さ208PFp/−にくらべて2tO
Kp/−の引張り怖さを示し、こ引、σまたこれを80
0℃で24時間加部した後の引張勺強さもlqR並/−
で耐酸化性のすぐれたものであったO なお、この処理繊維はこれを680℃で加熱溶融してい
る金jF@アルミニウム浴中に30分間浸漬し、冷却後
その破衛面を走査型窄、千M微鏡で観察し7たが、この
繊維表面には全く異1償が認められず。
This fiber was transferred to Ichigo Microscopic Ladder and XF! ? When examined by diffraction, this shows that there is a β of about 0.311 m on the carbon fiber surface.
This material has a S x O coating, which has a tensile strength of 2tO compared to the initial tensile strength of carbon fiber of 208PFp/-.
Indicates the tensile strength of Kp/-, pulling, σ and this 80
Tensile strength after 24 hours of bending at 0°C is also on par with lqR/-
This treated fiber was immersed for 30 minutes in a gold jF@aluminum bath heated and melted at 680°C, and after cooling, the fractured surface was scanned with a scanning die. The fiber surface was observed under a 1,000-molecular microscope, but no abnormality was observed on the surface of the fiber.

こ矛1はアルミニウムと反1心しないものであることが
確認さji、た。
It was confirmed that this spear 1 was not anti-linear to aluminum.

なお、比較のために間挿のに′f晴と原料を月1いたが
、この反応温度を680℃としたところ、炭素繊維表面
には殆んど炭化けい素の被視が得られず、このものは強
度劣化はないけれども草気中で800℃に加熱すると激
しく酸化さハ、て繊維形状を失なった。また、同様な方
法でこの反応温度を1450℃としたところ、この場合
には炭化けい素で被)■された炭素繊維が得られたが、
これはその強度が130Kp/−と大rjJK、低トし
たものであり、この繊維表面を電子顕微鏡で観察したと
ころ。
For comparison, the raw material was used once a month, but when the reaction temperature was set to 680°C, almost no silicon carbide was observed on the carbon fiber surface. This material did not deteriorate in strength, but when heated to 800°C in grass, it was severely oxidized and lost its fibrous shape. In addition, when the reaction temperature was set to 1450°C in a similar manner, carbon fibers coated with silicon carbide were obtained.
This fiber has a much lower strength of 130 Kp/-, and the surface of this fiber was observed using an electron microscope.

コレハネ均一に炭化けい素でWQ fWされているもの
であった。
The material was uniformly coated with silicon carbide in WQ fW.

実施例 実施イダh同じ反影【シ装置を便り1ル、この炉心管の
中ic il+触媒としての鉄の微粉末をその表向に均
一に散布したrIJ30 咽X長さ200慴×厚さ3闘
のアルミナ基根を設置して、これを1080℃に加熱し
、ここにベンゼンを10容量含有する水素ガスを700
 a、a、7分の割合で1時間導入したところ、この種
触媒上に炭素繊維の生成さす1.ていることがに忍めら
れた。
Example Implementation Ida h Same reflection [Referring to the equipment, the inside of this reactor core tube is IJ30, in which fine iron powder as a catalyst is uniformly sprinkled on its surface. An alumina base was installed and heated to 1080°C, and 700% of hydrogen gas containing 10 volumes of benzene was added to it.
When the carbon fibers were introduced for 1 hour at a rate of a, a, and 7 minutes, carbon fibers were formed on this type of catalyst. I was able to bear it.

つぎに、この反応帯域の温度を1210℃に上げ、こ″
>にジメチルシランを5容@チ含む水素ガスを2000
.0.7分の割合で1時間心人してから。
Next, the temperature of this reaction zone was raised to 1210°C, and
> 2000 ml of hydrogen gas containing 5 volumes of dimethylsilane
.. After 1 hour at a rate of 0.7 minutes.

加熱を止め、水素ガスだけを導入して冷却後、得られt
繊維状物をとり出してその物性をしらべたところ、これ
は平均繊維径14μm、平均長さ10.5ノ+771−
引張り強さz48Kp/−のもので、X線回折でしらべ
た結果、炭素繊細の表面に約1μmのβ−8iO層が被
覆されたものであった。
After stopping the heating and cooling by introducing only hydrogen gas, the obtained t
When we took out the fibrous material and examined its physical properties, we found that it had an average fiber diameter of 14 μm and an average length of 10.5 mm +771-
It had a tensile strength of z48Kp/-, and as a result of X-ray diffraction analysis, it was found that the fine carbon surface was coated with a β-8iO layer of about 1 μm.

!t ft1コ(’)1f+Mrxs o o℃’) 
’J % 中テL7J 2411間711J熱後の引張
ヤ強さは242KF/−で7111熱前と殆んど変化が
なく、こ引、はまた6801:に保持されている溶融ア
ルミニウム浴中に30分間浸γパ後本異常がなく、アル
ミニウムと反1心しないものであった。
! t ft1ko(')1f+Mrxs o o℃')
'J % The tensile strength after heating 711J between 2411 and 2411 was 242KF/-, which was almost the same as before heating 7111, and the tensile strength was 242KF/-, which was almost the same as before heating 7111. After being immersed in gamma immersion for a minute, there was no abnormality, and the core was not anti-uniform with aluminum.

実施例 4゜ 実〃l+ml tと同様の反応装rwlを使用し、この
炉心77の中にポリアグリロニ) IJル糸高強度炭素
長繊維(Flit +11 )約2.5gを充填し、こ
青1.を1170℃1’U ノ111 Mしてから、こ
こにメプールシラン(OH5siHs )とメタンとを
それぞJl、5容童含有する水素ガスを2000.0.
7分の割合で30分間勾入したのら、加熱を止めて水素
ガスだけを9人して冷却させ、ついで、この用糾を取り
出して、こり、 ft箪子顕微鈍とX線回折でしらべた
ところ、これは炭素繊維の表面に約0.3 pmのβ−
81o とCとモル比が2/lである炭化けい素−炭素
の混合物で吸温されたものであることが4111誌され
た。
Example 4 A reactor similar to that used in Example 4 was used, and about 2.5 g of high-strength carbon filaments (Flit +11) were filled into the core 77. was heated to 1170°C for 1'U to 111M, and then hydrogen gas containing 2000.0.
After immersing it for 30 minutes at a rate of 7 minutes, the heating was stopped and only hydrogen gas was applied for 9 people to cool it down.Then, the sieve was taken out, crushed, and examined using a ft-shiko microscope and X-ray diffraction. As a result, approximately 0.3 pm of β-
It was reported in 4111 that the temperature was absorbed by a mixture of silicon carbide and carbon having a molar ratio of 81o and C of 2/l.

ツキvc、−この物性をしらべたところ、これは27 
(l Kg/ d)引張り強さを示し、これrX、t 
ft、 −800℃、24時曲の空気中での加熱後もそ
の引張り強さか262Kp/−で、耐酸化性に1−ぐ1
1.たものであっ7t。
Tsuki vc, - After looking into this physical property, this is 27
(l Kg/d) indicates the tensile strength, which is rX, t
ft, the tensile strength is 262Kp/- even after heating in the air at -800℃, 24 hours, and the oxidation resistance is 1-1.
1. It was 7 tons.

なお、比較のために上記における反応ガスをジメチルシ
ランとベンゼンとをそjlぞ」]、5容惜係含有する水
素ガス2000.(4,/ ′ftとしたところ、得ら
れた繊維は炭素繊維の表面にβ−310とCのモル比が
l/35と炭素分の多い炭化けい素−炭紮のU合物で被
覆されたものとなり、このものに800℃、24時間の
空気中での加熱後に熱酸化されて著しく劣化し、繊B形
状は保っていたが強Utは全くなくなり、こ」1.はま
たlを融アルミニウム浴中に浸漬するとアルミニウムと
激しく反1心してηjli ili形状を失った、。
For comparison, dimethylsilane and benzene were used as the above reaction gases, and hydrogen gas containing 2,000 liters of hydrogen gas was used. (Assuming 4,/'ft, the surface of the obtained fiber is coated with a silicon carbide-carbohydrate U compound with a high carbon content and a molar ratio of β-310 to C of 1/35. After being heated in air at 800°C for 24 hours, this material was thermally oxidized and deteriorated significantly, and although the fiber B shape was maintained, the strength Ut was completely lost. When immersed in an aluminum bath, it became violently anti-linear with aluminum and lost its ηjli ili shape.

Claims (1)

【特許請求の範囲】 1、炭素繊維上でSiX  (Xにハロゲン心子i几に
酸素原子を示すン結合を含まない有機けい素化合物を気
相熱分解させて、炭素繊維表面に炭化けい素を主体とす
る被#に!全形11.させることを特徴とする炭化けい
素被梢炭禦紙絣の製造方法。 2 有ハスけい素化合物がその分子中に少1cくとも1
個の水素−けい&−結合を有するものである特if’l
’i4求の頓囲第1項記載の炭化けい素被〜炭素φ紐の
製造方法。 3、有1ζすけい素化合物′ft700〜1400℃の
温度で気相熱ケt))1イさ→すること全特徴と−「る
特許請求の範囲第1項または第2項記載の炭化けい素被
勾炭素鞄i11の製造方法。 4、有機けい素化合物に炭化水素化合物をそれらの気相
熱分解により生成、する炭素と炭化けい累とのモル比が
l以、下となる範囲で添J1(1することを特徴とする
特n”(″請求の幀v+(ss t 」;q、第2項ま
たは第3項記載の炭化けい素破侍炭素繊維の製造方法。
[Claims] 1. Silicon carbide is formed on the carbon fiber surface by vapor-phase pyrolysis of an organosilicon compound that does not contain a bond of SiX (where X is a halogen core or an oxygen atom). A method for producing a silicon carbide-covered charcoal paper kasuri, which is characterized in that the silicon carbide-covered charcoal paper kasuri is made into a main substance.
If'l has hydrogen-Si&-bonds
A method for producing a silicon carbide coated carbon φ string as described in item 1 of the 'i4 request. 3. The silicon carbide compound according to claim 1 or 2, which contains 1ζ silicate compound and is heated in the vapor phase at a temperature of 700 to 1400°C. A method for producing an elementary gradient carbon bag i11. 4. Adding a hydrocarbon compound to an organosilicon compound in such a manner that the molar ratio of the carbon to the silicon carbide formed by producing the hydrocarbon compound by their gas phase pyrolysis is 1 or less. J1 (1) The method for producing a silicon carbide samurai carbon fiber according to claim 2 or 3, characterized in that:
JP16549882A 1982-09-22 1982-09-22 Production of silicon carbide coated carbon fiber Granted JPS5959976A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP16549882A JPS5959976A (en) 1982-09-22 1982-09-22 Production of silicon carbide coated carbon fiber
US06/533,649 US4560589A (en) 1982-09-22 1983-09-19 Method for providing a coating layer of silicon carbide on substrate surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16549882A JPS5959976A (en) 1982-09-22 1982-09-22 Production of silicon carbide coated carbon fiber

Publications (2)

Publication Number Publication Date
JPS5959976A true JPS5959976A (en) 1984-04-05
JPS6262188B2 JPS6262188B2 (en) 1987-12-25

Family

ID=15813534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16549882A Granted JPS5959976A (en) 1982-09-22 1982-09-22 Production of silicon carbide coated carbon fiber

Country Status (1)

Country Link
JP (1) JPS5959976A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4855091A (en) * 1985-04-15 1989-08-08 The Dow Chemical Company Method for the preparation of carbon filaments
JPH01229874A (en) * 1988-03-02 1989-09-13 Agency Of Ind Science & Technol Woven and knitted cloth consisting of silicon-carbon conjugated fiber and production thereof
US4980202A (en) * 1989-07-03 1990-12-25 United Technologies Corporation CVD SiC matrix composites containing carbon coated fibers
JP2003516476A (en) * 1999-12-06 2003-05-13 スネクマ・プロピュルシオン・ソリド Carbonization treatment of cellulosic fibrous materials in the presence of organosilicon compounds

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4855091A (en) * 1985-04-15 1989-08-08 The Dow Chemical Company Method for the preparation of carbon filaments
JPH01229874A (en) * 1988-03-02 1989-09-13 Agency Of Ind Science & Technol Woven and knitted cloth consisting of silicon-carbon conjugated fiber and production thereof
JPH0316422B2 (en) * 1988-03-02 1991-03-05 Kogyo Gijutsu Incho
US4980202A (en) * 1989-07-03 1990-12-25 United Technologies Corporation CVD SiC matrix composites containing carbon coated fibers
JP2003516476A (en) * 1999-12-06 2003-05-13 スネクマ・プロピュルシオン・ソリド Carbonization treatment of cellulosic fibrous materials in the presence of organosilicon compounds
JP4808351B2 (en) * 1999-12-06 2011-11-02 スネクマ・プロピュルシオン・ソリド Carbonization treatment of cellulosic fibrous materials in the presence of organosilicon compounds

Also Published As

Publication number Publication date
JPS6262188B2 (en) 1987-12-25

Similar Documents

Publication Publication Date Title
US4342712A (en) Process for producing continuous inorganic fibers
US4283376A (en) Method of producing silicon carbide fibers
JP4612287B2 (en) Silicon carbide fiber substantially free of whiskers and method for producing the same
JPH0541727B2 (en)
Hasegawa New curing method for polycarbosilane with unsaturated hydrocarbons and application to thermally stable SiC fibre
JPH0365527A (en) Silicon oxicarbide glass and its article
JP2663819B2 (en) Manufacturing method of silicon carbide fiber
JPS5959976A (en) Production of silicon carbide coated carbon fiber
JPS6020485B2 (en) Method for producing continuous inorganic fiber containing silicon, zirconium and carbon
JPH03104927A (en) Coil-like carbon fiber and carbon composite material
WO1987005612A1 (en) Organopolyarylsilane, process for its production, and fibers prepared therefrom
EP0048957B1 (en) Continuous inorganic fibers and process for production thereof
SU680639A3 (en) Composition material
JPS5947424A (en) Manufacture of carbon-silicon carbide composite fiber
JPS5944403B2 (en) Manufacturing method of continuous inorganic fiber
JPS6330433B2 (en)
JP2931648B2 (en) Method for producing silicon nitride coated fiber
JP2586083B2 (en) Manufacturing method of fiber molding
JPS60251247A (en) Metal reinforced by inorganic fiber and its manufacture
JP2535261B2 (en) Inorganic long fiber and method for producing the same
JPH0268312A (en) Composite carbon fiber and production thereof
JPH03119179A (en) Fiber for composite material and production thereof
JPH03112868A (en) Fiber-reinforced carbonaceous composite material
JPH0718520A (en) Production of silicon carbide fiber
JPS5831431B2 (en) Composite film-coated carbon fiber and its manufacturing method