JPH03240930A - Heat-resistant alloy excellent in carburizing resistance and weldability - Google Patents

Heat-resistant alloy excellent in carburizing resistance and weldability

Info

Publication number
JPH03240930A
JPH03240930A JP3676290A JP3676290A JPH03240930A JP H03240930 A JPH03240930 A JP H03240930A JP 3676290 A JP3676290 A JP 3676290A JP 3676290 A JP3676290 A JP 3676290A JP H03240930 A JPH03240930 A JP H03240930A
Authority
JP
Japan
Prior art keywords
weldability
resistant alloy
heat
alloy
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3676290A
Other languages
Japanese (ja)
Inventor
Teruo Kamoto
葭本 輝夫
Makoto Takahashi
誠 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP3676290A priority Critical patent/JPH03240930A/en
Publication of JPH03240930A publication Critical patent/JPH03240930A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a heat resistant alloy excellent in carburizing resistance and weldability by preparing an Fe-base alloy having a specified compsn. contg. specified amounts of Mn, Cr and Ni. CONSTITUTION:An alloy contg., by weight, 0.08 to <0.3% C, 0.5 to 3% Si, <=0.5% Mn, 23 to 39% Cr, 35 to 60% Ni, <=0.25% N and one or more kinds selected from 0.2 to 2% Nb, 0.5 to 4% Mo and 0.5 to 10% W, furthermore contg., at need, one or more kinds selected from 0.02 to 0.6% Al, 0.01 to 0.5% Ti and 0.01 to 0.5% Zr and the balance substantial Fe is prepd. In this way, the heat resistant alloy having carburizing resistance superior to that of an HP modified material and having good weldability even after long time use in a high temp. range of about >1000 deg.C can be obtd. and is useful for cracking tube materials for manufacturing ethylene or the like.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は石油化学工業におけるエチレン製造用クランキ
ングチューブ材料等として有用な耐浸炭性および溶接性
にすぐれた耐熱合金に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat-resistant alloy with excellent carburization resistance and weldability that is useful as a cranking tube material for ethylene production in the petrochemical industry.

〔従来の技術〕[Conventional technology]

エチレン製造用反応管は、多数の直管をベンド管を介し
て接続すると共に、要所にT字型管、Y字型管等の異形
管を組込むことにより構成される。
A reaction tube for ethylene production is constructed by connecting a large number of straight tubes through bend tubes and incorporating irregularly shaped tubes such as T-shaped tubes and Y-shaped tubes at important points.

上記配管構成に使用される管材は、その高温高圧操業に
耐え得る機械的性質や耐酸化性等を必要とすることは言
うまでもなく、更には、管内反応系から析出する固形炭
素が管壁面に付着することに伴う浸炭に対する抵抗性を
備えていなければならない。浸炭が生じると、その進行
に伴う管材質の経時変化、特に延性の著しい低下を生じ
、高圧操業条件下、脆化による管体の割れ発生の危険が
増大するからである。
It goes without saying that the pipe materials used in the above piping configuration must have mechanical properties and oxidation resistance that can withstand high-temperature, high-pressure operation, and furthermore, solid carbon precipitated from the reaction system inside the pipe adheres to the pipe wall surface. It must be resistant to carburization associated with carburization. This is because when carburization occurs, as carburization progresses, the quality of the pipe material changes with time, particularly a significant decrease in ductility, and the risk of cracking of the pipe body due to embrittlement increases under high pressure operating conditions.

また、上記管材は、長時間(例えば1〜5年)の使用過
程でクリープや曲がり等の変形が不可避的に生起するの
で、その変形により、例えば炉床にガイドがつかえる等
の支障を生じるような場合には、その修復作業として、
変形部分の切断除去と、その部分を再接合するための溶
接が施される。
In addition, the above-mentioned pipe material inevitably undergoes deformation such as creep and bending during long-term use (for example, 1 to 5 years), so such deformation may cause problems such as the guide getting stuck in the hearth. In such cases, as part of the repair work,
The deformed parts are cut and removed and welded to rejoin them.

従って、その管材は、長時間の熱時効をうけた後にも良
好な溶接性を有する材質でなければならない。
Therefore, the tube material must be made of a material that has good weldability even after being subjected to long-term thermal aging.

従来より上記管材料として、ASTM  HP材(0,
4C−25Cr −35N i −F e )およびそ
の改良材(0,4C−25Cr−35Ni−Nb、 W
、 M。
Conventionally, ASTM HP material (0,
4C-25Cr-35Ni-Fe) and its improved material (0,4C-25Cr-35Ni-Nb, W
, M.

Fe)等の耐熱合金が貫用されてきた。Heat-resistant alloys such as Fe) have been widely used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

HP材は、900〜1050°Cの温度範囲で使用され
る材料であり、それを越える温度域での耐浸炭性は十分
といえない。
HP material is a material used in a temperature range of 900 to 1050°C, and cannot be said to have sufficient carburization resistance in a temperature range exceeding this.

他方、HP改良材は、1100″Cまでの温度域におい
てすぐれた材料特性を示し、耐浸炭性も良好であるが、
長時間使用後の溶接性が悪く、溶接部に割れを生じ易い
という問題がある。これは、長期使用過程での延性の低
下が大きく、伸びは使用前の約10〜15%から、わず
か2〜3%程度にまで減少するため、溶接時の溶接収縮
応力が拘束されることに生として起因していることが判
明した。なお、同材料は改良された浸炭抵抗性を有して
いるとは言え、長期使用過程で微量浸炭(約0.1〜0
゜3%Cの増量)を生じ、これによる延性低下も、上記
溶接性の劣化を大きくしている。
On the other hand, the HP improved material shows excellent material properties in the temperature range up to 1100''C and has good carburization resistance, but
There is a problem that weldability is poor after long-term use, and cracks are likely to occur in the welded part. This is because the ductility decreases significantly during long-term use, and the elongation decreases from about 10 to 15% before use to only about 2 to 3%, which limits the welding shrinkage stress during welding. It was found that this was caused by a raw material. Although the same material has improved carburization resistance, a small amount of carburization (approximately 0.1 to 0.0
The resulting decrease in ductility also increases the aforementioned deterioration in weldability.

本発明は、上記問題を解決するためになされたものであ
り、前記HP改良材を凌ぐ浸炭抵抗性を有すると共に、
1000°Cをこえる高温域での長時間使用後にも良好
な溶接性を有する改良された耐熱合金を提供する。
The present invention was made to solve the above problems, and has carburization resistance superior to the above-mentioned HP improving material, and
To provide an improved heat-resistant alloy that has good weldability even after long-term use in a high temperature range exceeding 1000°C.

〔課題を解決するための手段および作用〕本発明の耐熱
合金は、C:0.08%以上、0.3%未満、 S i
 :0.5〜3%、Mn:5%以下、Cr:23〜39
%、Ni:35〜60%、N:0.25%以下、および
Nb:0.2〜2%、 Mo :0.5〜4%、W:0
.5〜10%から選ばれる1種ないし2種以上、残部実
質的にFeからなり、所望により、Feの一部が、A 
l : 0.02〜0.6%、 T i :0.01〜
0.5%。
[Means and effects for solving the problems] The heat-resistant alloy of the present invention contains C: 0.08% or more and less than 0.3%, Si
: 0.5-3%, Mn: 5% or less, Cr: 23-39
%, Ni: 35-60%, N: 0.25% or less, and Nb: 0.2-2%, Mo: 0.5-4%, W: 0
.. One or more selected from 5 to 10%, the remainder substantially consisting of Fe, and if desired, a part of Fe may be A.
l: 0.02~0.6%, Ti: 0.01~
0.5%.

Zr:0.01〜0.5%から選ばれる1種ないし2種
以上の元素で置換された化学組成を有している。
Zr: has a chemical composition substituted with one or more elements selected from 0.01 to 0.5%.

本発明の耐熱合金の成分限定理由は次のとおりである。The reasons for limiting the ingredients of the heat-resistant alloy of the present invention are as follows.

C: 0.08%以上、0.3%未満 Cは、鋳造凝固時に、Cr、Mo、W等の炭化物を粒界
に形成し、またオーステナイト相に固溶したCは部材の
実使用時の加熱を受けてCr炭化物を形成する。これら
の炭化物の分散効果によりクリープ破断強度が高められ
る。しかし、その量が0.08%に満たないと、105
0〜1100°Cの高温使用における十分なりリープ破
断強度およびクリープ強度を確保することができない。
C: 0.08% or more, less than 0.3% C forms carbides such as Cr, Mo, W, etc. at grain boundaries during casting and solidification, and C dissolved in the austenite phase forms carbides during casting and solidification. Upon heating, Cr carbide is formed. Creep rupture strength is increased by the dispersion effect of these carbides. However, if the amount is less than 0.08%, 105
It is not possible to ensure sufficient leap rupture strength and creep strength when used at high temperatures of 0 to 1100°C.

添加量の増加に伴って効果を増すが、反面多量添加に伴
い、Cr炭化物の多量の析出により、室温伸び特性が低
下し、使用後の部材同士の溶接性が低下するので、0.
3%未満とする。
The effect increases as the amount added increases, but on the other hand, when a large amount is added, a large amount of Cr carbide precipitates, resulting in a decrease in room temperature elongation properties and a decrease in weldability between members after use.
Less than 3%.

Si:0.5〜3% Siは脱酸作用、および溶湯の流動性向上・鋳造性改善
効果を有するほか、高温使用時の加熱により部材表面に
Sin、の被膜を形成し、Cの侵入を抑制する。その効
果は、0.5%から認められる。しかし、3%を越えて
多量に添加すると、クリープ破断強度の低下および溶接
性の低下きたすので、3%を上限とする。
Si: 0.5-3% Si not only has a deoxidizing effect and the effect of improving the fluidity of molten metal and improving castability, but also forms a film of Si on the surface of parts when heated during high-temperature use, preventing the intrusion of C. suppress. The effect is recognized from 0.5%. However, if added in a large amount exceeding 3%, the creep rupture strength and weldability will decrease, so the upper limit is set at 3%.

Mn : 5%以下 Mnは脱酸作用を有すると共に、SをMnSとして固定
することにより、溶接性の向上に奏効する。これらの効
果は5%までの添加により得られ、それを越えて添加す
る必要はない。
Mn: 5% or less Mn has a deoxidizing effect and is effective in improving weldability by fixing S as MnS. These effects can be obtained by adding up to 5%, and there is no need to add more than that.

Cr:23〜39% Crは耐酸化性および高温強度を高め、また耐浸炭性の
向上に奏効する。1050℃をこえる高温域、特に11
00°C付近での使用における耐浸炭性および耐酸化性
等を確保するためには、少なくとも23%の添加を必要
とする。添加増量に伴ってその効果を増すが、あまり多
くすると、高温使用過程でのCr炭化物の析出量の増加
により、使用後の引張延性の著しい低下を招くので、3
9%を上限とする。
Cr: 23-39% Cr increases oxidation resistance and high temperature strength, and is effective in improving carburization resistance. High temperature range exceeding 1050℃, especially 11
In order to ensure carburization resistance, oxidation resistance, etc. when used at temperatures around 00°C, it is necessary to add at least 23%. The effect increases as the amount is increased, but if it is added too much, the amount of Cr carbide precipitated during high-temperature use will increase, resulting in a significant decrease in tensile ductility after use.
The upper limit is 9%.

Ni:35〜60% Niは、Cr、Fe等と共にオーステナイト地を形成し
、組織の安定化、耐酸化性の向上に寄与するほか、長時
間の高温使用過程におけるCr炭化物の安定性を高める
(1次炭化物の球状化および2次炭化物の成長抑制)効
果を有する。また、部材表面の酸化被膜を安定化するこ
とにより耐浸炭性を高める。特に、クランキングチュー
ブとして1150”Cまでの高温使用における耐浸炭性
を確保するには、少な(とも35%の添加を必要とする
Ni: 35-60% Ni forms an austenitic matrix together with Cr, Fe, etc., and contributes to stabilizing the structure and improving oxidation resistance, as well as increasing the stability of Cr carbide during long-term high-temperature use ( It has the effect of spheroidizing primary carbides and inhibiting the growth of secondary carbides. Furthermore, carburization resistance is improved by stabilizing the oxide film on the surface of the member. In particular, in order to ensure carburization resistance when used as a cranking tube at high temperatures up to 1150''C, a small amount (at least 35%) is required.

添加増量に伴って効果を増すが、60%をこえると、耐
浸炭性の改善効果はほぼ飽和する。このため60%を上
限とする。
The effect increases as the amount added increases, but when it exceeds 60%, the effect of improving carburization resistance is almost saturated. Therefore, the upper limit is set at 60%.

N : 0.25%以下 Nはオーステナイト地中に固溶して高温引張強度を高め
る。しかし、多量添加は室温引張延性の低下をきたすの
で、0.25%を上限とする。
N: 0.25% or less N forms a solid solution in the austenite and increases high-temperature tensile strength. However, since adding a large amount causes a decrease in room temperature tensile ductility, the upper limit is set at 0.25%.

Nb:0.2〜2% Nbは、鋳造凝固時に、(Nb、Ti)炭化物を粒界に
形成する。その炭化物の存在によりクリープにおける粒
界破壊抵抗性が高められ、クリープ破断寿命が増大する
。その効果は0.2%以上の添加により現れる。しかし
多量添加に伴って却ってクリープ破断強度が低下し、ま
た耐酸化性も悪くなるので、2%を上限とする。
Nb: 0.2-2% Nb forms (Nb, Ti) carbides at grain boundaries during casting and solidification. The presence of the carbide increases intergranular fracture resistance in creep and increases creep rupture life. The effect appears when 0.2% or more is added. However, as the addition of a large amount increases, the creep rupture strength decreases and the oxidation resistance deteriorates, so the upper limit is set at 2%.

Mo:0.5〜4% MOはオーステナイト地の固溶強化と、Cr−Mo系炭
化物の形成による粒界強化とにより高温引張強度を高め
る。この効果は0.5%以上の添加により得られる。し
かし、あまり多くなると、CrMo系炭化物の析出量が
過剰となり、引張延性の低下をきたすので、4%を上限
とする。
Mo: 0.5 to 4% MO increases high-temperature tensile strength by solid solution strengthening of the austenite base and grain boundary strengthening through the formation of Cr-Mo carbides. This effect can be obtained by adding 0.5% or more. However, if the amount is too large, the amount of precipitated CrMo-based carbides becomes excessive, resulting in a decrease in tensile ductility, so the upper limit is set at 4%.

W:0.5〜lO% Wは、前記MOと同じようにオーステナイト地の固溶強
化と、粒界の炭化物析出による粒界強化によって高温引
張強度を高める。そQ効果は添加量的0.5%から現れ
る。添加増量に伴って耐浸炭性も向上するが、10%を
こえると、室温引張延性の著しい低下をきたすので、1
0%を上限とする。
W: 0.5 to 1O% W increases high-temperature tensile strength by solid solution strengthening of austenitic base and grain boundary strengthening due to carbide precipitation at grain boundaries, similar to the above-mentioned MO. The Q effect appears from an addition amount of 0.5%. Carburization resistance also improves as the amount is increased, but if it exceeds 10%, the room temperature tensile ductility decreases significantly.
The upper limit is 0%.

本発明合金は、上記諸元素のほかに、所望により、Ti
、Zr、およびAIから選ばれる1種ないし2種以上の
元素を含有する。
In addition to the above-mentioned elements, the alloy of the present invention optionally contains Ti.
, Zr, and AI.

A 1 : 0.02〜0.6% AIは、高温域において部材表面にAI酸化物被膜を形
成し、浸炭雰囲気からのCの侵入を抑制する効果を有す
る。この耐浸炭性改善効果を得るには少なくとも0.0
2%の添加を必要とする。添加増量によりその効果を増
すが、あまり多くなると、鋳造性が損なわれ、また引張
延性が低下するので、0.6%を上限とする。
A1: 0.02 to 0.6% AI forms an AI oxide film on the surface of the member in a high temperature range, and has the effect of suppressing the intrusion of C from the carburizing atmosphere. To obtain this carburization resistance improvement effect, at least 0.0
Requires addition of 2%. The effect can be increased by increasing the amount added, but if the amount is too large, castability will be impaired and tensile ductility will be lowered, so the upper limit is set at 0.6%.

T i : 0.01〜0.5% Tiは、部材の実使用時の加熱下におけるCr炭化物の
成長粗大化を抑制遅延させることによりクリープ破断強
度の向上に寄与する。この効果は0.01%以上の添加
により得られる。しかし、多量添加に伴って酸化物系介
在物の増量および析出物の粗大化等により却ってクリー
プ破断強度の低下をきたするで、0.5%を上限とする
Ti: 0.01 to 0.5% Ti contributes to improving the creep rupture strength by suppressing and delaying the coarsening of Cr carbide during heating during actual use of the member. This effect can be obtained by adding 0.01% or more. However, if a large amount is added, the creep rupture strength will decrease due to an increase in the amount of oxide inclusions and coarsening of precipitates, so the upper limit is set at 0.5%.

Z r : 0.01〜0.5% Zrはオーステナイト地の固溶強化により、クリープ破
断強度を高める。この効果は0.01%以上の添加によ
り現れ、添加増量に伴ってその効果を増す。しかし、0
.5%をこえると、合金の清浄度が悪くなり却ってクリ
ープ破断強度の低下をきたす。このため、0.5%を上
限とする。
Zr: 0.01 to 0.5% Zr increases the creep rupture strength by solid solution strengthening of the austenitic base. This effect appears when 0.01% or more is added, and the effect increases as the amount added increases. However, 0
.. If it exceeds 5%, the cleanliness of the alloy deteriorates and the creep rupture strength actually decreases. Therefore, the upper limit is set at 0.5%.

なお、通常の溶製技術上不可避的に混入する不純物はこ
の種の鋼に許容される範囲内で混在して差し支えなく、
例えば0.03%以下のP、0.03%以下のSの混在
によって本発明の趣旨が損なわれることはない。
In addition, impurities that are unavoidable due to normal melting technology may be mixed within the allowable range for this type of steel.
For example, the gist of the present invention is not impaired by the presence of 0.03% or less of P and 0.03% or less of S.

〔実施例〕〔Example〕

高周波誘導溶解炉で溶製した合金溶湯を、遠心力鋳造に
付して供試管材を得た。管サイズ(機械加工後)は、外
径122mm、肉厚10mm、長さ520m+sである
。各供試管材の化学成分組成を第1表に示す。
A molten alloy produced in a high-frequency induction melting furnace was subjected to centrifugal force casting to obtain a test tube material. The pipe size (after machining) is an outer diameter of 122 mm, a wall thickness of 10 mm, and a length of 520 m+s. The chemical composition of each test tube material is shown in Table 1.

表中、N11l〜9は発明例、Na 101.102は
比較例である。比較例阻101.11kL102は、い
ずれも代表的従来材である改良HP相当材である。
In the table, N111-9 are invention examples, and Na 101.102 is a comparative example. Comparative Example 101.11kL102 are all materials equivalent to improved HP, which are typical conventional materials.

各供試管材について、浸炭試験および熱時効後の溶接試
験を行った。
A carburizing test and a welding test after thermal aging were conducted for each test tube material.

(I)浸炭試験 試験片(12φX60I!、 am)を固体浸炭剤(デ
グサKG30)中に埋覆して加熱し、850″Cから1
150°Cまで30Hrを要して昇温させ、1150°
Cに18Hr保持したのち室温まで降温させるヒートパ
タンを17回反復実施(試験時間:  (30Hr+1
8Hr) X 107= 816Hr )。試験後、試
験片表面から5鵬の深さまで、0.5 waのピッチで
切粉を採取し、化学分析により各深さ位置における炭素
増加量を求める。
(I) Carburizing test A test piece (12φX60I!, am) was buried in a solid carburizing agent (Degussa KG30) and heated, and heated from 850″C to 1°C.
It took 30 hours to raise the temperature to 150°C, and then it was heated to 1150°.
A heat pattern in which the temperature was maintained at C for 18 hours and then cooled to room temperature was repeated 17 times (test time: (30 hours + 1
8Hr) x 107=816Hr). After the test, chips were collected at a pitch of 0.5 wa from the surface of the test piece to a depth of 5 mm, and the amount of carbon increase at each depth position was determined by chemical analysis.

〔■〕熟熱時効後溶接試験 供試管材を、1100″Cx1年間の熱時効処理に付し
たのち、時効処理管材同士の突合せ端部を0字開先とし
GTAW溶接による突合せ溶接を行った。
[■] Welding test after aging The test tubes were subjected to thermal aging treatment at 1100″C for 1 year, and then butt welding was performed by GTAW welding with the butt ends of the aged tubes made into a zero-shaped bevel.

(1)開先形状 開先角度:20°、ルート半径=5閣、ルート面:1.
6■、ルートギャップ:0W (2)溶接姿勢 水平 (3)溶接棒 発明例の管材の溶接には溶接棒(a)、比較例の管材の
溶接には溶接棒(b)を使用(溶接棒径はいずれも2.
4++w) !:C0,49%、Si1.55%、  M n 1.
34%。
(1) Bevel shape Bevel angle: 20°, root radius = 5 degrees, root surface: 1.
6■, Root gap: 0W (2) Welding posture Horizontal (3) Welding rod Welding rod (a) is used to weld the pipe material of the invention example, welding rod (b) is used to weld the pipe material of the comparative example (welding rod Both diameters are 2.
4++w)! :C0.49%, Si1.55%, Mn1.
34%.

P O,008%、  S O,003%、Cr25.
3%、Ni35.1%、Nb1.22%、 Wl、28
%、Mo0.32%、残部Fe。
PO,008%, SO,003%, Cr25.
3%, Ni35.1%, Nb1.22%, Wl, 28
%, Mo0.32%, balance Fe.

MJjiJ!D;L:C0,49%、Si1.78%、
  M n 1.04%。
MJjiJ! D; L: C0.49%, Si1.78%,
Mn 1.04%.

P O,005%、  S O,003%、Cr30.
2%、Ni42.6%、Nb1.36%、残部Fe。
PO,005%, SO,003%, Cr30.
2%, Ni 42.6%, Nb 1.36%, balance Fe.

(4)溶接電流:80〜130A、溶接速度75〜12
0m/分。
(4) Welding current: 80-130A, welding speed 75-12
0m/min.

(5)肉盛層数:5層 1記浸炭試験結果を第1図〔I〕 (供試合金阻1〜5
)および同図〔■] (供試合金N116〜9およびN
o、101.102)に、溶接試験結果を第2表にそれ
ぞれ示す、第2表中、「○」は割れ発生のないことを表
している。
(5) Number of overlay layers: 5 layers 1 The results of the carburizing test are shown in Figure 1 [I]
) and the same figure [■] (sample gold N116-9 and N
101, 102) and welding test results are shown in Table 2. In Table 2, "○" indicates that no cracking occurred.

上記試験結果から明らかなように、本発明の耐熱合金は
、代表的な従来材であるHP改良材(阻101、階10
2)に比べて、1100℃をこえる高温域における耐浸
炭性にすぐれており、また高温長時間の熱時効後におけ
る溶接性も良好で、従来のHP改良材(N11101.
Nα102)では初層溶接の熱影響部(HAZ)に割れ
を生じているのに対し、発明例の管材はいずれも割れの
発生は皆無で、健全な溶接継手が形成されている。
As is clear from the above test results, the heat-resistant alloy of the present invention is a typical conventional material with improved HP
Compared to the conventional HP improved material (N11101.
In Nα102), cracks occurred in the heat-affected zone (HAZ) of the first layer weld, whereas in the pipe materials of the invention examples, no cracks occurred at all, and sound welded joints were formed.

溶接試験結果 〔発明の効果〕 本発明の耐熱合金は、1000°Cを越える高温域にお
いて従来材であるHP材やその改良材を凌ぐ材料特性を
有しており、1150℃付近においても卓抜した耐浸炭
性を示し、また高温長時間の熱時効をうけた後にも良好
な溶接性を保有している。従って、エチレン製造用反応
管材料等として有用であり、高温高圧および浸炭環境に
おける反応管の耐久性・安全性が高められ、また長時間
使用により変形等を生じた場合にも、その修復のための
溶接において健全な溶接継手を形成することができ、修
復後の安全な使用を可能にするものである。なお、本発
明の耐熱合金は、リフオーマチューブあるいはラジアン
トチューブ、ハースローラ等の各種高温用構造材料とし
ても有用である。
Welding test results [Effects of the invention] The heat-resistant alloy of the present invention has material properties that surpass those of the conventional material HP material and its improved materials in the high temperature range exceeding 1000°C, and has outstanding properties even at temperatures around 1150°C. It exhibits carburization resistance and maintains good weldability even after being subjected to long-term thermal aging at high temperatures. Therefore, it is useful as a material for reaction tubes for ethylene production, etc., increasing the durability and safety of reaction tubes in high-temperature, high-pressure, and carburizing environments. It is possible to form a sound welded joint during welding, and to enable safe use after repair. The heat-resistant alloy of the present invention is also useful as a structural material for various high-temperature applications such as refoma tubes, radiant tubes, and hearth rollers.

【図面の簡単な説明】 第1図(I)(II)は浸炭試験片の深さ方向の炭素濃
度分布を示すグラフである。
[Brief Description of the Drawings] Figures 1 (I) and (II) are graphs showing the carbon concentration distribution in the depth direction of a carburized test piece.

Claims (1)

【特許請求の範囲】[Claims] 1、C:0.08%以上、0.3%未満、Si:0.5
〜3%、Mn:5%以下、Cr:23〜39%、Ni:
35〜60%、N:0.25%以下、およびNb:0.
2〜2%、Mo:0.5〜4%、W:0.5〜10%か
ら選ばれる1種ないし2種以上、残部実質的にFeから
なる耐浸炭性および溶接性にすぐれた耐熱合金、2、C
:0.08%以上、0.3%未満、Si:0.5〜3%
、Mn:5%以下、Cr:23〜39%、Ni:35〜
60%、N:0.25%以下、並びにNb:0.2〜2
%、Mo:0.5〜4%、W:0.5〜10%から選ば
れる1種ないし2種以上、およびAl:0.02〜0.
6%、Ti:0.01〜0.5%、Zr:0.01〜0
.5%から選ばれる1種ないし2種以上、残部実質的に
Feからなる耐浸炭性および溶接性にすぐれた耐熱合金
1, C: 0.08% or more, less than 0.3%, Si: 0.5
~3%, Mn: 5% or less, Cr: 23-39%, Ni:
35-60%, N: 0.25% or less, and Nb: 0.
A heat-resistant alloy with excellent carburization resistance and weldability, consisting of one or more selected from 2% to 2%, Mo: 0.5% to 4%, W: 0.5% to 10%, and the remainder substantially Fe. ,2,C
: 0.08% or more, less than 0.3%, Si: 0.5-3%
, Mn: 5% or less, Cr: 23-39%, Ni: 35-35%
60%, N: 0.25% or less, and Nb: 0.2-2
%, Mo: 0.5-4%, W: 0.5-10%, and Al: 0.02-0.
6%, Ti: 0.01-0.5%, Zr: 0.01-0
.. A heat-resistant alloy with excellent carburization resistance and weldability, consisting of one or more selected from 5% and the remainder substantially Fe.
JP3676290A 1990-02-16 1990-02-16 Heat-resistant alloy excellent in carburizing resistance and weldability Pending JPH03240930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3676290A JPH03240930A (en) 1990-02-16 1990-02-16 Heat-resistant alloy excellent in carburizing resistance and weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3676290A JPH03240930A (en) 1990-02-16 1990-02-16 Heat-resistant alloy excellent in carburizing resistance and weldability

Publications (1)

Publication Number Publication Date
JPH03240930A true JPH03240930A (en) 1991-10-28

Family

ID=12478764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3676290A Pending JPH03240930A (en) 1990-02-16 1990-02-16 Heat-resistant alloy excellent in carburizing resistance and weldability

Country Status (1)

Country Link
JP (1) JPH03240930A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0765948A2 (en) * 1995-09-29 1997-04-02 Kubota Corporation Heat-resistant Ni-Cr alloy
JP2003073745A (en) * 2001-08-31 2003-03-12 Kawasaki Steel Corp Hearth roll for annealing furnace for stainless steel sheet
GB2542519B (en) * 2014-07-10 2020-04-08 Paralloy Ltd Low ductility alloy

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4927725A (en) * 1972-07-08 1974-03-12
JPS5395822A (en) * 1977-01-31 1978-08-22 Roach Donald Brian Highhstrength* heattresistant alloy for casting use
JPS54125118A (en) * 1978-03-22 1979-09-28 Pompey Acieries Nickel * chromium alloy having very high carburizing resistance under extreme high temperature condition
JPS57116759A (en) * 1981-06-13 1982-07-20 Kubota Ltd Heat resistant cast steel
JPS57116758A (en) * 1981-06-13 1982-07-20 Kubota Ltd Heat resistant cast steel
JPS57116761A (en) * 1981-06-13 1982-07-20 Kubota Ltd Heat resistant cast steel
JPS57116760A (en) * 1981-06-13 1982-07-20 Kubota Ltd Heat resistant cast steel
JPS5873751A (en) * 1981-10-27 1983-05-04 Mitsubishi Heavy Ind Ltd Carburization resistant and heat resistant cast steel
JPS58197248A (en) * 1975-12-02 1983-11-16 アチエリエ・デユ・マノワル・ポンペイ Heat resistant alloy
JPS61186446A (en) * 1985-02-14 1986-08-20 Kubota Ltd Heat resistant alloy
JPH03236448A (en) * 1989-12-28 1991-10-22 Toshiba Corp Cr-ni series heat resistant steel

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4927725A (en) * 1972-07-08 1974-03-12
JPS58197248A (en) * 1975-12-02 1983-11-16 アチエリエ・デユ・マノワル・ポンペイ Heat resistant alloy
JPS5395822A (en) * 1977-01-31 1978-08-22 Roach Donald Brian Highhstrength* heattresistant alloy for casting use
JPS54125118A (en) * 1978-03-22 1979-09-28 Pompey Acieries Nickel * chromium alloy having very high carburizing resistance under extreme high temperature condition
JPS57116759A (en) * 1981-06-13 1982-07-20 Kubota Ltd Heat resistant cast steel
JPS57116758A (en) * 1981-06-13 1982-07-20 Kubota Ltd Heat resistant cast steel
JPS57116761A (en) * 1981-06-13 1982-07-20 Kubota Ltd Heat resistant cast steel
JPS57116760A (en) * 1981-06-13 1982-07-20 Kubota Ltd Heat resistant cast steel
JPS5873751A (en) * 1981-10-27 1983-05-04 Mitsubishi Heavy Ind Ltd Carburization resistant and heat resistant cast steel
JPS61186446A (en) * 1985-02-14 1986-08-20 Kubota Ltd Heat resistant alloy
JPH03236448A (en) * 1989-12-28 1991-10-22 Toshiba Corp Cr-ni series heat resistant steel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0765948A2 (en) * 1995-09-29 1997-04-02 Kubota Corporation Heat-resistant Ni-Cr alloy
EP0765948A3 (en) * 1995-09-29 1997-11-05 Kubota Corporation Heat-resistant Ni-Cr alloy
JP2003073745A (en) * 2001-08-31 2003-03-12 Kawasaki Steel Corp Hearth roll for annealing furnace for stainless steel sheet
GB2542519B (en) * 2014-07-10 2020-04-08 Paralloy Ltd Low ductility alloy

Similar Documents

Publication Publication Date Title
JP4975888B2 (en) Ni-added steel sheet and manufacturing method thereof
KR101809360B1 (en) METHOD FOR PRODUCING Ni-BASED HEAT-RESISTANT ALLOY WELDING JOINT AND WELDING JOINT OBTAINED BY USING THE SAME
JPWO2019168119A1 (en) Austenitic stainless steel welded joint
WO1995027586A1 (en) Alloy foil capable of liquid-phase diffusion welding of heat-resisting material in oxidizing atmosphere
WO1995026419A1 (en) Liquid-phase diffusion bonding alloy foil for heat-resistant material which is joinable in oxidizing atmosphere
WO1998022255A1 (en) Wire for welding high-chromium steel
JP6870748B2 (en) Austenitic stainless steel
JPS5980752A (en) Steel material having superior resistance to cracking due to hydrogen embrittlement in hydrogen sulfide environment
JP5355919B2 (en) Austenitic high Ni steel materials welded joint structure and welding method
JP2021105204A (en) Austenitic heat-resistant steel
JP2021049570A (en) Austenitic stainless steel weld joint
JPH03240930A (en) Heat-resistant alloy excellent in carburizing resistance and weldability
JPWO2018066573A1 (en) Austenitic heat-resistant alloy and welded joint using the same
JPH0250976B2 (en)
JPS61186446A (en) Heat resistant alloy
JP4542361B2 (en) Ferritic ERW boiler tube with excellent reheat cracking resistance and its manufacturing method
JP3329262B2 (en) Welding materials and welded joints with excellent resistance to reheat cracking
JP2002018593A (en) Welding material for low alloy heat resistant steel and weld metal
JPS61201759A (en) High strength and toughness welded steel pipe for line pipe
JP7360032B2 (en) Austenitic heat resistant steel welded joints
JP2622516B2 (en) Welding material for heat resistant steel with excellent creep strength
JPS6228097A (en) Wire for mig arc welding of austenitic stainless steel
JPH051355A (en) Heat resistant cast steel improved in creep fracture strength
JPH08188854A (en) Ferritic stainless steel for bellows, excellent in high temperature fatigue characteristic
JPH046242A (en) Heat-resistant cast steel