JPH03130464A - Method for treating surface of carbon fiber bundle - Google Patents

Method for treating surface of carbon fiber bundle

Info

Publication number
JPH03130464A
JPH03130464A JP2191054A JP19105490A JPH03130464A JP H03130464 A JPH03130464 A JP H03130464A JP 2191054 A JP2191054 A JP 2191054A JP 19105490 A JP19105490 A JP 19105490A JP H03130464 A JPH03130464 A JP H03130464A
Authority
JP
Japan
Prior art keywords
carbon fiber
fiber bundles
surface treatment
electrode
fiber bundle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2191054A
Other languages
Japanese (ja)
Other versions
JP2512338B2 (en
Inventor
Hiroyasu Ogawa
博靖 小川
Tetsuo Shigei
繁井 哲郎
Tomoki Koseki
小関 智樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Rayon Co Ltd filed Critical Toho Rayon Co Ltd
Publication of JPH03130464A publication Critical patent/JPH03130464A/en
Application granted granted Critical
Publication of JP2512338B2 publication Critical patent/JP2512338B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To carry out homogeneous electrolytic surface treatment with prevented fluffing by arranging plural slitlike nozzles containing each electrode in the direction perpendicular to the running direction of plural carbon fiber bundles, bringing an electrolyte jetted from the aforementioned nozzles into contact with the above-mentioned fiber bundles and passing a current therethrough. CONSTITUTION:Three or more slitlike nozzles containing each electrode having one or more electrode terminals based on 50cm whole width of plural carbon fiber bundles in the direction perpendicular to the running direction of the carbon fiber bundles running parallel and the electrodes of the above-mentioned nozzles are constructed so as to alternately provide anodes and cathodes. An electrolyte jetted in the form of a liquid film or liquid column from the aforementioned slitlike nozzles is brought into contact with the above-mentioned carbon fiber bundles from the lower part and a current is passed therethrough to carry out electrolytic surface treatment.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、竜角riによる炭素繊維束の表面処理方法去
に関する。本発明によると、複数本の炭素繊維束の表面
を長さ方向において炭素繊維束相互を均一かつ効率よく
処理することができ、このように表面処理して得られた
炭素繊維束は、樹脂との接着性に優れており有用な補強
材として使用される。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for surface treatment of carbon fiber bundles using Ryukaku ri. According to the present invention, the surfaces of a plurality of carbon fiber bundles can be treated uniformly and efficiently in the longitudinal direction, and the carbon fiber bundles obtained by surface treatment in this way can be treated with resin. It has excellent adhesive properties and is used as a useful reinforcing material.

〔従来技術及び問題点〕[Prior art and problems]

一般に、炭素繊維は、軽量で高い強度と引1性率を有し
、それぞれの特性が生かされた各種プラスチック材料の
補強材として航空宇宙用構造材、産業機械、スポーツ・
リクリエーション分野で広範に使用されている。特に、
最近では、航空機−次構逍44用として引張り強さか6
00kg「/mm’を超える高性能炭素繊維が市販され
るようになってきた。
In general, carbon fiber is lightweight, has high strength, and tensile properties, and is used as a reinforcing material for various plastic materials that take advantage of these characteristics, such as structural materials for aerospace, industrial machinery, sports, etc.
Widely used in recreational fields. especially,
Recently, the tensile strength has been increased to 6 for use in aircraft construction.
High-performance carbon fibers exceeding 00 kg/mm' are now commercially available.

このような高性能炭素繊維は、性能とともに品質の安定
性が重要視されている。これら用途に向けられる炭素繊
維は、マトリックス樹脂との接着性を適当な度合になる
よう表面処理を施す必要がある。表面処理を施さない場
合、樹脂との接着性が充分でなく複合材料とした場合、
樹脂と繊維の剥離による物性の低下が大きい。
For such high-performance carbon fibers, importance is placed on quality stability as well as performance. Carbon fibers intended for these uses must be surface-treated to achieve an appropriate degree of adhesion with the matrix resin. If no surface treatment is applied, or if the adhesiveness with the resin is insufficient and it is made into a composite material,
Physical properties are greatly reduced due to separation of resin and fiber.

また、表面処理を過度にすると、樹脂との接着性は向上
するが、複合材料の物性が低下する場合が多い。
Furthermore, if the surface treatment is excessive, the adhesion with the resin will improve, but the physical properties of the composite material will often deteriorate.

一般に、表面処理の方法としては、炭素繊維表面を酸化
する手段として二酸化窒素などを用いた気相酸化処理、
過塩素酸塩などの酸化剤を用いた液相酸化処理、炭素繊
維を陽極とした電解酸化処理があげられる。
In general, surface treatment methods include gas phase oxidation treatment using nitrogen dioxide etc. as a means of oxidizing the carbon fiber surface;
Examples include liquid phase oxidation treatment using an oxidizing agent such as perchlorate, and electrolytic oxidation treatment using carbon fiber as an anode.

炭素繊維を陽極とした電解酸化処理は、気を0酸化処理
の如く高い温度条件を必要とせず、また、i&柑酸酸化
処理如く長い処理n5間を必要としない点て、工業的に
有用な方法である。この方法は、例えば特公昭47−4
0119号公報、米国特許第3671411号明細書等
に公表されている。
Electrolytic oxidation treatment using carbon fiber as an anode is industrially useful because it does not require high temperature conditions like air oxidation treatment and does not require a long treatment period like i & citric acid oxidation treatment. It's a method. This method is used, for example, in
No. 0119, US Pat. No. 3,671,411, and the like.

また、繊維の表面処理の均一化を図るため、電M浴内の
電極位置、形状を変更し電流密度を均一にする方法(特
開昭54−138825号公報等)や、陽極(ローラー
)と陰極(電解質溶液)とに順次接触させ表面処理する
方法(特公昭48−12444号公報等)などが知られ
ている。
In addition, in order to uniformize the surface treatment of the fibers, there are methods to make the current density uniform by changing the position and shape of the electrodes in the electromagnetic bath (Japanese Patent Application Laid-open No. 138825/1982, etc.), A method is known in which the surface is treated by successively bringing it into contact with a cathode (electrolyte solution) (Japanese Patent Publication No. 12444/1984, etc.).

表面処理を施すために電解槽を用いる場合、繊維束の内
部まで均一に処理するため、電解液に超音波振動を加え
る方法(特開昭62−149970号公報)が提案され
ている。
When using an electrolytic bath to perform surface treatment, a method has been proposed in which ultrasonic vibration is applied to the electrolytic solution (Japanese Patent Application Laid-Open No. 149970/1983) in order to uniformly treat the inside of the fiber bundle.

更に、複合材料としての性能向上を図るには、例えば特
開昭55−12834号公報に見られる如く特定の表面
処理条件を採用する必要がある。
Furthermore, in order to improve the performance as a composite material, it is necessary to adopt specific surface treatment conditions as shown in, for example, Japanese Patent Application Laid-open No. 12834/1983.

電解表面処理を行なう場合、炭素繊維束を損傷させず、
毛羽の発生を抑制しなければならないが、そのために、
電解質溶液を介して炭素繊維に通電し電極ローラー又は
ガイドと接触しないようにする方法(特公昭47−29
942号公報)や、オーバーフローしている電解質溶液
を介した陽極液槽と陰I5!岐漕を用い、極の液面の膨
れあかった部分を通して、炭素繊維に接触させる方法(
特開昭63−282364号公報)が知られている。
When performing electrolytic surface treatment, it does not damage the carbon fiber bundle and
It is necessary to suppress the occurrence of fuzz, but for this purpose,
Method of applying electricity to carbon fibers through an electrolyte solution to avoid contact with electrode rollers or guides (Japanese Patent Publication No. 47-29
942) and the anolyte tank and negative I5 via the overflowing electrolyte solution! A method of contacting the carbon fiber through the swollen part of the liquid surface of the pole using a diversion tank (
JP-A No. 63-282364) is known.

これらの方法を用いて工業的に炭素繊維束を効率よく表
面処理しようとする場合、多本数を同時に均一かつ毛羽
の発生など品質の低下をもたらさないように処理するに
は、装置の大型化、複雑化が避けられない。また、いず
れも表面処理m槽を用いており、繊維束が浴内を通過す
る際、表面に空気又は水素ガス等の気泡が付着し表面処
理にバラツキが生じやすく、循環i&ffiも多くする
必要がある。−層生産性をあげようとすると、装置の大
型化に伴う幅方向のバラツキや、処理塔長の増長による
長さ方向のバラツキが生じやすくなる。現在のところ、
これらの問題点を解決できる処理方法は見出されていな
い。
When trying to efficiently surface-treat carbon fiber bundles industrially using these methods, it is necessary to increase the size of the equipment and to treat a large number of fibers at the same time uniformly and without causing quality deterioration such as the generation of fuzz. Complications are inevitable. In addition, both of them use a surface treatment m bath, and when the fiber bundle passes through the bath, bubbles of air or hydrogen gas adhere to the surface, which tends to cause variations in surface treatment, and it is necessary to increase the circulation I & ffi. be. - When trying to increase layer productivity, variations in the width direction due to the increase in the size of the equipment and variations in the length direction due to the increase in the length of the processing tower tend to occur. at present,
No processing method has been found that can solve these problems.

〔発明の目的及び構成〕[Object and structure of the invention]

本発明は、以上の問題点を解決すべく、電解質溶液を介
して多本数の炭素繊維束を短侍間で表面処理する場合に
、電M処理する際に発生する繊維表面への気泡付着の除
去を効率よく行なうツキを少なくするとともに、表面処
理浴槽を用いないことにより、電解質溶液を少な(でき
る方法を提供しようとするものである。
In order to solve the above-mentioned problems, the present invention aims to prevent air bubbles from adhering to the fiber surface that occur during electromagnetic treatment when a large number of carbon fiber bundles are surface-treated in a short time using an electrolyte solution. The objective is to provide a method that reduces the amount of electrolyte solution required by eliminating the need for a surface treatment bath, while also reducing the burden of efficient removal.

本発明は、下記の(Iカ戊からなる。The present invention consists of the following (I).

(1)炭素繊維束を電解表面処理するに当り、71!極
を内在するスリット状ノズルを、平行に走行する複数の
炭素繊維束の走行方向に対し直角に配して陽極及び陰極
とし、該スリット状ノズルよりl皮膜状又は液柱状に繊
維束の下から噴出させた電力q質溶肢を、繊維に接触さ
せて通電せしめることを特徴とする炭素繊維束の表面処
理方法。
(1) When performing electrolytic surface treatment on carbon fiber bundles, 71! A slit-shaped nozzle containing a pole is arranged perpendicularly to the running direction of a plurality of carbon fiber bundles running in parallel to serve as an anode and a cathode. A method for surface treatment of carbon fiber bundles, characterized in that a spouted electric power is brought into contact with the fibers and energized.

(2)電極を内在するスリット状ノズルを3個以上配し
、かつ該スリット状ノズルの電極を交互に陽極と陰極と
した請求項(1)記載の表面処理方法。
(2) The surface treatment method according to claim 1, wherein three or more slit-shaped nozzles containing electrodes are arranged, and the electrodes of the slit-shaped nozzles are alternately an anode and a cathode.

(3)平行に走行する複数の炭素繊維束の全幅50c+
n当り 1個以上の電極端子を有する電極を内在するス
リット状ノズルを用いる。請求項(1)記載の表面処理
方法。
(3) Total width of multiple carbon fiber bundles running in parallel 50c+
A slit-shaped nozzle containing an electrode having one or more electrode terminals per n is used. The surface treatment method according to claim (1).

本発明によると、短い工程距離で効率的に均一性の高い
炭素繊維の竜角’1表面処理ができる。
According to the present invention, the surface treatment of carbon fiber with high uniformity can be carried out efficiently in a short process distance.

本発明において、炭素繊維束とは、従来知られた方法で
、ポリアクリロニトリル繊維、ピ・ソチ繊維、レーヨン
繊維等から誘導された炭素繊維又は黒鉛繊維のフィラメ
ント100〜24.000本で構成された束である。
In the present invention, a carbon fiber bundle is composed of 100 to 24,000 filaments of carbon fiber or graphite fiber derived from polyacrylonitrile fiber, pi-soti fiber, rayon fiber, etc., by a conventionally known method. It's a bunch.

ここで用いる電解質溶液としては、液の電気比抵抗が3
MΩ・cm以下であれば電解質を含まないlllでもよ
いが、通常は電解質を含む溶液である。竜角’i!質の
種類は、電解質として機能する物質であれば特に制限が
ない。
The electrolyte solution used here has a specific electrical resistance of 3
Although it may be a solution that does not contain an electrolyte as long as it is less than MΩ·cm, it is usually a solution that contains an electrolyte. Ryukaku'i! The type of electrolyte is not particularly limited as long as it functions as an electrolyte.

特に奸ましい電解質としては、硫酸、硝酸、リン酸、ホ
ウ酸、炭酸等の無機酸や、酢酸、醋酸、シュウ酸、マレ
イン酸等の有機酸、及び、これらのアルカリ金属塩、ア
ンモニウム塩等の塩類があげられ、これらの単独物又は
2種以上の混合物があげられる。
Particularly dangerous electrolytes include inorganic acids such as sulfuric acid, nitric acid, phosphoric acid, boric acid, and carbonic acid, organic acids such as acetic acid, acetic acid, oxalic acid, and maleic acid, and their alkali metal salts and ammonium salts. These salts may be used singly or as a mixture of two or more thereof.

電解質溶l皮の濃度としては、溶l夜のイオンの輪生に
依存するが、通常使用される0、1〜20重量%の範囲
が採用できる。より好ましくは1〜IO重量%である。
The concentration of the electrolyte solution depends on the circulation of ions during the solution, but a commonly used range of 0.1 to 20% by weight can be adopted. More preferably, it is 1 to IO% by weight.

また、添加剤として、ぬれ性を良くするため、非イオン
系界面活性剤、例えばポリシロキサン系界面活性剤等の
界面活性剤ここで処理される炭素繊維束は、電角q処理
に供される前に、水又は電解質溶i(lが付与されてい
るものでもよい。付与の方法としては、炭素繊維束内部
まで水又は電解質溶液が含まれるように、浴槽に浸漬す
る方式、スプレ一方式、ロラー転写方式などの方法があ
る。
In addition, a nonionic surfactant such as a polysiloxane surfactant is added as an additive to improve wettability.The carbon fiber bundles treated here are subjected to electric angle q treatment. Water or an electrolyte solution (I) may be applied before the carbon fiber bundle. Examples of the application method include immersion in a bathtub, spray method, There are methods such as a roller transfer method.

本発明において使用するスリット状ノズルは、内部に電
解質溶液に腐食されない材質で作成された電極を有し、
この電極から電力り質溶液を通じて炭素繊維束に通電さ
れる。
The slit-shaped nozzle used in the present invention has an electrode made of a material that is not corroded by the electrolyte solution inside,
Electricity is applied to the carbon fiber bundle from this electrode through a power lithium solution.

電極は、繊維束の幅方向に、均一な電流密度を有するよ
うに分割するか、端子を多くとれるような形状がよい。
The electrodes are preferably divided in the width direction of the fiber bundle so as to have a uniform current density, or have a shape that allows for a large number of terminals.

電極はノズル内部に設置されるため、大きな断面積を有
する電極が取り付けられない。端子が1個所の場合、幅
方向の電流密度は電極材料の比抵抗に依存する傾向にあ
る。
Since the electrode is installed inside the nozzle, an electrode with a large cross-sectional area cannot be attached. When there is only one terminal, the current density in the width direction tends to depend on the resistivity of the electrode material.

炭素繊維束参目互のバラツキを小さくするには、この電
流密度を均一にすることが必要であり、電極材料の比抵
抗が10−ゞΩ・cm以上では、500m当り 1個所
以上の端子を設けることが好ましい。特に炭素材料を電
極に使用する場合は、この電極端子の数を多くすること
が表面処理の均一化に極めて効果的である。
In order to reduce the variation in the number of carbon fiber bundles, it is necessary to make this current density uniform, and if the resistivity of the electrode material is 10-ゞΩ・cm or more, one or more terminals per 500 m should be used. It is preferable to provide one. Particularly when a carbon material is used for the electrode, increasing the number of electrode terminals is extremely effective in making the surface treatment uniform.

スリット状ノズルは走行する複数の繊維束の幅に対応し
、スリットの間隔は、0.05〜5■とするのかよい。
The slit-shaped nozzle corresponds to the width of the plurality of running fiber bundles, and the spacing between the slits may be 0.05 to 5 cm.

好ましくは、0.1〜3mmである。5mm超になると
、ノズルより電解質溶液を噴出させ繊維に接触させるた
めに多量の電解質溶液が必要となリニ[業的にメリット
が少ない。
Preferably, it is 0.1 to 3 mm. If it exceeds 5 mm, a large amount of electrolyte solution is required to be ejected from the nozzle and brought into contact with the fibers, so there is little commercial advantage.

0.05+n+++未満では、処理する繊維束に付着す
る電解質の?Ik Hkが少なくなり、長さ方向の処理
のバラツキが生じる。また、付着岐量を高めるため、噴
出速度を上げると、毛羽の発生が認められ品質の低下を
招くのでよくない。更に、工程に入る不純物粒子により
ノズルの目詰まりが生じることがあり、長期間の運転に
対応できない。
If it is less than 0.05+n+++, the amount of electrolyte attached to the fiber bundle to be treated will decrease. Ik Hk decreases, resulting in variations in processing in the length direction. Furthermore, increasing the jetting speed in order to increase the amount of adhesion is not a good idea because it causes fluff to appear and the quality deteriorates. Furthermore, the nozzle may become clogged due to impurity particles entering the process, making it impossible to support long-term operation.

ノズルより噴出した電解質溶液の方向は、被処理繊維束
の軸方向に対し斜めになるような方向に噴出させること
もできるが、好ましくは繊維輔に対し直角方向に噴出さ
せることである。
The electrolyte solution ejected from the nozzle can be ejected in a direction oblique to the axial direction of the fiber bundle to be treated, but preferably it is ejected in a direction perpendicular to the fiber bundle.

本発明におけるスリット状ノズルの斜視図を示すと、第
1図の通りである。第1図において、lは電解質溶を夜
を噴出するためのスリットであり、2は電解質溶液にa
電する電極である。電極の位置は、噴出口の近くに設置
されていることが好ましい。これは電解質溶液の伝導度
が低い場合、高い印加電圧が必要となるからである。
A perspective view of the slit-shaped nozzle according to the present invention is shown in FIG. 1. In Figure 1, l is a slit for spouting out the electrolyte solution, and 2 is a slit for spouting the electrolyte solution.
It is an electrode that generates electricity. Preferably, the electrode is located near the ejection port. This is because when the conductivity of the electrolyte solution is low, a high applied voltage is required.

ノズルの材質としては、竜角q質溶液に腐食しない材質
、例えばポリ塩化ビニール、ポリプロピレン、アクリル
樹脂等を用いることができる。
As the material of the nozzle, a material that is not corroded by the turquoise solution, such as polyvinyl chloride, polypropylene, acrylic resin, etc., can be used.

ステンレス、チタン材などの表面に樹脂コーテイングし
たものも用いることかできる。スリット状ノズル自体を
電極とすることも可能であるが、この場合白金など電解
処理において腐食されない材質にする必要がある。
Materials coated with resin on the surface of stainless steel, titanium, etc. can also be used. It is also possible to use the slit-shaped nozzle itself as an electrode, but in this case it is necessary to use a material such as platinum that will not be corroded during electrolytic treatment.

陽極及び陰極となるスリット状ノズルは、平行に走行す
る複数の炭素繊維束の、走行方向に対して実質的に直角
に置かれる。斜めに置くと、工程が長くなり不利である
。ノズルの位置は繊維束に向けて、走行する繊維束の下
側に配置する。
The slit-shaped nozzles serving as the anode and cathode are placed substantially perpendicular to the running direction of the plurality of carbon fiber bundles running in parallel. If it is placed diagonally, the process will be longer, which is disadvantageous. The nozzle is positioned below the traveling fiber bundle, facing the fiber bundle.

スリット状ノズルから噴出する液は、幅方向に均一な厚
みをもった液膜(ウォーターカーテン)状又は液柱状と
する。
The liquid ejected from the slit nozzle is in the form of a liquid film (water curtain) or a liquid column having a uniform thickness in the width direction.

本発明における炭素繊維束の走行方向とスリット状ノズ
ルの位置関係を平面図に示すと第2図の通りである。第
2図において、3は炭素繊維束、4はスリット状ノズル
、5は電極端子、6は電解質溶液流入口、7は噴出した
液の受ざらである。
FIG. 2 shows a plan view of the running direction of the carbon fiber bundle and the positional relationship of the slit nozzle in the present invention. In FIG. 2, 3 is a carbon fiber bundle, 4 is a slit-shaped nozzle, 5 is an electrode terminal, 6 is an electrolyte solution inlet, and 7 is a reservoir for the ejected liquid.

ノズルから噴出したl夜が女・1極の波と接近する場合
は、ノズル間に仕切板を設けるなど短絡しないようにす
る。
If the night wave ejected from the nozzle comes close to the woman/unipole wave, install a partition plate between the nozzles to prevent short circuits.

ノズルから電解質溶液が噴出する速度は、炭素繊維束か
ら毛羽を発生させない範囲で制御するが、通常50〜5
00c+n /秒の線速度であることが好ましい。特に
好ましくは70〜200cm/秒である。炭素繊維束に
電解質溶酸をこの範囲の速度で噴出させると、毛羽の発
生割合が少なく、従来問題となっている繊維表面に生成
する水素等の気泡の除去にも効果を示す。
The speed at which the electrolyte solution is ejected from the nozzle is controlled within a range that does not generate fluff from the carbon fiber bundle, but is usually 50 to 50%.
A linear velocity of 00c+n/sec is preferred. Particularly preferred is 70 to 200 cm/sec. When the electrolyte solution is ejected onto the carbon fiber bundle at a speed within this range, the rate of fuzz generation is low, and it is also effective in removing bubbles such as hydrogen generated on the fiber surface, which has been a problem in the past.

50cm/秒未満では、水膜状を保つのか雉しいのに加
えて繊維束に付着する液量にバラツキが生じる。500
cm /秒超になると、噴出域が繊維に衝突する力が強
すぎて毛羽の量曽加か著しくなる。 繊維束とノズルと
の距離は、噴出速度に応じて変えることができる。但し
、ノズル口に近づけすぎると、ノズルと接触してしまう
ため好ましくなく、したがって、5〜10 m m離し
た方がよい。
When the speed is less than 50 cm/sec, it is difficult to maintain a water film shape, and the amount of liquid adhering to the fiber bundle varies. 500
If the speed exceeds cm 2 /sec, the force with which the jetting region collides with the fibers will be too strong and the amount of fuzz will increase significantly. The distance between the fiber bundle and the nozzle can be changed depending on the jetting speed. However, if it is placed too close to the nozzle opening, it is not preferable because it will come into contact with the nozzle, so it is better to keep it 5 to 10 mm away.

平行に走行する複数の炭素繊維束の、走行方向に対して
直角に置かれた陽極及び陰極ノズル間の距離(電極間距
離)は、表面処理の度合〆に大きな影響を与える。電解
質浴槽を用いる場合、通常は陰極側の帛槽内に滞留する
時間が陽極との接触時間より10倍以上とするのが普通
である。本発明の場合、実質的に電解処理がなされてい
るのは、陽極と陰極の間でかつ水の分解電圧以上の範囲
である。分解電圧以下の範囲では、処理が非常に緩慢で
あるか、殆んど処理されない。このことから、処理速度
を同一とすると、電極間距離は、浴(乃内で処理する場
合と同じ距離を必要とすることが予想されるのであるが
、実際には172以下の距離で同程度の表面処理ができ
るのか本発明の大きな特色である。
The distance between the anode and cathode nozzles (distance between electrodes) placed perpendicularly to the running direction of a plurality of carbon fiber bundles running in parallel has a large effect on the degree of surface treatment. When an electrolyte bath is used, the residence time in the fabric bath on the cathode side is usually 10 times or more longer than the contact time with the anode. In the case of the present invention, the area where the electrolytic treatment is substantially performed is between the anode and the cathode and in the range above the water decomposition voltage. In the range below the decomposition voltage, processing is very slow or almost non-existent. From this, it is expected that if the processing speed is the same, the distance between the electrodes will be the same as when processing in a bath (nonouchi), but in reality, the distance is about the same at 172 or less. A major feature of the present invention is that surface treatment is possible.

更に、電極を2個以上並べることにより、処理階間の短
縮と、処理のバラツキを小さくすることが可能である。
Furthermore, by arranging two or more electrodes, it is possible to shorten the number of processing stages and reduce variations in processing.

実際には、電極を内で「するスリット状ノズルを3個以
上配し、かつ、該スリット状ノズルの電極を交互に陽極
と陰極とする。電極間距離は5mm以上500n+m以
下で行なうのがよい。好ましくは5〜200+nmで行
なうのがよい。5+nm未満では、陽極と陰極となる電
解質溶l&が短絡し実質上の電解処理を行なえなくなる
。500■超では、端子間に加わる電圧か大きくなりす
ぎるので好ましくない。
In practice, three or more slit-shaped nozzles with electrodes inside are arranged, and the electrodes of the slit-shaped nozzles are alternately used as an anode and a cathode.The distance between the electrodes is preferably 5 mm or more and 500 nm or less. .Preferably, it is carried out at 5 to 200+ nm.If it is less than 5+ nm, the electrolyte solution l& which becomes the anode and cathode will be short-circuited, making it impossible to carry out the actual electrolytic treatment.If it exceeds 500 nm, the voltage applied between the terminals will become too large. So I don't like it.

第5図は、3個の陽極と3個の陰極とを交互に配した場
合の概念図である。第5図では、両極の数は同数である
が、陽極又は陰極のいずれかを両端とすることもできる
FIG. 5 is a conceptual diagram in which three anodes and three cathodes are alternately arranged. In FIG. 5, the number of both poles is the same, but either the anode or the cathode could be at both ends.

〔光用の効果〕[Effect for light]

本発明の方法によれば、ローラー等を使用せず毛羽発生
などの繊維損傷が少なくてき、また、繊維表面に付着す
る気泡を効率よく除去することと電流密度の均一化によ
って、多本数を均一に電H表面処理することかできる。
According to the method of the present invention, fiber damage such as fuzz generation is reduced without using rollers, etc., and a large number of fibers can be uniformly produced by efficiently removing air bubbles adhering to the fiber surface and by equalizing the current density. The surface can be treated with electrolytic metal.

工業的には、化解質液浴冶を用いないため7じ解質溶液
が少なくてきるとともに、表面処理時間を短縮できる効
果かある。このことは、従来の処理工程長さで処理速度
を大幅に高めることかできることを意味する。
Industrially, since a chemical decomposition solution bath is not used, the amount of decomposition solution is reduced, and the surface treatment time can be shortened. This means that processing speeds can be significantly increased with conventional processing step lengths.

〔実施例及び比較例〕[Examples and comparative examples]

以下に実施例をあげて本発明を具体的に説明するが、本
発明は実施例に限定されるものではない。
EXAMPLES The present invention will be specifically explained below with reference to Examples, but the present invention is not limited to the Examples.

的中に記載されている事項の意味や測定法について説明
する。
Explain the meaning of the items listed in the target and how to measure them.

a表面酸素結合量 X線光電子スペクトルメーター(ESCA:島津製作所
製 ESCA750型)により測定された炭素及び酸素
のビーク面積比から、炭素原子lに対して7771’す
る酸素原子の数であられしている。
a Surface oxygen bond amount From the peak area ratio of carbon and oxygen measured by an X-ray photoelectron spectrometer (ESCA: Shimadzu Corporation ESCA750 model), it is expressed as the number of oxygen atoms per carbon atom 1, which is 7771'. .

b、ILss(層間せん断強度) 各条件で得られた炭素繊維束を、 120℃硬化型ビス
フェノールA型エポキシ樹脂に含浸しプリプレグを作製
した。このプリプレグを積層し、120℃、90分て硬
化し成形体を得た。
b, ILss (interlaminar shear strength) The carbon fiber bundles obtained under each condition were impregnated with a 120° C. curable bisphenol A epoxy resin to produce prepregs. This prepreg was laminated and cured at 120° C. for 90 minutes to obtain a molded article.

この成形体から試験片を切り出し、A S T MD 
2344に準拠した測定法(ショートビーム3点曲げ法
)により測定を行なった。
A test piece was cut out from this molded body and A S T MD
The measurement was performed using a measurement method (short beam three-point bending method) based on 2344.

各試料につきn−5の試験片を作製し、その平均値を示
した。特に断らない限り各条件における炭素繊維束10
本の平均値及びCV値(炭素繊維束相互のバラツキの指
標)を結果として示している。
For each sample, n-5 test pieces were prepared, and the average value was shown. Carbon fiber bundle 10 under each condition unless otherwise specified
The average value and CV value (an index of variation among carbon fiber bundles) are shown as the results.

実施例1 表面処理を施していないポリアクリロニトリル系炭素繊
維束(東邦レーヨン社製、ベスファイトoHT  12
000フイラメント)を原料に用いた。この繊維束を用
いてILSSを測定したところ、7.8kgf’ / 
mm’を示した。(CVf直27%)表面結合酸素量は
O/ CO,08を示した。
Example 1 Polyacrylonitrile carbon fiber bundle without surface treatment (Besphite oHT 12, manufactured by Toho Rayon Co., Ltd.)
000 filament) was used as the raw material. When ILSS was measured using this fiber bundle, it was 7.8 kgf'/
mm' was shown. (CVf direct 27%) The amount of surface-bound oxygen showed O/CO,08.

使用した装置の概念図は第3図に示す通りである。第3
図において、8は炭素繊維束、9は陽極スリット状ノズ
ル、lOは陰極スリット状ノズルを示す。11は電解質
層l夜の受ざら、12は電解質溶illの流入口、であ
る。13は電解質溶ltlである。繊維束とノズル間の
距離は、5mmでアリ、スリット幅は0 、5mmであ
った。
A conceptual diagram of the apparatus used is shown in FIG. Third
In the figure, 8 is a carbon fiber bundle, 9 is an anode slit nozzle, and IO is a cathode slit nozzle. Reference numeral 11 designates a reservoir for the electrolyte layer, and reference numeral 12 represents an inlet for the electrolyte solution. 13 is electrolyte solution ltl. The distance between the fiber bundle and the nozzle was 5 mm, and the slit width was 0.5 mm.

上記炭素繊維束100本を51間隔にて平行に並べ、走
行速度2m/分にて処理を行なった。電解質溶1ffl
として、硫酸ナトリウムの5重量%水溶7夜を用い、電
極間距離を400mmとした陽極を内在したノズル9と
、陰極を内在したノズル10より電解質溶’trlを8
0cm/秒でlfk膜状に噴出させ炭素繊維束に接触さ
せ電解表面処理を行なった。
100 of the above carbon fiber bundles were arranged in parallel at 51 intervals and processed at a running speed of 2 m/min. Electrolyte solution 1ffl
Using a 5% by weight aqueous solution of sodium sulfate for 7 days, an electrolyte solution of 8 ml was added to the nozzle 9 containing the anode and the nozzle 10 containing the cathode with an inter-electrode distance of 400 mm.
It was ejected in the form of an lfk film at 0 cm/sec and brought into contact with the carbon fiber bundle to perform electrolytic surface treatment.

処理電気量は30クーロン/グラムとした。The amount of electricity processed was 30 coulombs/gram.

このようにして処理された炭素繊維束を水洗し、 11
0℃で乾燥しボビンに巻きとった。
The carbon fiber bundle treated in this way is washed with water, and 11
It was dried at 0°C and wound onto a bobbin.

ESCAにより表面の結合酸素量を測定したところ、O
/Cの値で0.21であった。繊維と樹脂との接着性を
ILSSにより測定して評価した結果、11.2kgr
/mm’てあり、CV値は 11%(n−1(1)を示
した。
When the amount of bound oxygen on the surface was measured by ESCA, it was found that O
/C value was 0.21. As a result of measuring and evaluating the adhesion between fiber and resin by ILSS, it was 11.2 kgr.
/mm', and the CV value was 11% (n-1(1)).

比較例] 実施例1て使用した原料の炭素繊維束100本を第4図
に示すような浴槽タイプ(浴槽長さ1m)の表面処理浴
を用いて、処理速度2m/分とし、5重量%硫酸ナトリ
ウム水溶7夜を竜角q質溶l戊として化8表面処理を行
なった。第4図において、14は炭素繊維束、15は陽
極ローラー 16は電解質溶液内に置かれた陰極板、1
7は処理浴槽である。処理電気量は30クーロン/グラ
ムとした。
Comparative Example] 100 carbon fiber bundles as the raw material used in Example 1 were treated using a bathtub type surface treatment bath (bathtub length 1m) as shown in FIG. The surface treatment was carried out using an aqueous solution of sodium sulfate for 7 days as a chemical solution. In FIG. 4, 14 is a carbon fiber bundle, 15 is an anode roller, 16 is a cathode plate placed in an electrolyte solution, 1
7 is a processing bath. The amount of electricity processed was 30 coulombs/gram.

処理された炭素繊維束を水洗し、tto’cで乾燥しボ
ビンに巻きとった。
The treated carbon fiber bundle was washed with water, dried with tto'c, and wound onto a bobbin.

ESCAによる表面結合酸素量は0.20 、長さ方向
(50cmごと)のCV値は10.9%(n −1(1
)となッテイた。ILSSはlO,9kgr/m−と実
施例1と同等の表面処理がされているが、ILSS値の
CV値は、 3,5%と大きかった。
The amount of surface-bound oxygen by ESCA is 0.20, and the CV value in the length direction (every 50 cm) is 10.9% (n -1 (1
). Although the ILSS had a surface treatment of 1O, 9 kgr/m-, which was the same as in Example 1, the CV value of the ILSS value was as large as 3.5%.

実施例2〜8 電極を内在するノズルのスリット幅ヲ変えて噴出速度は
実施例1と同じgocm/秒とし、実施例1と同しテス
トを行なった。その結果を第 1表に示す。
Examples 2 to 8 The same tests as in Example 1 were carried out except that the slit width of the nozzle containing the electrode was changed and the ejection speed was set to the same gocm/sec as in Example 1. The results are shown in Table 1.

第 1 表 この結果より、スリット幅が0.05IIm以下ではI
LSSのバラツキが大きくなっていくことがわかる。
Table 1 From this result, when the slit width is 0.05IIm or less, I
It can be seen that the variation in LSS becomes larger.

実施例9〜12 電極間距#(ノズル間距離)を変えた以外は実施例1と
同じ条件でテストを実施した。その結果を第2表に示す
Examples 9 to 12 Tests were conducted under the same conditions as Example 1 except that the inter-electrode distance # (inter-nozzle distance) was changed. The results are shown in Table 2.

第 表 この結果より、比較例1では30秒であるのに対し、本
発明では工程の長さを1/2以下とすることが可能であ
ることがわかる。
From the results in Table 1, it can be seen that the process length can be reduced to 1/2 or less in the present invention, whereas it was 30 seconds in Comparative Example 1.

実施例13 実施例1で用いた原料に硫酸アンモニウムの8重量%水
溶液をシャワ一方式により原料繊維束に付与した。水分
の付着量は82重量%であった。続いて、この炭素繊維
束100本を、2対の電極ノズルを配した装置を用いて
、電解質溶液として硫酸アンモニウムの8重量%水溶液
を使用し表面処理を行なった。
Example 13 To the raw material used in Example 1, an 8% by weight aqueous solution of ammonium sulfate was applied to the raw material fiber bundle using a single shower system. The amount of moisture attached was 82% by weight. Subsequently, 100 of these carbon fiber bundles were subjected to surface treatment using an 8% by weight aqueous solution of ammonium sulfate as an electrolyte solution using a device equipped with two pairs of electrode nozzles.

この際、各電極間の距離は150mmとした。スリット
幅は0.5mmとした。全処理電気量は30クーロン/
グラムとした。処理した炭素繊維束を水洗し 110℃
で乾燥しボビンに巻きとった。
At this time, the distance between each electrode was 150 mm. The slit width was 0.5 mm. Total amount of electricity processed is 30 coulombs/
Gram. Wash the treated carbon fiber bundle with water at 110℃
It was dried and wound onto a bobbin.

ESCAにより炭素繊維束の長さ方向(50cm毎)の
表面結合酸素量をA11l定した。その結果、平均値0
゜22、長さ方向のバラツキCV値5゜2%であった。
The amount of surface-bound oxygen in the length direction (every 50 cm) of the carbon fiber bundle was determined by ESCA. As a result, the average value is 0
The CV value was 5.2% and the variation in the length direction was 5.2%.

比較例1に比しバラツキは小さい値であった。処理繊維
束を用いてILSSを測定し実施例13の装置において
、陽極側及び陰極側双方の電極端子をlノズル当り 4
個所(25cmごと)として実施例13と同一の条件で
表面処理を行なった。
The variation was smaller than that of Comparative Example 1. ILSS was measured using the treated fiber bundle, and in the apparatus of Example 13, the electrode terminals on both the anode side and the cathode side were connected at 4 times per 1 nozzle.
Surface treatment was carried out at locations (every 25 cm) under the same conditions as in Example 13.

ESCAにより炭素繊維束の長さ方向(50cm毎)の
表面結合酸素量をfllll定した。その結果、平均値
0.23 、長さ方向のバラツキCv値4.1%であっ
た。比較例1に比し、バラツキは小さい値であった。
The amount of surface-bound oxygen in the length direction (every 50 cm) of the carbon fiber bundle was determined by ESCA. As a result, the average value was 0.23, and the variation Cv value in the length direction was 4.1%. Compared to Comparative Example 1, the variation was a small value.

処理繊維束を用いてI LSSを測定したところ、Il
、3kgf’ / mm’  CV値0.72%、!:
比較例1に比し、バラツキの少ない結果が得られた。
When I LSS was measured using the treated fiber bundle, I
, 3kgf'/mm' CV value 0.72%,! :
Compared to Comparative Example 1, results with less variation were obtained.

実施例15 実施例1で用いた炭素繊維束100本を、第5図に示す
ような3対の電極ノズルを配した装置を用いて、電解質
溶液として硫酸アンモニウムの8重量%水溶液を使用し
表面処理を行なった。
Example 15 The 100 carbon fiber bundles used in Example 1 were surface treated using an 8% by weight aqueous solution of ammonium sulfate as an electrolyte solution using a device equipped with three pairs of electrode nozzles as shown in Figure 5. I did this.

第5図において、(8は炭素繊維束、19は陽極スリッ
ト状ノズル、20は陰極スリット状ノズル、21は電解
質溶液の流入口である。
In FIG. 5, (8 is a carbon fiber bundle, 19 is an anode slit nozzle, 20 is a cathode slit nozzle, and 21 is an inlet for an electrolyte solution.

この際、各電極間の距離は 150mmとした。スリッ
ト幅は0.51で行なった。全処理電気量は30クーロ
ン/グラムとした。処理した炭素繊維束を水洗し 11
0℃で乾燥しボビンに巻きとった。
At this time, the distance between each electrode was 150 mm. The slit width was 0.51. The total amount of electricity processed was 30 coulombs/gram. Wash the treated carbon fiber bundle with water 11
It was dried at 0°C and wound onto a bobbin.

ESCAにより炭素繊維束の長さ方向(50cm毎)の
表面酸素結合量をalll定した。その結果、平均値0
.23、長さ方向のCVVS20%であった。
The amount of surface oxygen bonding in the length direction (every 50 cm) of the carbon fiber bundle was determined by ESCA. As a result, the average value is 0
.. 23, CVVS in the length direction was 20%.

処理繊維束を用いてILSSをalll定したところ、
Ll、2kgr/mm’  CV値067%と比較例1
 +、: 比L、バラツキの少ない結果か得られた。
When all ILSS was determined using treated fiber bundles,
Ll, 2kgr/mm' CV value 067% and comparative example 1
+: Results with little variation in ratio L were obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明で用いるスリット状ノズルの斜視図であ
る。 第3図は実施例1で用いた装置の概念図である。 第4図は比較例1で用いた装置の概念図である。 第5図は、3個の陽極と3個の陰極とを交互に配した場
合のは合図である。
FIG. 1 is a perspective view of a slit-shaped nozzle used in the present invention. FIG. 3 is a conceptual diagram of the apparatus used in Example 1. FIG. 4 is a conceptual diagram of the apparatus used in Comparative Example 1. FIG. 5 shows a case where three anodes and three cathodes are arranged alternately.

Claims (3)

【特許請求の範囲】[Claims] (1)炭素繊維束を電解表面処理するに当り、電極を内
在するスリット状ノズルを、平行に走行する複数の炭素
繊維束の走行方向に対し直角に配して陽極及び陰極とし
、該スリット状ノズルより液膜状又は液柱状に繊維束の
下から噴出させた電解質溶液を、繊維に接触させて通電
せしめることを特徴とする炭素繊維束の表面処理方法。
(1) When performing electrolytic surface treatment on carbon fiber bundles, a slit-shaped nozzle containing an electrode is arranged perpendicularly to the running direction of a plurality of carbon fiber bundles running in parallel to serve as an anode and a cathode. A method for surface treatment of carbon fiber bundles, characterized in that an electrolyte solution is jetted out from below the fiber bundles in the form of a liquid film or liquid column from a nozzle, and is brought into contact with the fibers and energized.
(2)電極を内在するスリット状ノズルを3個以上配し
、かつ該スリット状ノズルの電極を交互に陽極と陰極と
した請求項(1)記載の表面処理方法。
(2) The surface treatment method according to claim 1, wherein three or more slit-shaped nozzles containing electrodes are arranged, and the electrodes of the slit-shaped nozzles are alternately an anode and a cathode.
(3)平行に走行する複数の炭素繊維束の全幅50cm
当り1個以上の電極端子を有する電極を内在するスリッ
ト状ノズルを用いる請求項(1)記載の表面処理方法。
(3) Total width of multiple carbon fiber bundles running in parallel 50cm
2. The surface treatment method according to claim 1, wherein a slit-shaped nozzle having an electrode having one or more electrode terminals is used.
JP2191054A 1989-07-20 1990-07-19 Surface treatment method for carbon fiber bundles Expired - Fee Related JP2512338B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1-188573 1989-07-20
JP18857389 1989-07-20

Publications (2)

Publication Number Publication Date
JPH03130464A true JPH03130464A (en) 1991-06-04
JP2512338B2 JP2512338B2 (en) 1996-07-03

Family

ID=16226049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2191054A Expired - Fee Related JP2512338B2 (en) 1989-07-20 1990-07-19 Surface treatment method for carbon fiber bundles

Country Status (1)

Country Link
JP (1) JP2512338B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002180370A (en) * 2000-12-15 2002-06-26 Toho Tenax Co Ltd Carbon fiber for metal oxide coating and method for producing the same
JP2011202297A (en) * 2010-03-25 2011-10-13 Toho Tenax Co Ltd Surface treatment method for carbon fiber and carbon fiber produced by the same
JP2012102439A (en) * 2010-11-12 2012-05-31 Toho Tenax Co Ltd Surface treatment method of carbon fiber
JP2012184535A (en) * 2011-02-18 2012-09-27 Toray Ind Inc Carbon fiber base material and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002180370A (en) * 2000-12-15 2002-06-26 Toho Tenax Co Ltd Carbon fiber for metal oxide coating and method for producing the same
JP2011202297A (en) * 2010-03-25 2011-10-13 Toho Tenax Co Ltd Surface treatment method for carbon fiber and carbon fiber produced by the same
JP2012102439A (en) * 2010-11-12 2012-05-31 Toho Tenax Co Ltd Surface treatment method of carbon fiber
JP2012184535A (en) * 2011-02-18 2012-09-27 Toray Ind Inc Carbon fiber base material and method for producing the same

Also Published As

Publication number Publication date
JP2512338B2 (en) 1996-07-03

Similar Documents

Publication Publication Date Title
US4401533A (en) Surface-treatment of carbon fiber
US4704196A (en) Process for surface treatment of carbon fiber
CN105484012B (en) A kind of polyacrylonitrile carbon fiber surface treatment method and device
JP3003521B2 (en) Carbon fiber and method for producing the same
JP5439603B2 (en) Carbon fiber manufacturing method and carbon fiber
JPS585288B2 (en) Carbon fiber surface electrolytic treatment method and its electrolytic cell
EP0374680B1 (en) Carbon fibers having modified surfaces and process for preparing the same
JPH03130464A (en) Method for treating surface of carbon fiber bundle
US5078840A (en) Process for the surface treatment of carbon fiber strands
US4814157A (en) Carbon fibers and method for producing same
JP2548615B2 (en) Surface treatment method for carbon fiber bundles
DE2252128C3 (en) Carbon threads and fibers with a polymer sheath, process for their production and their use
JPH1193078A (en) Carbon fiber and its production
KR910003351B1 (en) Method for after-treatment of carbon fiber
JPS62149964A (en) Production of ultrahigh strength carbon fiber
JP2003336129A (en) Strand of carbon fibers
JPH0284527A (en) Treatment of carbon fiber
JP3035787B2 (en) How to clean carbon fiber
JPS633073B2 (en)
JPH02300376A (en) Production of surface-modified carbon fiber
JPH0512462B2 (en)
JPH02269867A (en) Method for carrying out surface electrolytic oxidation of carbon fiber tow having high elasticity
JPS58132168A (en) Improved surface electrolytic treatment of carbon fiber bundle
JPS61124677A (en) Surface treatment of carbon fiber
JPS62149970A (en) Treatment of carbon fiber

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 13

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees