JPS633073B2 - - Google Patents

Info

Publication number
JPS633073B2
JPS633073B2 JP6778285A JP6778285A JPS633073B2 JP S633073 B2 JPS633073 B2 JP S633073B2 JP 6778285 A JP6778285 A JP 6778285A JP 6778285 A JP6778285 A JP 6778285A JP S633073 B2 JPS633073 B2 JP S633073B2
Authority
JP
Japan
Prior art keywords
electrolytic
current density
carbon fibers
electrolytic bath
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6778285A
Other languages
Japanese (ja)
Other versions
JPS61231266A (en
Inventor
Hiroshi Tanji
Hiroto Imamura
Kazuhito Fujino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP6778285A priority Critical patent/JPS61231266A/en
Publication of JPS61231266A publication Critical patent/JPS61231266A/en
Publication of JPS633073B2 publication Critical patent/JPS633073B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Fiber Materials (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Inorganic Fibers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は炭素繊維の電解表面処理法に関する。 〔従来技術〕 炭素繊維を用いた複合材料は、軽量、高強力、
高弾性等の卓越した特性をもつため、航空宇宙用
構造材、自動車・産業機械部品、スポーツ用品等
に広く使用されている。 しかしながら、炭素繊維をこれらの複合材用途
に使用する場合、炭素繊維自身の強度の重要性も
さることながら、加えて、樹脂などのマトリクス
との接着性を向上させ、複合材料としての強度、
層間剪断強度の向上をはかることが実用上、極め
て重要である。 こうしたマトリクスとの接着性を向上させるた
め、炭素繊維には通常、表面処理が施されるが、
その方法として、炭素繊維の表面を気相酸化、液
相酸化、電解酸化等により表面処理する方法が知
られている。 その中でも、特に、炭素繊維を陽極として、電
解質水溶液中で電解酸化処理する方法が、作業
性、品質の点から工業的には有用視されている。 炭素繊維の表面電解処理においては、繊維の表
面積あたりの電流密度が高すぎると炭素繊維の強
度が低下する。他方、低すぎた場合には表面処理
効果が不充分となり、樹脂マトリクスとの接着性
は向上されない。従つて電解浴内の電流密度分布
を均一にすることが、製品特性の向上、均一化の
上で極めて重要である。 一方、炭素繊維を陽極として電解を行なう場
合、炭素繊維の抵抗が、電解液の抵抗に比して大
きいために、特に陽極電流入力端子近傍で電流が
流れやすく、陽極電流入力端子から離れるにつれ
て電流密度が低下し、結果的に電流密度分布は不
均一となりやすい。 さらに、本発明者らの検討によれば、炭素繊維
を連続的に走行させて電解処理を行う場合は、特
に、、炭素繊維が電解液に浸漬しはじめる電解浴
入口側付近での電流密度が高く、不均一性が助長
されやすいことが判つた。 例えば、第1図に示す従来公知の電解処理装置
で炭素繊維を電解処理すると、炭素繊維走行方向
の電流密度分布は第4図―aのようになり、両端
部、特に電解浴入口側の電流密度が高い。 電流密度分布の均一化をはかる方法として、例
えば、特公昭58―5288号公報には、炭素繊維と陰
極の相対的間隔を陽極電流入力端子からの距離に
応じて変化させる方法が開示されている。この方
法の実施に用いる装置の一例を第2図に示す。こ
の方法により電解処理したときの電流密度分布は
第4図―bのようになり、陰極に面した部分の電
流密度はある程度均一化されるが、第4図―bに
示す如く、電解浴入口部での高電流密度はいぜん
解消されない。また、この方法においては、陰極
形状を特殊なものにしたり、或いは電解浴内に糸
道を設置したりする必要があり、操作性、保守性
の上で難点があり、場合によつては毛羽、糸切れ
の原因となつたりする。 〔発明が解決しようとする問題点〕 本発明者らは、炭素繊維の電解表面処理時の電
流密度の均一化、特に電解浴入口部における電流
密度の均一化をはかり、特性及び均一性のすぐれ
た炭素繊維を得る方法について鋭意検討し、本発
明を見い出すに到つた。 〔問題点を解決するための手段〕 本発明は、連続的に走行する炭素繊維を陽極と
して、電解質水溶液中で電解表面処理する方法に
おいて、電解浴を出た直後に設けた陽極電流入力
端子から炭素繊維に電流を供給するとともに、電
解浴に入る直前の炭素繊維の電位を陰極電位に等
しくすることを特徴とする炭素繊維の電解表面処
理法である。 本発明において、電流は電解浴を出た直後に設
けた陽極電流入力端子より炭素繊維に供給され
る。かかる陽極電流入力端子としては、例えばカ
ーボンロール等の導電性ロール、あるいは非接触
型陽極電流入力端子等公知のものが用いられる。 供給する電流、電圧は、炭素繊維の種類、本
数、処理速度、電解質の種類等に応じて適宜選定
される。通常、電流は炭素繊維束1本あたり約
10mAから5A、電圧は約500mVから10V程度で
ある。 使用する電解質は電解に際し、陽極に本質的に
酸素を生成するものであればよく、例えば、硫
酸、硝酸、リン酸等の酸、硫酸アンモニウム、硝
酸アンモニウム、炭酸アンモニウム等の塩等公知
のものが用いられる。また、電解質の濃度、電解
液の温度は電解質の種類及びその他の装置条件に
よるが、通常、濃度は0.1ないし10%程度、温度
は室温ないし80℃程度で行われる。 陰極としては電解質溶液に対し耐腐食性の導電
材料、例えば、グラフアイト、ニツケル、ステン
レススチール等公知のものが用いられ、形状、寸
法等は装置に大きさ、操作性、保守性等を考慮し
て適宜決められる。 本発明においては、電解浴に入る直前の炭素繊
維の電位を実質的に陰極電位に等しくすることが
重要であり、これによりはじめて電解浴入口部で
の高電流密度が解消される。このための手段とし
ては、例えば、電解浴に入る直前に陽極電流入力
端子と同様の導電性ロール、非接触型端子等を設
け、それらの端子と陰極を導線で接続することが
簡単でよい。 第3図は本発明の方法を実施するのに使用する
装置の一例である。同図において、炭素繊維1は
電解浴2に入る直前に設けた端子3を介して電解
液中の陰極4と電気的に接続されている。一方、
直流電源5より、電解浴を出た直後に設けた陽極
電流入力端子6を介して炭素繊維1に電流が供給
され、電解浴内において炭素繊維を陽極として電
解がおこなわれる。 なお、本発明において電流密度とは、陽極であ
る炭素繊維の単位表面積から電解液を通じて陰極
に向けて流れる電流量を言うが、この値は、電解
浴内の炭素繊維の近傍の任意の距離lcm離れた2
点における電解液の電位の差ΔE(V)を測定し、
電解液の比抵抗ρ(Ω・cm)とから次式を用いて
算出することができる。 i=ΔE/ρ×l(A/cm2) i:電流密度 〔発明の効果〕 本発明の方法によれば、何ら特殊で複雑な装置
を必要とせず電解浴内、特に電解浴入口部におけ
る電流密度分布を均一化することができ、斑のな
い、均一な表面処理が可能となる。また、入口部
の未処理繊維に急激に過大な電流が流れることが
なくなるので、得られる炭素繊維の強度、接着性
ともすぐれたものとなる。さらに従来法のように
何ら特殊な装置、糸道を必要とせず、簡単に実施
できるので、工業的にも極めて有利である。 〔実施例〕 以下に実施例を挙げて本発明を具体的に説明す
る。 実施例 1 単糸繊度1.3dデニール、12000フイラメントの
アクリル系長繊維を最終的に1300℃の窒素雰囲気
中で焼成して得た炭素繊維を第3図に示す電解装
置を用いて電解表面処理した。電解質として1%
硝酸を用い、電流500mA、電圧5.5V、処理時間
20秒で連続的に処理を行なつた。電解浴内の電流
密度分布は第4図―cに示すごとくであり、電解
浴入口部における不均一は見られなかつた。 電解処理した繊維を引き続き水洗、サイジング
付与、乾燥した後巻取つた。 未処理繊維および処理繊維について、JIS―
R7601に準じ、同解説例2の樹脂を用いてストラ
ンド強度を測定したところ、それぞれ406Kg/mm2
及び410Kg/mm2であつた。 さらに、樹脂との接着性を見るために、エポキ
シ樹脂(チバガイギー社、MY720、100部、ジア
ミノジフエニルスルホン30部、三弗化ホウ素モノ
エチルアミン1.5部)のメチルエチルケトン溶液
を含浸したプリプレグを130℃×60分、ついで180
℃×120分、加熱硬化し、平板試験片を作成し、
三点曲げシヨートビーム法(L/D=4)で層間
剪断強度(以下、「ILSS」という)を測定した。
未処理糸及び処理糸のILSSの値はそれぞれ、8.3
Kg/mm2及び13.1Kg/mm2であつた。 実施例 2 実施例1で用いた炭素繊維を、実施例1と同様
な装置を用い、同様な条件で、処理本数を8本に
して同時に電解表面処理をおこなつた。得られた
繊維は、引続いて、水洗、サイジング、乾燥して
巻取り、物性測定に供した。 8本の繊維について、引張強度及びILSSの平
均値及びバラツキは表1の通りであつた。 一方、8本のうちの1本について、長さ方向に
5分割して測定した引張強度及びILSSの平均値
及びバラツキを同じく表1に示す。 表1からも明らかなように、本発明の方法で得
られた繊維は特性及び均一性ともに極めて良好で
ある。 比較例 1 実施例1で用いた炭素繊維を第3図に示す装置
を用いて、端子3と陰極2の間を接続せずに実施
例1と同一条件で電解処理した。その時の電流密
度分布は第4図―dに示す如きであり、電解浴入
口部で高電流密度を示した。得られた炭素繊維の
引張強度は394Kg/mm2、ILSSは12.1Kg/mm2であつ
た。 比較例 2 第1図に示す従来法装置で、電解浴の前後両側
より通電して、実施例2と同様の条件で電解処理
を行なつた。得られた8本の繊維の特性及びその
うちの1本について長さ方向に5分割して測定し
た特性の平均値及びバラツキを表1に示す。 この時の電流密度分布は第4図―aに示す如く
であつた。
[Industrial Field of Application] The present invention relates to a method for electrolytic surface treatment of carbon fibers. [Prior art] Composite materials using carbon fiber are lightweight, highly strong,
Because it has outstanding properties such as high elasticity, it is widely used in aerospace structural materials, automobile and industrial machinery parts, sporting goods, etc. However, when carbon fibers are used for these composite materials, it is important not only to maintain the strength of the carbon fibers themselves, but also to improve their adhesion to matrices such as resins, thereby increasing the strength of the composite materials.
In practice, it is extremely important to improve interlaminar shear strength. Carbon fibers are usually surface treated to improve their adhesion to these matrices.
As a method for this purpose, methods are known in which the surface of carbon fibers is treated by gas phase oxidation, liquid phase oxidation, electrolytic oxidation, or the like. Among these, a method in which electrolytic oxidation treatment is performed in an electrolyte aqueous solution using carbon fiber as an anode is considered to be particularly useful industrially from the viewpoint of workability and quality. In surface electrolytic treatment of carbon fibers, if the current density per surface area of the fibers is too high, the strength of the carbon fibers will decrease. On the other hand, if it is too low, the surface treatment effect will be insufficient and the adhesion to the resin matrix will not be improved. Therefore, it is extremely important to make the current density distribution in the electrolytic bath uniform in order to improve and make the product characteristics uniform. On the other hand, when performing electrolysis using carbon fiber as an anode, the resistance of the carbon fiber is greater than the resistance of the electrolytic solution, so current tends to flow particularly near the anode current input terminal, and the further away from the anode current input terminal the current flows. The density decreases, and as a result, the current density distribution tends to become non-uniform. Furthermore, according to the studies of the present inventors, when carrying out electrolytic treatment by running carbon fibers continuously, the current density is particularly high near the inlet side of the electrolytic bath where the carbon fibers begin to be immersed in the electrolytic solution. It was found that this was high and that non-uniformity was likely to be promoted. For example, when carbon fibers are electrolytically treated using the conventionally known electrolytic treatment apparatus shown in Fig. 1, the current density distribution in the running direction of the carbon fibers becomes as shown in Fig. 4-a, and the current density at both ends, especially at the entrance of the electrolytic bath, is High density. As a method for making the current density distribution uniform, for example, Japanese Patent Publication No. 58-5288 discloses a method in which the relative spacing between the carbon fiber and the cathode is changed according to the distance from the anode current input terminal. . An example of the apparatus used to carry out this method is shown in FIG. The current density distribution when electrolyzed by this method is as shown in Figure 4-b, and the current density in the part facing the cathode is made uniform to some extent, but as shown in Figure 4-b, the current density distribution at the entrance of the electrolytic bath is The high current density in the area is not resolved at all. In addition, this method requires a special cathode shape or a thread path installed in the electrolytic bath, which poses difficulties in terms of operability and maintainability, and in some cases may cause fluff. , which may cause thread breakage. [Problems to be Solved by the Invention] The present inventors have attempted to make the current density uniform during the electrolytic surface treatment of carbon fibers, especially the current density at the entrance of the electrolytic bath, and have achieved excellent characteristics and uniformity. The inventors conducted extensive research on methods for obtaining carbon fibers and discovered the present invention. [Means for Solving the Problems] The present invention provides a method for electrolytically treating a surface in an electrolyte aqueous solution using a continuously running carbon fiber as an anode. This is an electrolytic surface treatment method for carbon fibers characterized by supplying a current to the carbon fibers and making the potential of the carbon fibers equal to the cathode potential immediately before entering the electrolytic bath. In the present invention, current is supplied to the carbon fiber from an anode current input terminal provided immediately after exiting the electrolytic bath. As such an anode current input terminal, a known one such as a conductive roll such as a carbon roll or a non-contact type anode current input terminal is used. The current and voltage to be supplied are appropriately selected depending on the type and number of carbon fibers, processing speed, type of electrolyte, etc. Normally, the current per carbon fiber bundle is approximately
10mA to 5A, voltage is approximately 500mV to 10V. The electrolyte to be used may be one that essentially generates oxygen at the anode during electrolysis, and for example, known ones such as acids such as sulfuric acid, nitric acid, and phosphoric acid, and salts such as ammonium sulfate, ammonium nitrate, and ammonium carbonate are used. . Although the concentration of the electrolyte and the temperature of the electrolytic solution depend on the type of electrolyte and other equipment conditions, the concentration is usually about 0.1 to 10%, and the temperature is about room temperature to 80°C. As the cathode, a conductive material that is resistant to corrosion by the electrolyte solution, such as graphite, nickel, stainless steel, etc., is used, and the shape and dimensions are determined based on the device's size, operability, maintainability, etc. It can be decided as appropriate. In the present invention, it is important to make the potential of the carbon fibers immediately before entering the electrolytic bath substantially equal to the cathode potential, and only then can the high current density at the entrance of the electrolytic bath be eliminated. A simple means for this purpose is, for example, to provide a conductive roll similar to the anode current input terminal, a non-contact type terminal, etc. immediately before entering the electrolytic bath, and connect these terminals and the cathode with a conductive wire. FIG. 3 is an example of an apparatus used to carry out the method of the invention. In the figure, a carbon fiber 1 is electrically connected to a cathode 4 in an electrolytic solution via a terminal 3 provided immediately before entering an electrolytic bath 2. on the other hand,
A current is supplied from a DC power supply 5 to the carbon fiber 1 via an anode current input terminal 6 provided immediately after exiting the electrolytic bath, and electrolysis is performed in the electrolytic bath using the carbon fiber as an anode. In the present invention, the current density refers to the amount of current flowing from the unit surface area of the carbon fiber serving as the anode to the cathode through the electrolytic solution. away 2
Measure the potential difference ΔE (V) of the electrolyte at the point,
It can be calculated from the specific resistance ρ (Ω·cm) of the electrolytic solution using the following formula. i=ΔE/ρ×l (A/cm 2 ) i: Current density [Effects of the invention] According to the method of the present invention, the current density in the electrolytic bath, especially at the inlet of the electrolytic bath, can be reduced without the need for any special or complicated equipment. The current density distribution can be made uniform, making it possible to perform uniform surface treatment without spots. Furthermore, since an excessive current does not suddenly flow through the untreated fibers at the entrance, the resulting carbon fibers have excellent strength and adhesive properties. Furthermore, unlike the conventional method, it does not require any special equipment or thread guide and can be easily carried out, so it is extremely advantageous from an industrial perspective. [Example] The present invention will be specifically explained with reference to Examples below. Example 1 Carbon fibers obtained by finally firing 12,000 filament acrylic long fibers with a single fiber fineness of 1.3 d denier in a nitrogen atmosphere at 1,300°C were subjected to electrolytic surface treatment using the electrolytic apparatus shown in Fig. 3. . 1% as electrolyte
Using nitric acid, current 500mA, voltage 5.5V, treatment time
Processing was performed continuously for 20 seconds. The current density distribution within the electrolytic bath was as shown in Figure 4-c, and no non-uniformity was observed at the entrance of the electrolytic bath. The electrolytically treated fibers were subsequently washed with water, sized, dried, and then wound. Regarding untreated fibers and treated fibers, JIS-
According to R7601, the strand strength was measured using the resin of Explanation Example 2, and it was 406Kg/mm 2 respectively.
and 410Kg/ mm2 . Furthermore, in order to check the adhesion with the resin, prepreg impregnated with a methyl ethyl ketone solution of epoxy resin (Ciba Geigy, MY720, 100 parts, diaminodiphenylsulfone 30 parts, boron trifluoride monoethylamine 1.5 parts) was heated at 130°C. 60 minutes, then 180 minutes
Cure by heating for 120 minutes to create a flat test piece.
The interlaminar shear strength (hereinafter referred to as "ILSS") was measured by the three-point bending shot beam method (L/D=4).
The ILSS value of untreated yarn and treated yarn is 8.3, respectively.
Kg/ mm2 and 13.1Kg/ mm2 . Example 2 The carbon fibers used in Example 1 were subjected to electrolytic surface treatment at the same time using the same apparatus as in Example 1 and under the same conditions, with the number of fibers treated being 8. The obtained fibers were subsequently washed with water, sized, dried, wound up, and subjected to physical property measurements. Table 1 shows the average values and variations in tensile strength and ILSS for the eight fibers. On the other hand, Table 1 also shows the average values and dispersion of the tensile strength and ILSS of one of the eight pieces, which were measured by dividing into five pieces in the length direction. As is clear from Table 1, the fibers obtained by the method of the present invention have extremely good properties and uniformity. Comparative Example 1 The carbon fiber used in Example 1 was electrolytically treated using the apparatus shown in FIG. 3 under the same conditions as in Example 1, without connecting terminal 3 and cathode 2. The current density distribution at that time was as shown in Figure 4-d, with a high current density at the entrance of the electrolytic bath. The obtained carbon fiber had a tensile strength of 394 Kg/mm 2 and an ILSS of 12.1 Kg/mm 2 . Comparative Example 2 Electrolytic treatment was carried out using the conventional apparatus shown in FIG. 1 under the same conditions as in Example 2, by applying electricity from both the front and back sides of the electrolytic bath. Table 1 shows the characteristics of the eight fibers obtained and the average value and variation of the characteristics measured by dividing one of the fibers into five in the length direction. The current density distribution at this time was as shown in FIG. 4-a.

【表】 比較例 3 第2図に示す装置を用い、実施例1と同様の条
件で電解処理を行つた。電流密度分布は第4図―
bの如くであり、電解浴入口部で高電流密度を示
した。
[Table] Comparative Example 3 Electrolytic treatment was carried out under the same conditions as in Example 1 using the apparatus shown in FIG. The current density distribution is shown in Figure 4.
b, and showed a high current density at the inlet of the electrolytic bath.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は従来法の炭素繊維電解酸
化表面処理に用いる装置の断面図であり、第3図
は本発明の炭素繊維電解酸化表面処理に用いる装
置の一例を示す断面図である。第4図は、第1図
〜第3図に示す装置を用いて炭素繊維電解酸化表
面処理を行つた時の電解浴内電流密度分布を示す
曲線である。 1:炭素繊維、2:電解浴、3:通電端子、
4:陰極、5:直流電源、6:陽極電流入力端
子。 第2図において、縦軸および横軸はそれぞれ、
電解浴内の電流密度および位置の相対値である。
FIGS. 1 and 2 are cross-sectional views of an apparatus used for conventional carbon fiber electrolytic oxidation surface treatment, and FIG. 3 is a cross-sectional view showing an example of the apparatus used for carbon fiber electrolytic oxidation surface treatment of the present invention. . FIG. 4 is a curve showing the current density distribution in the electrolytic bath when carbon fiber electrolytic oxidation surface treatment is performed using the apparatus shown in FIGS. 1 to 3. 1: Carbon fiber, 2: Electrolytic bath, 3: Current-carrying terminal,
4: Cathode, 5: DC power supply, 6: Anode current input terminal. In Figure 2, the vertical and horizontal axes are, respectively,
Relative values of current density and position within the electrolytic bath.

Claims (1)

【特許請求の範囲】[Claims] 1 連続的に走行する炭素繊維を陽極として、電
解質水溶液中で電解表面処理する方法において、
電解浴を出た直後に設けた陽極電流入力端子から
炭素繊維に電流を供給するとともに、電解浴に入
る直前の炭素繊維の電位を陰極電位に等しくする
ことを特徴とする炭素繊維の電解表面処理方法。
1. In a method of electrolytic surface treatment in an electrolyte aqueous solution using a continuously running carbon fiber as an anode,
An electrolytic surface treatment for carbon fibers characterized by supplying current to the carbon fibers from an anode current input terminal provided immediately after exiting the electrolytic bath, and making the potential of the carbon fibers just before entering the electrolytic bath equal to the cathode potential. Method.
JP6778285A 1985-03-30 1985-03-30 Electrolytic surface treatment of carbon fiber Granted JPS61231266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6778285A JPS61231266A (en) 1985-03-30 1985-03-30 Electrolytic surface treatment of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6778285A JPS61231266A (en) 1985-03-30 1985-03-30 Electrolytic surface treatment of carbon fiber

Publications (2)

Publication Number Publication Date
JPS61231266A JPS61231266A (en) 1986-10-15
JPS633073B2 true JPS633073B2 (en) 1988-01-21

Family

ID=13354870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6778285A Granted JPS61231266A (en) 1985-03-30 1985-03-30 Electrolytic surface treatment of carbon fiber

Country Status (1)

Country Link
JP (1) JPS61231266A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143080U (en) * 1988-03-15 1989-09-29
JPH0498275U (en) * 1990-07-24 1992-08-25

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143080U (en) * 1988-03-15 1989-09-29
JPH0498275U (en) * 1990-07-24 1992-08-25

Also Published As

Publication number Publication date
JPS61231266A (en) 1986-10-15

Similar Documents

Publication Publication Date Title
EP0267995B1 (en) Process for surface treatment of carbon fibers
CA1166186A (en) Surface-treatment of carbon fiber
US3671411A (en) Treatment of carbon or graphite fibers and yarns for use in fiber reinforced composites
GB2159178A (en) A method of electrochemically surface treating carbon fibers, fibers treated by the method, and composite materials including such fibers
JPS585288B2 (en) Carbon fiber surface electrolytic treatment method and its electrolytic cell
CN105484012B (en) A kind of polyacrylonitrile carbon fiber surface treatment method and device
JPS633073B2 (en)
US3759805A (en) Electrolytic treatment of filamentary carbon material
US5078840A (en) Process for the surface treatment of carbon fiber strands
KR890005015B1 (en) Surface treatment method of carbon fiber
JPS62149964A (en) Production of ultrahigh strength carbon fiber
JPH02269867A (en) Method for carrying out surface electrolytic oxidation of carbon fiber tow having high elasticity
JPH03130464A (en) Method for treating surface of carbon fiber bundle
JP2548615B2 (en) Surface treatment method for carbon fiber bundles
KR20190084187A (en) Apparatus and method for treating surface of carbon fiber
CN114775274B (en) Method and device for continuously surface metallizing carbon fiber
JPS6246665B2 (en)
JPS61231267A (en) Surface treatment of carbon fiber
JPS61231268A (en) Electrolytic surface treatment of carbon fiber
JPH02300376A (en) Production of surface-modified carbon fiber
JPS61174470A (en) Method and apparatus for electrolytic surface treatment of carbon fiber
JPH0376869A (en) Method for treating surface of carbon fiber in vapor phase
JP2730691B2 (en) Surface electrolytic treatment method for carbon fiber
JPS58132168A (en) Improved surface electrolytic treatment of carbon fiber bundle
JPH05117964A (en) Method for surface treatment of carbon yarn and device therefor