JPS61124677A - Surface treatment of carbon fiber - Google Patents

Surface treatment of carbon fiber

Info

Publication number
JPS61124677A
JPS61124677A JP59247590A JP24759084A JPS61124677A JP S61124677 A JPS61124677 A JP S61124677A JP 59247590 A JP59247590 A JP 59247590A JP 24759084 A JP24759084 A JP 24759084A JP S61124677 A JPS61124677 A JP S61124677A
Authority
JP
Japan
Prior art keywords
carbon fiber
carbon fibers
aqueous solution
treatment
surface treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59247590A
Other languages
Japanese (ja)
Other versions
JPH0478747B2 (en
Inventor
浅井 肇
中尾 富士夫
宇野 博文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP59247590A priority Critical patent/JPS61124677A/en
Publication of JPS61124677A publication Critical patent/JPS61124677A/en
Publication of JPH0478747B2 publication Critical patent/JPH0478747B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は炭素像維の表面処理に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to surface treatment of carbon fibers.

〔従来の技術〕[Conventional technology]

炭素繊維で補強された複合材料は軽量でかつ強度2弾性
率・疋すぐれているため近年の価格の低下とあいまって
、スポーツ、レジャー用品。
Carbon fiber-reinforced composite materials are lightweight, strong, and have an excellent modulus of elasticity, making them popular in sports and leisure products as prices have fallen in recent years.

宇宙航空機器材等幅広い分野にわたって用途開発が進め
られている。しかるに、炭素繊維はマトリックスとの接
着強度が弱いため、表面を処理することによって活性化
させる必要があり、薬剤処理、気相処理、電解処理等積
々の表面処理法が提案されている。その中でも電解酸化
処理法は操作性の良さ9反応制御の容易さ、省エネルギ
ー等の見地から実用的な表面処理方法である。
Application development is progressing in a wide range of fields such as aerospace equipment materials. However, since carbon fibers have a weak adhesive strength with the matrix, they must be activated by surface treatment, and a number of surface treatment methods have been proposed, including chemical treatment, gas phase treatment, and electrolytic treatment. Among these, the electrolytic oxidation treatment method is a practical surface treatment method from the viewpoints of ease of operation, ease of reaction control, energy saving, etc.

従来、炭素繊維とマ) IJラックス接着強度を評価す
るために眉間剪断強度(ILSS)が用いられてきてい
るが、一般KILSSはある一定の表面処理レベル以上
では表面処理の程度に対して鈍感になり、炭素繊維とマ
トリックスの接着強度を直接反映したものになっていな
いと考えられる。ところが複合材の剥離強度を表す繊維
方向と90’ 方向の引張り強さく TSj−)はIL
SSが飽和した後も表面処理の強さに応じて上昇するこ
とが明らかになり、炭素繊維とマトリックスの接着強度
を評価するには、そのパラメーターとしてILSSを測
定するだけでな(TSJLも併せて測る必要があること
がわがつた。TSLを向上させるためには電解処理する
際の電流密度を強くすると効果的であるが、しかし電流
密度を強くしていくとエツチングが過度となるため電解
処理後の炭素繊維の強度の低下の原因となり不利である
Conventionally, interglalabella shear strength (ILSS) has been used to evaluate the bond strength between carbon fiber and IJ lux, but general KILSS becomes insensitive to the degree of surface treatment above a certain level of surface treatment. Therefore, it is thought that it does not directly reflect the adhesive strength between the carbon fiber and the matrix. However, the tensile strength (TSj-) in the fiber direction and 90' direction, which represents the peel strength of the composite material, is IL
It has become clear that even after SS is saturated, it increases depending on the strength of the surface treatment, and in order to evaluate the adhesive strength between carbon fiber and matrix, it is not only necessary to measure ILSS as a parameter (also including TSJL). I realized that I needed to measure it.In order to improve TSL, it is effective to increase the current density during electrolytic treatment, but as the current density increases, etching becomes excessive, so This is disadvantageous because it causes a decrease in the strength of the carbon fiber.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

そこで本発明者らは炭素繊維の強度を低下させることな
く、複合物の”TSlを向上せしめることを目的として
鋭意検討した結果、本発明に到達した。
Therefore, the present inventors conducted intensive studies aimed at improving the "TSI" of the composite without reducing the strength of the carbon fiber, and as a result, they arrived at the present invention.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち本発明は、炭素繊維を陽極としてpH)7であ
る水溶液中で電解処理した後に、さらにpH≦7である
水溶液中で電解処理を行う点にある。
That is, the present invention is to perform electrolytic treatment in an aqueous solution having a pH of 7 using the carbon fiber as an anode, and then further electrolytically treating the carbon fiber in an aqueous solution having a pH≦7.

本発明法によると、炭素繊維の基質強度を下げることな
(TSlを向上させることが可能となる。
According to the method of the present invention, it is possible to improve TSL without reducing the matrix strength of carbon fibers.

TSL を向上せしめる直接の要因は明らかではないが
、炭素繊維表面に付着している不純物の除去がTSiの
向上に効果をもたらしていると考えられる。炭素繊維の
表層にはプレカーサー油剤に由来するケイ素酸化物や焼
成過程で分解遊離した低分子量の炭化物及び表面処理で
表層が酸化されて生成した低分子量の酸化物等の様々な
不純物が付着している。これら付着物は炭素繊維とマト
リックスの接着強度に何ら良好な効果を与えないばかり
か、その後のサイジング工程やプリプレグの作成工程或
いは作成された複合材料の性能に悪影響を及ぼす恐れが
ある。
Although the direct factor that improves TSL is not clear, it is thought that the removal of impurities adhering to the carbon fiber surface has an effect on improving TSi. Various impurities adhere to the surface layer of carbon fibers, such as silicon oxides derived from precursor oils, low molecular weight carbides decomposed and liberated during the firing process, and low molecular weight oxides generated when the surface layer is oxidized during surface treatment. There is. These deposits not only do not have any good effect on the adhesive strength between the carbon fibers and the matrix, but also may have an adverse effect on the subsequent sizing process, prepreg production process, or performance of the composite material produced.

サイジング工程では水和性の酸化物がサイズ剤の凝集を
引き起こし、又プリプレグ作成工程では、これら酸化物
によって過度に硬化した樹脂成分が偏在するため均一な
プリプレグ作成が困難になり、上記プリプレグを用いて
作成されたコンポジットの性能が低いことが明らかにな
った。それに対して本発明では、これら付着物を除去し
て清浄な表面を露出させること、及びその結果起こる微
小な空孔の増加によって複合物のTSIが向上したもの
と考えられる。実際、pH) 7である水溶液中で炭素
繊維を通電処理するとpH≦7である水溶液で処理した
場合と異なり、黒色物質が多量に溶出するのが観察され
た。また上記炭素繊維の表面をESCAで分析したとこ
ろ、pH≦7である水溶液中で処理した場合には除去で
きなかったケイ素酸化物が除去されていることが判明し
たが、同時に導入された含酸素官能基密度が低いことが
明らかに」なった。原因は定かではないが、pH)7で
あジ 岑水溶液中で、電解酸化すると酸素が炭素繊維の比較的
グラファイト化が進行していない部分に導入され、低分
子量の酸化物として表層から取り除かれるために全体と
しての密度が低くなっているものと考えられる。ところ
が、該炭素繊維を続けてpH≦7である水溶液中で電解
酸化したところ、効果的に含酸素官能基が導入されるこ
とがわかり、その結果複合物のTSlを一層向上させる
ことができるようになった。
In the sizing process, hydratable oxides cause agglomeration of the sizing agent, and in the prepreg production process, resin components excessively hardened by these oxides are unevenly distributed, making it difficult to produce uniform prepregs. It was revealed that the performance of composites made using In contrast, in the present invention, the TSI of the composite is thought to be improved by removing these deposits to expose a clean surface and by increasing the number of micropores as a result. In fact, when carbon fibers were electrically treated in an aqueous solution with a pH of 7, a large amount of black material was observed to be eluted, unlike when treated with an aqueous solution with a pH≦7. Furthermore, when the surface of the above carbon fiber was analyzed by ESCA, it was found that silicon oxides, which could not be removed when treated in an aqueous solution with a pH ≦7, were removed, but oxygen-containing substances introduced at the same time It became clear that the functional group density was low. The cause is not clear, but when electrolytically oxidized in an aqueous solution at pH 7, oxygen is introduced into the parts of the carbon fiber where graphitization has not progressed and is removed from the surface layer as a low molecular weight oxide. This is probably why the overall density is low. However, when the carbon fiber was subsequently electrolytically oxidized in an aqueous solution with a pH≦7, it was found that oxygen-containing functional groups were effectively introduced, and as a result, the TSL of the composite could be further improved. Became.

以上の様にして得られた炭素繊維は、従来の電解酸化処
理を施された炭素繊維と比較して複合物のILSSを下
げることな(TSLを大幅に向上することができた。さ
らには電解酸化における電流密度が従来の電解処理より
低(でも効果があるため炭素繊維基質を損ねることなく
特に弾性率が25t/−から35t/fi!程度である
9弾性の炭素繊維に関しては処理した後も高いストラン
ド強度を維持することができた。
The carbon fibers obtained as described above were able to significantly improve the TSL without lowering the ILSS of the composite compared to carbon fibers subjected to conventional electrolytic oxidation treatment. The current density during oxidation is lower than that of conventional electrolytic treatment (but it is effective, so even after treatment, it does not damage the carbon fiber matrix, especially for carbon fibers with elastic modulus of about 25t/- to 35t/fi!) It was possible to maintain high strand strength.

本発明に用いられる炭素繊維とはPAN、ピッチ、レー
ヨン等から製造された炭素繊維及び黒鉛繊維の総称′で
ある。
The carbon fiber used in the present invention is a general term for carbon fiber and graphite fiber manufactured from PAN, pitch, rayon, etc.

またpH)7である電解水溶液は特に制限はないが水酸
化ナトリウム、水酸化カリウム、水酸化バリウム等の水
酸化物、アンモニア、リン酸ナトリウム、リン酸カリウ
ム、炭酸ナトリウム、炭酸水素アンモニウム等の無機塩
、酢酸ナトリウム、酢酸カリウム、マレイン酸ナトリウ
ム、安息香酸ナトリウム等の有機塩等の水溶液を単独で
、もしくは二種以上の混合物で用いる。
There are no particular restrictions on the electrolytic aqueous solution with a pH of 7, but hydroxides such as sodium hydroxide, potassium hydroxide, and barium hydroxide, and inorganic materials such as ammonia, sodium phosphate, potassium phosphate, sodium carbonate, and ammonium hydrogen carbonate, etc. Salts, aqueous solutions of organic salts such as sodium acetate, potassium acetate, sodium maleate, sodium benzoate, etc. are used alone or in a mixture of two or more.

さらにpH≦7である電解水溶液はこれも特に制限はな
いがリン酸、硝酸、硫酸、ホウ酸、炭酸等の無機酸、酢
酸、酪酸、アクリル酸、マレイン酸、シュウ酸等の有機
酸、硝酸ナトリウム。
Furthermore, the electrolytic aqueous solution with a pH≦7 is also applicable to inorganic acids such as phosphoric acid, nitric acid, sulfuric acid, boric acid, and carbonic acid, organic acids such as acetic acid, butyric acid, acrylic acid, maleic acid, and oxalic acid, and nitric acid. sodium.

硝酸カリウム、硝酸銀、硝酸アンモニウム、硫酸ナトリ
ウム、硫酸アンモニウム、硫酸水素アンモニウム、リン
酸二水素アンモニウム等の無機塩、ギ酸アンモニウム、
酢酸アンモニウム。
Inorganic salts such as potassium nitrate, silver nitrate, ammonium nitrate, sodium sulfate, ammonium sulfate, ammonium hydrogen sulfate, ammonium dihydrogen phosphate, ammonium formate,
Ammonium acetate.

シュウ酸アンモニウム、シュウ酸ナトリウム等の有機塩
等の水溶液を単独で、もしくは二種以上の混合物で用い
る。
Aqueous solutions of organic salts such as ammonium oxalate and sodium oxalate are used alone or in a mixture of two or more.

炭素繊維の処理方法は、従来の電解処理と同様でバッチ
式、連続式いずれでもよ(、通電方法もローラー通電方
式、オーバフロ一方式いずれでもさしつかえない。処理
に用いる水溶液の濃度は0.1 wt%から20 wt
%、好ましくは5wt%程度、温度は室温から100℃
、好ましくは室温付近、処理時間は双方の電解液中でそ
れぞれ数秒から数十分、好ましくは5秒から5分が望ま
しい。洗浄効果を上げるために電解液を流動させたり、
不活性ガスを用いたバブリングや超音波振動を利用する
ことができる。
The carbon fiber treatment method is the same as conventional electrolytic treatment, and can be either batch or continuous (and the energization method can be either a roller energization method or an overflow one-way method.The concentration of the aqueous solution used for treatment is 0.1 wt. % to 20wt
%, preferably about 5 wt%, temperature from room temperature to 100°C
, preferably around room temperature, and the treatment time in both electrolytes is preferably several seconds to several tens of minutes, preferably 5 seconds to 5 minutes. Flowing the electrolyte to improve the cleaning effect,
Bubbling using an inert gas or ultrasonic vibration can be used.

以上の様にして得られた炭素繊維を複合材料に用いる場
合、マトリックスには特に制限はないが、通常熱硬化性
樹脂としてエポキシ樹脂。
When the carbon fibers obtained as described above are used in a composite material, there are no particular restrictions on the matrix, but epoxy resin is usually used as the thermosetting resin.

ポリアセタール樹脂、不飽和ポリエステル等、熱可塑性
樹脂としてポリアミド、ポリエステル。
Polyacetal resin, unsaturated polyester, etc., polyamide, polyester as thermoplastic resin.

ポリプロピレン、ABS、ポリカーボネート等の樹脂が
用いられる。
Resins such as polypropylene, ABS, and polycarbonate are used.

〔実施例〕〔Example〕

以下、実施例によって本発明を具体的に説明する。 Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1 弾性率が24 t/u+”である炭素繊維トウ(炭素繊
維6000本相当)を5%NaOH水溶液中で30秒、
その後5%リン酸水溶液中で30秒それぞれ電流密度1
.5 A/m″で通電処理したトウ体)と5%リン酸水
溶液中で1分間通電処理したトウIB)及び未処理の炭
素繊維トウをそれぞれ2mとり、蒸留水で10分間洗浄
した後、沸騰蒸留水10Pで2時間抽出を行った。抽出
液の吸光度をλ=400amで測定すると第1表の様な
結果が得られた。
Example 1 A carbon fiber tow (equivalent to 6000 carbon fibers) with an elastic modulus of 24 t/u+" was soaked in a 5% NaOH aqueous solution for 30 seconds.
Then, in a 5% phosphoric acid aqueous solution for 30 seconds each at a current density of 1
.. We took 2 m of each of the tow body) which had been energized at 5 A/m'', the tow which had been energized for 1 minute in a 5% phosphoric acid aqueous solution (IB), and the untreated carbon fiber tow, washed it with distilled water for 10 minutes, and then boiled it. Extraction was performed for 2 hours with 10 P of distilled water.The absorbance of the extract was measured at λ=400 am, and the results shown in Table 1 were obtained.

本処理法で表面処理した炭素繊維が最も不純物の付着が
少ないことがわかる。
It can be seen that the carbon fibers surface-treated with this treatment method have the least adhesion of impurities.

第  1  表 実施例2 実施例1で得た炭素繊維囚、(B)及び体1と同様の条
件で電解液を5%リン酸水溶液のかわりに5%硝酸ナト
リウム水溶液を使用して通電処理した炭素繊維(A−2
)、(Blと同様条件で電解液を5%リン酸水溶液のか
わりに5%硝酸ナトリウム水溶液、5%水酸化ナトリウ
ム水溶液をそれぞれ使用して通電処理した炭素繊維(B
−2)、(B−3)及び未処理の炭素繊維の表面をES
CAで分析し、S’P/C+a +  Ots/C+s
を測定した。結果は第2表の通りであった。
Table 1 Example 2 Carbon fiber bodies obtained in Example 1 (B) and body 1 were subjected to energization treatment using a 5% sodium nitrate aqueous solution instead of a 5% phosphoric acid aqueous solution as the electrolyte under the same conditions as the body 1. Carbon fiber (A-2
), (Carbon fibers (B
-2), (B-3) and untreated carbon fiber surfaces by ES
Analyzed by CA, S'P/C+a + Ots/C+s
was measured. The results are shown in Table 2.

第  2  表 実施例3 弾性率が28 t/m”である炭素繊維を実施例1の(
Al、 (Blの条件で電解質、電流密度をかえて処理
した炭素繊維及び未処理の炭素繊維を充分水洗した後、
マトリックス樹脂パイロフィル#340(三菱レイヨン
(株)製、商標)を用いて積層し、加熱、硬化してTS
L、ILSSを測定した。試験1片の作成方法及び試験
法はTS上はASTM−D3039に、ILSSはAS
TM−D2344 に従った。また、それぞれのストラ
ンド強度を#340樹脂を用いて J I S −R−
7601に基づいて測定した。さらにESCAで繊維表
面のO+s/ C1gを測定した。結果は第3表の通り
であった。
Table 2 Example 3 Carbon fibers having an elastic modulus of 28 t/m" were used in Example 1 (
After thoroughly washing carbon fibers treated with Al, (Bl with different electrolyte and current density) and untreated carbon fibers with water,
Laminated using matrix resin Pyrofil #340 (manufactured by Mitsubishi Rayon Co., Ltd., trademark), heated and cured to obtain TS.
L, ILSS was measured. The preparation method and test method for one test piece are based on ASTM-D3039 for TS, and AS for ILSS.
According to TM-D2344. In addition, the strength of each strand was measured using #340 resin.
Measured based on 7601. Furthermore, O+s/C1g on the fiber surface was measured using ESCA. The results are shown in Table 3.

〔発明の効果〕〔Effect of the invention〕

本発明法により、層間剪断強度はかりでなく繊維方向と
90°方向の引張り強さも向上した炭素繊維強化複合材
料が得られる。
By the method of the present invention, it is possible to obtain a carbon fiber reinforced composite material which has improved not only the interlaminar shear strength but also the tensile strength in the fiber direction and the 90° direction.

Claims (1)

【特許請求の範囲】[Claims] 炭素繊維を表面処理するに際して、炭素繊維を陽極とし
てpH>7である水溶液中で電解処理した後に、さらに
pH≦7である水溶液中で電解処理せしめることを特徴
とする炭素繊維の表面処理法。
A method for surface treatment of carbon fibers, which comprises electrolytically treating the carbon fibers in an aqueous solution with a pH>7 using the carbon fibers as an anode, and then electrolytically treating the carbon fibers in an aqueous solution with a pH≦7.
JP59247590A 1984-11-22 1984-11-22 Surface treatment of carbon fiber Granted JPS61124677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59247590A JPS61124677A (en) 1984-11-22 1984-11-22 Surface treatment of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59247590A JPS61124677A (en) 1984-11-22 1984-11-22 Surface treatment of carbon fiber

Publications (2)

Publication Number Publication Date
JPS61124677A true JPS61124677A (en) 1986-06-12
JPH0478747B2 JPH0478747B2 (en) 1992-12-14

Family

ID=17165765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59247590A Granted JPS61124677A (en) 1984-11-22 1984-11-22 Surface treatment of carbon fiber

Country Status (1)

Country Link
JP (1) JPS61124677A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192470A (en) * 1987-06-01 1989-04-11 Mitsubishi Rayon Co Ltd Surface treatment of carbon fiber
JPH07214551A (en) * 1994-01-28 1995-08-15 Toray Ind Inc Carbon fiber reinforced resin composite material and prepreg
JP2018506653A (en) * 2015-02-03 2018-03-08 ナノコンプ テクノロジーズ,インク. Carbon nanotube structure and method for its production

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5643858A (en) * 1979-09-17 1981-04-22 Nec Corp Digital conference telephone system
JPS5824554A (en) * 1981-08-07 1983-02-14 Mitsubishi Gas Chem Co Inc Separation of malononitrile

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5643858A (en) * 1979-09-17 1981-04-22 Nec Corp Digital conference telephone system
JPS5824554A (en) * 1981-08-07 1983-02-14 Mitsubishi Gas Chem Co Inc Separation of malononitrile

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192470A (en) * 1987-06-01 1989-04-11 Mitsubishi Rayon Co Ltd Surface treatment of carbon fiber
JPH07214551A (en) * 1994-01-28 1995-08-15 Toray Ind Inc Carbon fiber reinforced resin composite material and prepreg
JP2018506653A (en) * 2015-02-03 2018-03-08 ナノコンプ テクノロジーズ,インク. Carbon nanotube structure and method for its production

Also Published As

Publication number Publication date
JPH0478747B2 (en) 1992-12-14

Similar Documents

Publication Publication Date Title
JPS6262185B2 (en)
CN106436274A (en) Method for treating carbon fiber anodic oxidation surfaces
CN109468843A (en) A method of hydroxy-end capped dissaving polymer is grafted in carbon fiber surface
KR930011306B1 (en) Surface-improved carbon fiber and production thererof
KR100486962B1 (en) Manufacturing process of nanoscaled nickel-plated carbon fibers by non-electroplating method
EP0293867A2 (en) Surface treatment process for carbon fibers
JPS61124677A (en) Surface treatment of carbon fiber
JPH0544154A (en) Surface treatment of carbon fiber
US4814157A (en) Carbon fibers and method for producing same
JPS61124674A (en) Surface treatment of carbon fiber
US3657082A (en) Treatment of fibrous materials
JP3755255B2 (en) Carbon fiber and method for producing the same
CN107217491B (en) The method of the modified chopped carbon fiber of polyaniline-coated
JPH1025627A (en) Acrylic carbon fiber
JPS62263375A (en) Surface treatment of carbon fiber
JPS62268873A (en) Surface treatment of carbon fiber
GB2206894A (en) After treatment of carbon fibre
JPS61119772A (en) Surface treatment of carbon fiber
JP2770038B2 (en) Surface-modified high-elasticity carbon fiber and its manufacturing method
JPH07207573A (en) Surface treatment of carbon fiber
JPH02169763A (en) Surface-improved carbon fiber and production thereof
CN109385891A (en) A method of in carbon fiber surface graft curing agent imidazoles
JPS6312761A (en) Carbon fiber and composite material using the same
JPS61275470A (en) Surface treatment of carbon fiber
JP3057493B2 (en) Method for producing surface-modified carbon fiber

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term