JPH03111537A - Heat-resistant alloy excellent in carburization resistance - Google Patents

Heat-resistant alloy excellent in carburization resistance

Info

Publication number
JPH03111537A
JPH03111537A JP24942889A JP24942889A JPH03111537A JP H03111537 A JPH03111537 A JP H03111537A JP 24942889 A JP24942889 A JP 24942889A JP 24942889 A JP24942889 A JP 24942889A JP H03111537 A JPH03111537 A JP H03111537A
Authority
JP
Japan
Prior art keywords
heat
resistant alloy
resistance
carburization resistance
carburization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24942889A
Other languages
Japanese (ja)
Inventor
Teruo Ashimoto
葭本 輝夫
Makoto Takahashi
誠 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP24942889A priority Critical patent/JPH03111537A/en
Publication of JPH03111537A publication Critical patent/JPH03111537A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture the heat-resistant alloy excellent in carburization resistance by preparing an alloy contg. specified ratios of C, Si, Mn, Cr, Ni, N, Mo and W and the balance Fe. CONSTITUTION:A heat-resistant alloy contg. 0.1 to 0.6% C, <=3% Si, <=2% Mn, 23 to 35% Cr, 35 to 55% Ni, <=0.2% N, 0.5 to 4% Mo and 4 to 16% W, furthermore contg., at need, one or kinds among 0.02 to 0.5% Ti, 0.02 to 0.5% Zn and 0.02 to 0.6% A and the balance substantial Fe is prepd. The heat- resistant alloy has good creep strength, oxidation resistance or the like as well as stabilized carburization resistance in the high temp. range of about 1150 deg.C and is useful as a cracking tube material for manufacturing ethylene or the like.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は石油化学工業におけるエチレン製造用クランキ
ングチューブ材料等として有用な耐浸炭性にすぐれた耐
熱合金に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat-resistant alloy with excellent carburization resistance useful as a cranking tube material for ethylene production in the petrochemical industry.

C従来の技術〕 エチレンクラッキングチューブは、その高温高圧使用に
耐え得る機械的性質や耐酸化性のほかに、管内反応系か
ら析出する固形炭素が管壁面に付着することに伴う浸炭
に対する抵抗性(耐浸炭性)にすぐれていることが要求
される。耐浸炭性に乏しいと、浸炭の進行に伴う管材質
の経時変化、特に延性の著しい低下を生じ、高圧操業条
件下、脆化による管体の割れ発生の危険が増大する。こ
のため、耐浸炭性はクランキングチューブの実使用にお
ける極めて重要な特性である。
C. Prior Art] Ethylene cracking tubes have not only mechanical properties and oxidation resistance that can withstand high-temperature and high-pressure use, but also resistance to carburization caused by solid carbon deposited from the reaction system inside the tube adhering to the tube wall surface. It is required to have excellent carburization resistance). If the carburization resistance is poor, the quality of the pipe material changes over time as carburization progresses, particularly a significant decrease in ductility occurs, and the risk of cracking of the pipe body due to embrittlement increases under high pressure operating conditions. For this reason, carburization resistance is an extremely important property in actual use of cranking tubes.

従来より、そのチューブ材料として、ASTM HP材
(0,4C−25Cr−35Ni −Fe)やその改良
材(0,4C25Cr−35Ni−Nb、W −Fe)
等の耐熱合金が専ら使用されてきた。また、改良された
チューブ材料として、特公昭63−4897号公報には
、C:0.3〜0.5%、St:2%以下、Mn:2%
以下、 Cr:30〜40%、 Ni:40〜50%、
 A1:0.02〜0.6%、並ヒニNb: 0.3〜
1.8%、W:0.5〜6%の1種もしくは2種、およ
びT i:0.02〜0.5%、Zr:0.02〜0.
5%(7)1種もしくは2種、残部Feからなる化学組
成を有する耐熱合金が開示されている。
Conventionally, ASTM HP material (0,4C-25Cr-35Ni-Fe) and its improved material (0,4C25Cr-35Ni-Nb, W-Fe) have been used as the tube material.
Heat-resistant alloys such as In addition, as an improved tube material, Japanese Patent Publication No. 63-4897 describes C: 0.3 to 0.5%, St: 2% or less, Mn: 2%
Below, Cr: 30-40%, Ni: 40-50%,
A1: 0.02~0.6%, Average Hini Nb: 0.3~
1.8%, W: 0.5-6%, one or two kinds, Ti: 0.02-0.5%, Zr: 0.02-0.
A heat-resistant alloy having a chemical composition consisting of one or two kinds of 5% (7) and the balance Fe is disclosed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記11P材は、900〜1050°Cの温度範囲で使
用される材料であり、1050℃を越える温度域での耐
浸炭性やクリープ破断強度は十分でなく、またHP改良
材は、1100℃までの温度範囲においてHP材を凌駕
する耐浸炭性を示すものの、1100°Cをこえる高温
域になると、耐酸化性やクリープ破断強度等と共に耐浸
炭性の大幅な低下を避は得ない。
The above 11P material is a material used in the temperature range of 900 to 1050°C, and does not have sufficient carburization resistance or creep rupture strength in the temperature range exceeding 1050°C, and the HP improved material is used up to 1100°C. Although it exhibits carburization resistance that exceeds that of HP materials in the temperature range of

他方、特公昭63−4897号公報に記載された耐熱合
金は、1100°Cを越え、1150”C付近の高温域
においても良好なりリープ強度、耐酸化性と共に耐浸炭
性を維持することが示されている。本発明は、それとは
異なる成分構成によって、1150’C付近の高温域に
おけるクリープ強度や耐酸化性等と共に卓抜した耐浸炭
性をもたせた耐熱合金を提供するものである。
On the other hand, the heat-resistant alloy described in Japanese Patent Publication No. 63-4897 has been shown to maintain good leap strength, oxidation resistance, and carburization resistance even at high temperatures exceeding 1100°C and around 1150"C. The present invention provides a heat-resistant alloy that has excellent carburization resistance as well as creep strength and oxidation resistance in the high temperature range around 1150'C by using a different composition.

〔課題を解決するための手段および作用〕本発明の耐浸
炭性耐熱合金は、 C:0.1〜0.6%、Si:3%以下、Mn:2%以
下。
[Means and effects for solving the problems] The carburizing-resistant heat-resistant alloy of the present invention has the following properties: C: 0.1 to 0.6%, Si: 3% or less, Mn: 2% or less.

Cr:23〜35%、 Ni:35〜55%、N:0.
2%以下9Mo:o、5〜4%、W:4〜16%、残部
実質的にFeがらなり、所望により、そのFeの一部が
Ti : 0.02〜0.5%、  Zr:0.02〜
0.5%、 Al : 0.02〜0.6%から選ばれ
る1種ないし2種以上の元素で置換された化学組成を存
している。
Cr: 23-35%, Ni: 35-55%, N: 0.
2% or less 9Mo: o, 5 to 4%, W: 4 to 16%, the remainder substantially consists of Fe, and if desired, a part of the Fe may be Ti: 0.02 to 0.5%, Zr: 0 .02~
0.5%, Al: has a chemical composition substituted with one or more elements selected from 0.02 to 0.6%.

本発明の耐熱合金の成分限定理由は次のとおりである。The reasons for limiting the ingredients of the heat-resistant alloy of the present invention are as follows.

Coo。1〜0.6% Cは、鋳造凝固時に、Cr、Mo、W等の炭化物を粒界
に形成し、またオーステナイト相に固溶したCはチュー
ブの実使用時の加熱を受けてCr炭化物を形成する。こ
れらの炭化物の分散効果によりクリープ破断強度が高め
られる。この効果を十分なものとするためには少なくと
も0.1%のCを必要とする。しかし、多量添加に伴い
、Cr−Mo−W系複炭化物が多量に析出し、室温伸び
特性の低下および溶接性の低下をきたすので、0.6%
を上限とする。
Coo. 1 to 0.6% C forms carbides such as Cr, Mo, and W at grain boundaries during casting and solidification, and C dissolved in the austenite phase forms Cr carbides when the tube is heated during actual use. Form. Creep rupture strength is increased by the dispersion effect of these carbides. At least 0.1% C is required for this effect to be sufficient. However, with the addition of a large amount, a large amount of Cr-Mo-W double carbide precipitates, resulting in a decrease in room temperature elongation properties and weldability.
is the upper limit.

Si:3%以下 Siは脱酸作用、および溶湯の流動性向上・鋳造性改善
効果を有するほか、チューブ実使用時の加熱によりチュ
ーブ表面にSiO□の被膜を形成し、Cの侵入を抑制す
る。しかし、3%を越えて多量に添加すると、クリープ
破断強度の低下および溶接性の低下きたすので、3%を
上限とする。
Si: 3% or less Si not only has a deoxidizing effect and the effect of improving the fluidity of molten metal and improving castability, but also forms a film of SiO□ on the tube surface when heated during actual use of the tube, suppressing the intrusion of C. . However, if added in a large amount exceeding 3%, the creep rupture strength and weldability will decrease, so the upper limit is set at 3%.

Mn:2%以下 Mnは脱酸作用を有すると共に、SをMnSとして固定
することにより、溶接性の向上に奏効する。
Mn: 2% or less Mn has a deoxidizing effect and is effective in improving weldability by fixing S as MnS.

これらの効果は2%までの添加により得られ、それを越
えて添加する必要はない。
These effects can be obtained by adding up to 2%, and there is no need to add more than that.

Cr:23〜35% Crは耐酸化性および高温強度を高め、また耐浸炭性の
向上に奏効する。1100°Cをこえる高温域、特に1
150″C付近での使用における耐浸炭性および耐酸化
性等を確保するためには、少なくとも23%の添加を必
要とする。添加増量に伴ってその効果を増すが、あまり
多くすると、Cr −M o −W系複炭化物が過剰に
析出し、延性の著しい低下を招くので、35%を上限と
する。
Cr: 23-35% Cr increases oxidation resistance and high temperature strength, and is effective in improving carburization resistance. High temperature range exceeding 1100°C, especially 1
In order to ensure carburization resistance, oxidation resistance, etc. when used at around 150"C, it is necessary to add at least 23%. The effect increases as the amount is increased, but if the amount is too large, Cr - The upper limit is set at 35% since excessive precipitation of M o -W double carbides causes a significant decrease in ductility.

Ni:35〜55% Niは、Cr、Fe等と共にオーステナイト地を形成し
、組織の安定化、耐酸化性の向上に寄与するほか、チュ
ーブ表層の酸化被膜を安定化することにより耐浸炭性を
高める。特に、クランキングチューブとして1150°
C付近の高温使用における耐浸炭性を確保するには、少
なくとも35%の添加を必要とする。添加増量に伴って
効果を増すが、55%をこえると、耐浸炭性の改善効果
はほぼ飽和する。
Ni: 35-55% Ni forms an austenitic matrix together with Cr, Fe, etc., and contributes to stabilizing the structure and improving oxidation resistance. It also improves carburization resistance by stabilizing the oxide film on the tube surface. enhance Especially, 1150° as a cranking tube.
To ensure carburization resistance at high temperatures around C, an addition of at least 35% is required. The effect increases as the amount added increases, but when it exceeds 55%, the effect of improving carburization resistance is almost saturated.

このため55%を上限とする。Therefore, the upper limit is set at 55%.

Mo : 0.5〜4% Moはオーステナイト地の固溶強化と、炭化物の形成に
よる粒界強化とにより高温引張強度を高める。また溶接
性の改善にも奏効する。これらの効果は0.5%以上の
添加により得られる。好ましくは1%以上である。しか
し、あまり多くなると、Wの多量添加との関係から、室
温引張延性の低下をきたすので、4%を上限とする。
Mo: 0.5 to 4% Mo increases high-temperature tensile strength by solid solution strengthening of the austenite base and strengthening of grain boundaries through the formation of carbides. It is also effective in improving weldability. These effects can be obtained by adding 0.5% or more. Preferably it is 1% or more. However, if the amount is too large, the room temperature tensile ductility decreases due to the relationship with the addition of a large amount of W, so the upper limit is set at 4%.

W:4〜16% Wは、前記Moと同じようにオーステナイト地の固溶強
化と、粒界の炭化物析出による粒界強化によって高温引
張強度を高める。更に、Wは耐浸炭性向上効果を有する
。高温強度改善効果は添加置駒0.5%程度から現れる
が、耐浸炭性向上効果を十分ならしめるためには、少な
くとも4%の添加を必要とする。好ましくは6.5%以
上である。添加増量に伴って耐浸炭性の向上をみるが、
16%をこえると、室温引張延性の著しい低下をきたす
ので、16%を上限とする。
W: 4 to 16% W increases high-temperature tensile strength by solid solution strengthening of the austenite base and grain boundary strengthening due to carbide precipitation at the grain boundaries, similar to the above-mentioned Mo. Furthermore, W has the effect of improving carburization resistance. The effect of improving high-temperature strength appears from addition of about 0.5%, but in order to achieve a sufficient effect of improving carburization resistance, addition of at least 4% is required. Preferably it is 6.5% or more. Carburization resistance improved as the amount added increased, but
If it exceeds 16%, the room temperature tensile ductility will be significantly reduced, so 16% is the upper limit.

N:0.2%以下 Nはオーステナイト地中に固溶して高温引張強度を高め
る。しかし、多量添加は室温引張延性の低下をきたすの
で、0.2%を上限とする。
N: 0.2% or less N forms a solid solution in the austenite and increases high-temperature tensile strength. However, since adding a large amount causes a decrease in room temperature tensile ductility, the upper limit is set at 0.2%.

本発明合金は、上記諸元素のほかに、所望により、T 
i+ Z r+およびA1から選ばれる1種ないし2種
以上の元素を含有する。
In addition to the above-mentioned elements, the alloy of the present invention may optionally contain T.
Contains one or more elements selected from i+Zr+ and A1.

Ti : 0.02〜0.5% Tiは、チューブの実使用時の加熱下におけるクロム炭
化物の成長粗大化を抑制遅延させることによりクリープ
破断強度の向上に寄与する。この効果は0.02%以上
の添加により得られる。しかし、多量添加に伴って酸化
物系介在物の増量および析出物の粗大化等により却って
強度低下をきたすので、0.5%を上限とする。
Ti: 0.02 to 0.5% Ti contributes to improving the creep rupture strength by suppressing and delaying the growth and coarsening of chromium carbide during heating during actual use of the tube. This effect can be obtained by adding 0.02% or more. However, as the addition of a large amount increases the amount of oxide inclusions and coarsens the precipitates, the strength actually decreases, so the upper limit is set at 0.5%.

Z r : 0.02〜0.5% Zrはオーステナイト地の固溶強化により、クリープ破
断強度を高める。この効果は0.02%以上の添加によ
り現れ、添加増量に伴ってその効果を増す、しかし、0
.5%をこえると、合金の清浄度が悪くなり却って強度
の低下をきたす。このため、0.5%を上限とする。
Zr: 0.02 to 0.5% Zr increases the creep rupture strength by solid solution strengthening of the austenite base. This effect appears when 0.02% or more is added, and the effect increases as the amount of addition increases.
.. If it exceeds 5%, the cleanliness of the alloy will deteriorate and the strength will actually decrease. Therefore, the upper limit is set at 0.5%.

At : 0.02〜0.6% A1は、高温域においてチューブ表面に保g!!膜とし
てAl酸化物被膜を形成し、浸炭雰囲気からのCの侵入
を抑制する効果を有する。この耐浸炭性改善効果を得る
には少なくとも0.02%の添加を必要とする。添加増
量によりその効果を増すが、あまり多くなると、鋳造性
が損なわれ、また引張延性が低下するので、0.6%を
上限とする。
At: 0.02-0.6% A1 is maintained on the tube surface in the high temperature range. ! An Al oxide film is formed as a film, which has the effect of suppressing the intrusion of C from the carburizing atmosphere. To obtain this effect of improving carburization resistance, it is necessary to add at least 0.02%. The effect can be increased by increasing the amount added, but if the amount is too large, castability will be impaired and tensile ductility will be lowered, so the upper limit is set at 0.6%.

なお、通常の溶製技術上不可避的に混入する不純物はこ
の種の鋼に許容される範囲内で混在して差し支えなく、
例えば0.03%以下のP、0.03%以下のSの混在
によって本発明の趣旨が損なわれることはない。
In addition, impurities that are unavoidable due to normal melting technology may be mixed within the allowable range for this type of steel.
For example, the gist of the present invention is not impaired by the presence of 0.03% or less of P and 0.03% or less of S.

〔実施例〕〔Example〕

高周波誘導溶解炉で溶製した合金溶湯を、遠心力鋳造に
付し、中空円筒鋳造体(外径138mmX肉厚23.5
mmX長さ520mn+)を得た。各鋳造体の化学成分
組成を第1表に示す。
The molten alloy produced in a high-frequency induction melting furnace is subjected to centrifugal force casting to form a hollow cylindrical cast body (outer diameter 138 mm x wall thickness 23.5 mm).
mm x length 520 m+) was obtained. The chemical composition of each cast body is shown in Table 1.

表中、No、 1〜9は発明例、No、 101〜10
3は比較例である。比較例Nα101.Nα102は、
代表的従来材である改良HP相当材、k103はMoお
よびWを含まない点で発明例と異なる成分構成を有する
例である。
In the table, No. 1 to 9 are invention examples, No. 101 to 10
3 is a comparative example. Comparative example Nα101. Nα102 is
The improved HP equivalent material k103, which is a typical conventional material, is an example having a different composition from the invention example in that it does not contain Mo and W.

各鋳造材から試験片を採取し、それぞれについて浸炭試
験、および酸化試験を下記の試験方法により行った。
A test piece was taken from each cast material, and a carburization test and an oxidation test were conducted on each test piece using the following test methods.

〔■〕浸炭試験 試験片(12φX60f、mm)を固体浸炭剤(デグサ
KG30)中に埋覆して加熱し、850″Cから115
0°Cまで30Hrを要して昇温させ、1150’Cに
1811 r保持したのち室温まで降温させるヒートパ
タンを7回反復実施(試験時間合計: (30Hr +
18Or) X 7 = 336Hr)、試験後、試験
片表面から1−の深さまで、0.25mmのピッチで切
粉を採取し、化学分析により各深さ位置における炭素増
加量を求める。
[■] Carburizing test specimen (12φ x 60f, mm) was buried in solid carburizing agent (Degussa KG30) and heated, and heated from 850″C to 115°C.
A heat pattern in which the temperature was raised to 0°C over 30 hours, held at 1150'C for 1811 hours, and then cooled down to room temperature was repeated 7 times (total test time: (30 hours +
After the test, chips were collected at a pitch of 0.25 mm from the test piece surface to a depth of 1-, and the amount of carbon increase at each depth position was determined by chemical analysis.

(n)酸化試験 試験片(12φX50E、鰭)を、大気中、1150°
Cに加熱保持する。加熱保持時間は100時間と500
時間の2通りとした。試験後、試験片表面のスケールを
除去し、酸化による重量減少量を測定し、加熱保持時間
100時間と500時間の各測定値から年間腐食量(鴫
/year)を外挿した。
(n) Oxidation test specimen (12φX50E, fin) in the atmosphere at 1150°
Heat and maintain at temperature C. Heating retention time is 100 hours and 500 hours
There were two types of time. After the test, the scale on the surface of the test piece was removed, the amount of weight loss due to oxidation was measured, and the annual corrosion amount (stain/year) was extrapolated from the measured values at heating holding times of 100 hours and 500 hours.

第1表に、浸炭試験後の試験片表層の炭素増量、並びに
酸化試験結果を示す。また、第1図に浸炭試験片の深さ
方向における炭素増量分布を示す。
Table 1 shows the carbon increase in the surface layer of the specimen after the carburization test and the oxidation test results. Furthermore, Fig. 1 shows the carbon increase distribution in the depth direction of the carburized test piece.

上記試験結果から明らかなように、本発明の耐熱合金は
、代表的従来材であるIIP改良材(No、lOl。
As is clear from the above test results, the heat-resistant alloy of the present invention is a typical conventional material, IIP improved material (No. 1Ol).

No、102)等に比べて、1100°Cをこえる高温
域における耐浸炭性にすぐれており、また耐酸化性も高
水準を有している。なお、Nα103はIIP改良材(
Nα1o1゜No、102)に比べて多量のNiを含有
しているが、その耐浸炭性はNa 101やNα102
と同等のレベルにとどまっている。
Compared to No. 102), etc., it has excellent carburization resistance in a high temperature range exceeding 1100°C, and also has a high level of oxidation resistance. In addition, Nα103 is an IIP improved material (
Although it contains a large amount of Ni compared to Na 101 and Na 102), its carburization resistance is lower than that of Na 101 and Na 102.
remains at the same level.

第 2 表 〔発明の効果〕 本発明の耐熱合金は、1100’Cを越える高温域にお
いて従来材であるHP材やその改良材を凌ぐ材料特性を
有し、1150°C付近においても安定した耐浸炭性を
示し、また耐酸化性やクリープ特性等にもすぐれている
。従ってエチレンクラッキングチューブ材料として有用
であり、高温高圧操業におけるチューブの耐久性・安定
性の向上効果が得られる。なお、本発明の耐熱合金は、
リフオーマチューブあるいはラジアントチューブ、ハー
スローラ等の各種高温用構造材料としても有用である。
Table 2 [Effects of the Invention] The heat-resistant alloy of the present invention has material properties superior to the conventional HP material and its improved materials in the high temperature range exceeding 1100°C, and has stable resistance even at around 1150°C. It exhibits carburizing properties and also has excellent oxidation resistance and creep properties. Therefore, it is useful as an ethylene cracking tube material, and can improve the durability and stability of the tube during high-temperature, high-pressure operation. In addition, the heat-resistant alloy of the present invention is
It is also useful as a structural material for various high-temperature applications such as re-former tubes, radiant tubes, and hearth rollers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は浸炭試験片の深さ方向の炭素濃度分布を示すグ
ラフである。
FIG. 1 is a graph showing the carbon concentration distribution in the depth direction of a carburized test piece.

Claims (1)

【特許請求の範囲】 1、C:0.1〜0.6%、Si:3%以下、Mn:2
%以下、Cr:23〜35%、Ni:35〜55%、N
:0.2%以下、Mo:0.5〜4%、W:4〜16%
、残部実質的にFeからなる耐浸炭性にすぐれた耐熱合
金。 2、C:0.1〜0.6%、Si:3%以下、Mn:2
%以下、Cr:23〜35%、Ni:35〜55%、N
:0.2%以下、Mo:0.5〜4%、W:4〜16%
、およびTi:0.02〜0.5%、Zr:0.02〜
0.5%、Al:0.02〜0.6%から選ばれる1種
ないし2種以上の元素、残部実質的にFeからなる耐浸
炭性にすぐれた耐熱合金。
[Claims] 1. C: 0.1 to 0.6%, Si: 3% or less, Mn: 2
% or less, Cr: 23-35%, Ni: 35-55%, N
: 0.2% or less, Mo: 0.5-4%, W: 4-16%
A heat-resistant alloy with excellent carburization resistance, the balance being substantially Fe. 2, C: 0.1-0.6%, Si: 3% or less, Mn: 2
% or less, Cr: 23-35%, Ni: 35-55%, N
: 0.2% or less, Mo: 0.5-4%, W: 4-16%
, and Ti: 0.02~0.5%, Zr: 0.02~
0.5%, Al: 0.02 to 0.6%, and the remainder is substantially Fe.
JP24942889A 1989-09-26 1989-09-26 Heat-resistant alloy excellent in carburization resistance Pending JPH03111537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24942889A JPH03111537A (en) 1989-09-26 1989-09-26 Heat-resistant alloy excellent in carburization resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24942889A JPH03111537A (en) 1989-09-26 1989-09-26 Heat-resistant alloy excellent in carburization resistance

Publications (1)

Publication Number Publication Date
JPH03111537A true JPH03111537A (en) 1991-05-13

Family

ID=17192827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24942889A Pending JPH03111537A (en) 1989-09-26 1989-09-26 Heat-resistant alloy excellent in carburization resistance

Country Status (1)

Country Link
JP (1) JPH03111537A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073745A (en) * 2001-08-31 2003-03-12 Kawasaki Steel Corp Hearth roll for annealing furnace for stainless steel sheet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5743966A (en) * 1980-08-28 1982-03-12 Kubota Ltd Heat resistant cast alloy
JPS60165344A (en) * 1984-02-08 1985-08-28 Kubota Ltd Heat resistant cast alloy having high creep breaking strength and carburizing resistance
JPS6365057A (en) * 1986-09-05 1988-03-23 Kubota Ltd Tube for thermal decomposition or reforming reaction of hydrocarbons
JPS6377736A (en) * 1986-09-21 1988-04-07 住友金属工業株式会社 Adherent double pipe having excellent carburization resistance
JPH01152245A (en) * 1987-12-10 1989-06-14 Kubota Ltd Heat-resistant alloy having excellent carburizing resistance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5743966A (en) * 1980-08-28 1982-03-12 Kubota Ltd Heat resistant cast alloy
JPS60165344A (en) * 1984-02-08 1985-08-28 Kubota Ltd Heat resistant cast alloy having high creep breaking strength and carburizing resistance
JPS6365057A (en) * 1986-09-05 1988-03-23 Kubota Ltd Tube for thermal decomposition or reforming reaction of hydrocarbons
JPS6377736A (en) * 1986-09-21 1988-04-07 住友金属工業株式会社 Adherent double pipe having excellent carburization resistance
JPH01152245A (en) * 1987-12-10 1989-06-14 Kubota Ltd Heat-resistant alloy having excellent carburizing resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073745A (en) * 2001-08-31 2003-03-12 Kawasaki Steel Corp Hearth roll for annealing furnace for stainless steel sheet

Similar Documents

Publication Publication Date Title
EP0545753B1 (en) Duplex stainless steel having improved strength and corrosion resistance
JP6068158B2 (en) Cast products having an alumina barrier layer
JP4311740B2 (en) Thick steel plate with high heat input welded joint toughness
JP2003129190A (en) Martensitic stainless steel and manufacturing method therefor
JP6259336B2 (en) Ni-based alloy and method for producing the same
JPWO2018003823A1 (en) Austenitic stainless steel
JPH10503809A (en) Martensitic stainless steel with sulfide stress cracking resistance with excellent hot workability
CN111394663A (en) Heat-resistant iron-based alloy and preparation method thereof
JPS6344814B2 (en)
JPH02267240A (en) Heat-resistant alloy
JP3895089B2 (en) Heat resistant alloy with excellent carburization and metal dusting resistance
JPS634897B2 (en)
JP3434180B2 (en) Ferritic heat-resistant steel with excellent creep characteristics in the weld heat affected zone
JPH03111537A (en) Heat-resistant alloy excellent in carburization resistance
JPS61177352A (en) Heat resistant cast steel having superior elongation characteristic at room temperature
JPH0637672B2 (en) Method for manufacturing heat-resistant centrifugal cast alloy bent pipe
JPH046242A (en) Heat-resistant cast steel
JP3475927B2 (en) Low Cr ferritic heat-resistant steel and its manufacturing method
JPH0987787A (en) Heat resistant alloy excellent in oxidation resistance, carburization resistance, high temperature creep fracture strength and ductility after aging
JP2018003064A (en) Austenite-based stainless steel
JPH03240930A (en) Heat-resistant alloy excellent in carburizing resistance and weldability
JPH07258783A (en) Heat resistant alloy excellent in carburization resistance
JPH07258780A (en) Heat resistant alloy excellent in carburization resistance
JPH051355A (en) Heat resistant cast steel improved in creep fracture strength
JPS596910B2 (en) heat resistant cast steel