JP3895089B2 - Heat resistant alloy with excellent carburization and metal dusting resistance - Google Patents

Heat resistant alloy with excellent carburization and metal dusting resistance Download PDF

Info

Publication number
JP3895089B2
JP3895089B2 JP2000061535A JP2000061535A JP3895089B2 JP 3895089 B2 JP3895089 B2 JP 3895089B2 JP 2000061535 A JP2000061535 A JP 2000061535A JP 2000061535 A JP2000061535 A JP 2000061535A JP 3895089 B2 JP3895089 B2 JP 3895089B2
Authority
JP
Japan
Prior art keywords
carburization
metal dusting
resistance
tube
resistant alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000061535A
Other languages
Japanese (ja)
Other versions
JP2001247940A (en
Inventor
誠 高橋
猛 鳥越
正弘 乾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2000061535A priority Critical patent/JP3895089B2/en
Publication of JP2001247940A publication Critical patent/JP2001247940A/en
Application granted granted Critical
Publication of JP3895089B2 publication Critical patent/JP3895089B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、直接還元製鉄炉のリヒータチューブ、エチレン製造用クラッキングチューブ等の管材として好適な耐熱合金に関する。
【0002】
【従来の技術】
直接還元製鉄プロセスでは、水素を用いて鉄鉱石(酸化鉄)を還元することにより金属鉄が製造される。還元後の排ガスは、水素、一酸化炭素、水蒸気等を含んでおり、約450〜750℃の温度に加熱されたリヒータチューブの中を通り再使用に供される。
エチレン製造プロセスでは、約1000〜1200℃の温度に加熱されたクラッキングチューブの中を、液状又はガス状の炭化水素を通過させて熱分解が行われる。
このリヒータチューブ、クラッキングチューブとして、Cr及びNiを多量に含有するFe−Cr−Ni系耐熱合金が広く使用されている。
【0003】
【発明が解決しようとする課題】
直接還元製鉄用リヒータチューブの場合、継続的に使用していると、チューブの一部が減肉する問題がある。
この減肉は、メタルダスティングと称される現象で、チューブ内面での浸炭脆化に原因があると考えられており、約450〜750℃の温度域で生じ易い。すなわち、水素と一酸化炭素を含む還元性ガスが加熱されると、CO+H2→C+H2O、2CO→CO2+Cの反応が起こり、カーボンが析出してチューブ内面に付着する。カーボンは、チューブ内へ侵入して浸炭が起こる。浸炭部では、Cr炭化物が形成されるため、マトリックス中のCr量が減少する結果、水素を含む環境下で材質が脆化し、金属がダストのように崩落する。チューブの減肉が著しくなると、チューブの交換を余儀なくされる。
また、エチレン製造用クラッキングチューブの場合も、原料炭化水素からカーボンが不可避的に析出し、チューブ内面に付着するため、高温での浸炭が進行すると管材質の劣化が起こる。
それゆえ、この種用途の材料にあっては、耐浸炭性及び耐メタルダスティング性の向上が要請されている。
【0004】
【課題を解決するための手段】
本発明は、重量%にて、C:0.05〜0.6%、Si:2.5%以下、Mn:1.5〜6%、Cr:23〜46%、Ni:23〜50%、Ce:0 . 005〜0 . 25%、並びに、W:6%以下、Nb:2%以下及びMo:2%以下からなる群から選択される少なくとも1種を含み、残部Fe及び不可避の不純物からなり、耐浸炭性及び耐メタルダスティング性にすぐれる耐熱合金を提供する。本発明の耐熱合金は、必要に応じて、Al:0.01〜0.5%、Ti:0.01〜0.4%、Zr:0.01〜0.3%を必要に応じて含むことができる。
【0005】
【成分限定理由の説明】
C:0.05〜0.6%
Cは鋳造凝固時に結晶粒界にNbC又はCr−W系炭化物を形成し、粒界を強化してクリープ破断強度を高める。クリープ破断強度の向上は0.05%から認められるが、0.6%を越えると常温引張延性が低下するため、含有量は0.05〜0.6%とする。
【0006】
Si:2.5%以下
Siは脱酸作用を有し、溶湯の流動性を高めると共に、耐浸炭性を向上させる効果がある。約1200℃までの浸炭腐食環境において、表面近傍に内部酸化膜SiO2を形成して、C侵入のバリアとしての効果を有する。含有量の増加と共に効果を増すが、2.5%を越えるとクリープ破断強度が著しく低下する。よって上限を2.5%に規定する。なお、1.3〜2.0%が好ましい。
【0007】
Mn:1.5〜6%
Mnは、Sを固定する作用があり、溶接性を向上させる。また、マトリックスに固溶し、密着性の強いMn酸化物を金属表面に形成して耐浸炭性及び耐メタルダスティング性を向上させる効果がある。このため、1.5%以上含有させる。
一方、6%を越えるとクリープ破断強度が低下するため、上限は6%に規定する。なお、3.5〜5%が好ましく、4〜5%がより好ましい。
【0008】
Cr:23〜46%
Crは耐酸化性の向上に寄与する。約1200℃までの使用温度において、Niとの共存下で耐酸化性を確保するために23%以上必要とする。しかし、Niとのバランスにおいて、46%を越えると常温引張延伸びの低下が著しくなるため、46%を上限とする。
【0009】
Ni:23〜50%
Niはオーステナイト相を安定化し、耐酸化性と高温強度の確保に有効である。約1200℃までの高温使用を考慮すると23%以上必要である。しかし、50%を越えて含有しても対応する高温強度の向上は望めないので、50%を上限とする。
【0010】
W、Nb、Moは、少なくとも1種以上を含有させる。
W:6%以下
Wはマトリックスに固溶すると共に、Cr−W系炭化物を形成してクリープ破断強度の向上に寄与する。含有量の増加と共にその効果を増すが、6%を越えると常温引張伸びの低下が著しくなるので、上限は6%とする。
【0011】
Nb:2%以下
Nbはクリープ破断強度の向上に寄与する。しかし、2%を越えると常温引張伸びの低下を招くので、上限は2%とする。
【0012】
Mo:2%以下
Moはクリープ破断強度の向上に寄与し、高温引張強度を向上させる。しかし、2%を越えると常温引張伸びの低下を招くので、上限は2%とする。
【0013】
Ce:0.005〜0.25%
CeはCO−H2−H2Oの還元性雰囲気において、耐浸炭性及び耐メタルダスティング性を向上させる。このため、必要に応じて0.005%以上含有させることが好ましい。しかし、含有量が0.25%を越えると、鋳造時に酸化物を生成して鋼の清浄度の低下が大きくなるため、上限は0.25%とする。
【0014】
Al:0.01〜0.5%
Alは耐浸炭性を向上させる効果があるので、必要に応じて0.01%以上含有させる。しかし、含有量が0.5%を越えると強度低下を招く。このため、含有量は0.01〜0.5%が好ましい。
【0015】
Ti:0.01〜0.4%
Tiはクリープ破断強度の向上に寄与するため、必要に応じて0.01%以上含有させる。しかし、含有量が0.4%を越えると、常温引張延性の低下を招くので上限は0.4%とする。
【0016】
Zr:0.01〜0.3%
Zrはクリープ破断強度の向上に寄与するため、必要に応じて0.01%以上含有させる。しかし、含有量が0.3%を越えると、常温引張延性の低下を招くので上限は0.3%とする。
【0017】
本発明の耐熱合金は、上記成分元素を含有し、残部は実質的にFeからなる。
なお、合金の溶製時に不可避的に混入する不純物であっても、この種の合金に通常許容される範囲内であれば、存在しても構わない。例えば、P、Sについては、P:0.2%以下、S:0.2%以下の含有は許容される。
【0018】
【実施例】
直接還元製鉄のリヒータチューブがメタルダスティングを受ける温度範囲は約450〜750℃の比較的低い温度域であるため、600℃で浸炭試験を実施し、耐浸炭性及び耐メタルダスティング性を調べた。
エチレン製造用クラッキングチューブの加熱温度は約1000〜1150℃の高い温度域であるため、1000℃で浸炭試験を実施し、耐浸炭性を調べた。
さらに、高温引張クリープ破断試験を行ない、クリープ破断強度を調べた。
【0019】
600℃での浸炭試験
表1に示す合金化学成分の供試材を溶製し、得られた供試材から幅20mm×長さ30mm×厚さ5mmの試験片を切り出した。試験片は、長さ方向の端縁から7.5mm、幅方向の端縁から10mmの位置に直径5mmの貫通孔を形成した後、#400のエメリーペーパを用いて表面を滑らかに仕上げた。なお、表1中、No.1〜No. 11は参考例、No.12は発明例であり、No.13〜No.16はMn量が少ない比較例である。直接還元製鉄のリヒータチューブ内を流通するCOリッチのCO−H2−H2Oガスをシミュレートしたガスとして、CO:0.06リットル/分、H2:0.02リットル/分の混合ガスを25℃の加湿器に通した後、実験炉内へ供給した。各試験片は、重量測定を行なった後、孔の中に直径4mmの棒を通して、600℃の温度の実験炉の中で吊り下げた。900時間経過後、試験片を実験炉から取り出し、表面の付着物を毛ブラシできれいにこすり取り、超音波洗浄を行なった後、再び重量測定を行なった。測定結果を試験片1cm2当たりの重量変化に換算し、その重量変化量を表2に記載している。
【0020】
【表1】

Figure 0003895089
【0021】
【表2】
Figure 0003895089
【0022】
表2を参照すると、比較例のNo.15とNo.16は No.1〜No.12と比べて、重量増加が多く、浸炭が進行していることを示している。比較例のNo.13とNo.14は重量が減少している。これは、メタルダスティング現象による金属の崩落を生じたためである。すなわち、Mnの含有量が少ないため浸炭が進んでCr炭化物の生成量が多くなり、またCrの含有量が24〜25%と少な目であることから、マトリックス中のCr濃度が低下して、材質の脆化を起こしたためと考えられる。なお、前述のNo.15とNo.16は、No.13とNo.14よりもCrの含有量が多いため、浸炭が起こっても、マトリックス中のCr濃度の低下が材質の脆化を起こすまでに至っていない。このように、Mn酸化物は金属表面での密着性が強く、耐浸炭性、さらには耐メタルダスティング性に非常に有効であることがわかる No.1とNo.2の重量増加が若干多くなっているのは、Crの含有量が少な目であることによる。それゆえ、耐浸炭性を向上させるには、Crの含有量は約30%を越えることが望ましく、約35%以上がさらに望ましい。
【0023】
1000℃浸炭試験
エチレン製造用分解炉のクラッキングチューブを流通するCH4−H2−H2Oガスをシミュレートしたガスとして、CH4:0.06リットル/分、H2:0.03リットル/分の混合ガスを34℃の加湿器に通した後、実験炉内へ供給した。
各試験片は、メタルダスティング試験と同じように重量測定を行なった後、孔の中に直径4mmの棒を通して、1000℃の温度の実験炉の中で吊り下げた。125時間経過後、試験片を実験炉から取り出し、表面の付着物を毛ブラシできれいにこすり取り、超音波洗浄を行なった後、再び重量測定を行なった。重量変化量を表2に併せて記載している。
【0024】
表2を参照すると、No.13〜No.16の重量増加は、No.1〜No.12よりも多く、耐浸炭性に劣ることを示している。これはMnの含有量が少ないためである。
【0025】
高温クリープ破断試験
表1に示す合金化学成分の供試材から、直径6mm、標点間長さ30mmの試験片を切り出し、試験温度982℃、応力34.3Nの条件にて引張クリープ破断試験(JIS Z 2272)を行ない、破断時間を測定した。測定結果を表2に併せて記載している。
発明例は、直接還元製鉄炉のリヒータチューブ、エチレン製造用分解炉のクラッキングチューブとして必要な高温強度を具えている。
【0026】
【発明の効果】
本発明の耐熱合金は、耐浸炭性及び耐メタルダスティング性にすぐれているから、直接還元製鉄炉のリヒータチューブとして好適である。また、高温での浸炭性にすぐれているから、エチレン製造用分解炉のクラッキングチューブとしても適している。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat-resistant alloy suitable as a pipe material such as a reheater tube of a direct reduction iron making furnace or a cracking tube for ethylene production.
[0002]
[Prior art]
In the direct reduction iron making process, metallic iron is produced by reducing iron ore (iron oxide) using hydrogen. The exhaust gas after the reduction contains hydrogen, carbon monoxide, water vapor, and the like, and is passed through a reheater tube heated to a temperature of about 450 to 750 ° C. and is reused.
In the ethylene production process, thermal cracking is performed by passing liquid or gaseous hydrocarbons through a cracking tube heated to a temperature of about 1000 to 1200 ° C.
As this reheater tube and cracking tube, a Fe—Cr—Ni heat resistant alloy containing a large amount of Cr and Ni is widely used.
[0003]
[Problems to be solved by the invention]
In the case of the direct reduction steel reheater tube, there is a problem that a part of the tube is thinned when continuously used.
This thinning is a phenomenon called metal dusting, which is considered to be caused by carburization embrittlement on the inner surface of the tube, and is likely to occur in a temperature range of about 450 to 750 ° C. That is, when a reducing gas containing hydrogen and carbon monoxide is heated, a reaction of CO + H 2 → C + H 2 O, 2CO → CO 2 + C occurs, and carbon is deposited and adheres to the inner surface of the tube. Carbon enters the tube and carburization occurs. In the carburized portion, Cr carbide is formed. As a result, the amount of Cr in the matrix is reduced. As a result, the material becomes brittle in an environment containing hydrogen, and the metal collapses like dust. When the tube becomes thin, the tube must be replaced.
Also, in the case of cracking tubes for ethylene production, carbon inevitably precipitates from the raw material hydrocarbon and adheres to the inner surface of the tube, so that deterioration of the tube material occurs when carburizing at a high temperature proceeds.
Therefore, in this type of material, there is a demand for improved carburization resistance and metal dusting resistance.
[0004]
[Means for Solving the Problems]
In the present invention, by weight, C: 0.05-0.6%, Si: 2.5% or less, Mn: 1.5-6%, Cr: 23-46%, Ni: 23-50% , Ce:.. 0 005~0 25 %, and, W: 6% or less, Nb: 2% or less and Mo: comprises at least one member selected from the 2% group consisting of the balance Fe and unavoidable impurities And a heat-resistant alloy having excellent carburization resistance and metal dusting resistance. Heat-resistant alloy of the present invention may optionally, A l: 0.01~0.5%, Ti : 0.01~0.4%, Zr: 0.01~0.3% , if necessary Can be included.
[0005]
[Explanation of component limitation reasons]
C: 0.05-0.6%
C forms NbC or Cr—W carbide at the grain boundaries during casting solidification, strengthens the grain boundaries and increases the creep rupture strength. The improvement in creep rupture strength is recognized from 0.05%, but if it exceeds 0.6%, the normal temperature tensile ductility is lowered, so the content is made 0.05 to 0.6%.
[0006]
Si: 2.5% or less Si has a deoxidizing action and has an effect of improving the carburization resistance while improving the fluidity of the molten metal. In a carburizing and corrosive environment up to about 1200 ° C., an internal oxide film SiO 2 is formed in the vicinity of the surface and has an effect as a barrier against C penetration. The effect increases as the content increases, but if it exceeds 2.5%, the creep rupture strength is significantly reduced. Therefore, the upper limit is specified as 2.5%. In addition, 1.3 to 2.0% is preferable.
[0007]
Mn: 1.5-6%
Mn has an effect of fixing S and improves weldability. Moreover, it has the effect of improving carburization resistance and metal dusting resistance by forming a solid solution Mn oxide on the metal surface by dissolving in the matrix. For this reason, it is made to contain 1.5% or more.
On the other hand, if it exceeds 6%, the creep rupture strength decreases, so the upper limit is defined as 6%. In addition, 3.5 to 5% is preferable and 4 to 5% is more preferable.
[0008]
Cr: 23 to 46%
Cr contributes to the improvement of oxidation resistance. At a use temperature up to about 1200 ° C., 23% or more is required to ensure oxidation resistance in the presence of Ni. However, in the balance with Ni, if it exceeds 46%, the decrease in room temperature tensile drawing becomes significant, so 46% is made the upper limit.
[0009]
Ni: 23 to 50%
Ni stabilizes the austenite phase and is effective in securing oxidation resistance and high temperature strength. Considering high temperature use up to about 1200 ° C., 23% or more is necessary. However, even if the content exceeds 50%, a corresponding improvement in high-temperature strength cannot be expected, so 50% is made the upper limit.
[0010]
W, Nb, and Mo contain at least one kind.
W: 6% or less W dissolves in the matrix and forms Cr—W-based carbides to contribute to the improvement of creep rupture strength. The effect increases as the content increases, but if it exceeds 6%, the ordinary temperature tensile elongation decreases significantly, so the upper limit is made 6%.
[0011]
Nb: 2% or less Nb contributes to the improvement of creep rupture strength. However, if it exceeds 2%, the normal temperature tensile elongation is lowered, so the upper limit is made 2%.
[0012]
Mo: 2% or less Mo contributes to improvement of creep rupture strength and improves high-temperature tensile strength. However, if it exceeds 2%, the normal temperature tensile elongation is lowered, so the upper limit is made 2%.
[0013]
Ce: 0.005 to 0.25%
Ce improves carburization resistance and metal dusting resistance in a reducing atmosphere of CO—H 2 —H 2 O. For this reason, it is preferable to make it contain 0.005% or more as needed. However, if the content exceeds 0.25%, oxides are generated during casting and the reduction in the cleanliness of the steel becomes large, so the upper limit is made 0.25%.
[0014]
Al: 0.01 to 0.5%
Since Al has an effect of improving carburization resistance, 0.01% or more is contained as necessary. However, when the content exceeds 0.5%, the strength is reduced. For this reason, the content is preferably 0.01 to 0.5%.
[0015]
Ti: 0.01 to 0.4%
Ti contributes to the improvement of creep rupture strength, so 0.01% or more is contained as necessary. However, if the content exceeds 0.4%, the normal temperature tensile ductility is lowered, so the upper limit is made 0.4%.
[0016]
Zr: 0.01 to 0.3%
Since Zr contributes to the improvement of creep rupture strength, it is contained in an amount of 0.01% or more as necessary. However, if the content exceeds 0.3%, the normal temperature tensile ductility is lowered, so the upper limit is made 0.3%.
[0017]
The heat-resistant alloy of the present invention contains the above component elements, and the balance is substantially made of Fe.
It should be noted that impurities that are inevitably mixed during the melting of the alloy may exist as long as they are within a range that is normally allowed for this type of alloy. For example, P and S are allowed to contain P: 0.2% or less and S: 0.2% or less.
[0018]
【Example】
The temperature range in which the direct reduction steel reheater tube is subjected to metal dusting is a relatively low temperature range of about 450 to 750 ° C. Carburization tests are conducted at 600 ° C to improve carburization resistance and metal dusting resistance. Examined.
Since the heating temperature of the cracking tube for ethylene production is a high temperature range of about 1000 to 1150 ° C., a carburization test was conducted at 1000 ° C. to examine carburization resistance.
Further, a high temperature tensile creep rupture test was conducted to examine the creep rupture strength.
[0019]
Carburization test at 600 ° C. Test materials having the chemical composition of the alloys shown in Table 1 were melted, and test pieces of width 20 mm × length 30 mm × thickness 5 mm were cut out from the obtained test materials. The test piece was formed with a through hole having a diameter of 5 mm at a position of 7.5 mm from the edge in the length direction and 10 mm from the edge in the width direction, and then the surface was smoothly finished using # 400 emery paper. In Table 1, No. 1 to No. 11 are reference examples, No. 12 is an invention example, and No. 13 to No. 16 are comparative examples with a small amount of Mn. As a gas simulating CO-rich CO—H 2 —H 2 O gas flowing through a reductor tube made of direct reduction steel, a mixture of CO: 0.06 liter / min, H 2 : 0.02 liter / min The gas was passed through a humidifier at 25 ° C. and then supplied into the experimental furnace. Each specimen was weighed and then suspended in a laboratory furnace at a temperature of 600 ° C. by passing a 4 mm diameter rod through the hole. After 900 hours, the test piece was taken out from the experimental furnace, the surface deposits were scraped off with a bristle brush, subjected to ultrasonic cleaning, and then weighed again. The measurement result is converted into a weight change per 1 cm 2 of the test piece, and the weight change amount is shown in Table 2.
[0020]
[Table 1]
Figure 0003895089
[0021]
[Table 2]
Figure 0003895089
[0022]
Referring to Table 2, No.15 and No.16 of the comparative example, as compared to No .1~Nanba12, shows that weight gain is large, carburization is in progress. The comparative examples No. 13 and No. 14 are reduced in weight. This is because the metal collapsed due to the metal dusting phenomenon. That is, since the Mn content is low, carburization proceeds and the amount of Cr carbide generated increases, and since the Cr content is as low as 24 to 25%, the Cr concentration in the matrix decreases, and the material This is thought to be due to the occurrence of embrittlement. In addition, since the above-mentioned No. 15 and No. 16 have a higher Cr content than No. 13 and No. 14, even if carburization occurs, a decrease in Cr concentration in the matrix causes embrittlement of the material. It has not yet reached. Thus, it can be seen that Mn oxide has strong adhesion on the metal surface and is very effective in carburization resistance and further metal dusting resistance . The reason why the weight increase of No. 1 and No. 2 is slightly increased is that the Cr content is small. Therefore, in order to improve carburization resistance, the Cr content is desirably more than about 30%, more preferably about 35% or more.
[0023]
1000 ° C. carburization test CH 4 —H 2 —H 2 O gas flowing through a cracking tube of a cracking furnace for ethylene production was simulated as CH 4 : 0.06 liter / min, H 2 : 0. A mixed gas of 0.03 liter / min was passed through a humidifier at 34 ° C. and then supplied into the experimental furnace.
Each test piece was weighed in the same manner as the metal dusting test, and then passed through a 4 mm diameter rod in the hole and suspended in an experimental furnace at a temperature of 1000 ° C. After 125 hours, the test piece was taken out from the experimental furnace, the surface deposits were scraped off with a bristle brush, subjected to ultrasonic cleaning, and then weighed again. The amount of weight change is also shown in Table 2.
[0024]
When Table 2 is referred, the weight increase of No.13-No.16 is more than No.1-No.12, and has shown that it is inferior to carburization resistance. This is because the Mn content is low.
[0025]
High-temperature creep rupture test A test piece having a diameter of 6 mm and a length between gauge points of 30 mm was cut out from a test material having the chemical composition of the alloy shown in Table 1, and tensioned at a test temperature of 982 ° C and a stress of 34.3 N. A creep rupture test (JIS Z 2272) was performed, and the rupture time was measured. The measurement results are also shown in Table 2.
The invention example has high-temperature strength necessary as a reheater tube for a direct reduction iron making furnace and a cracking tube for a cracking furnace for producing ethylene.
[0026]
【The invention's effect】
Since the heat-resistant alloy of the present invention is excellent in carburization resistance and metal dusting resistance, it is suitable as a reheater tube for a direct reduction steelmaking furnace. In addition, since it is excellent in carburizing properties at high temperatures, it is also suitable as a cracking tube for ethylene production cracking furnaces.

Claims (1)

重量%にて、C:0.05〜0.6%、Si:2.5%以下、Mn:1.5〜6%、Cr:23〜46%、Ni:23〜50%、Ce:0.005〜0.25%、並びに、W:6%以下、Nb:2%以下及びMo:2%以下からなる群から選択される少なくとも1種を含み、残部Fe及び不可避の不純物である耐浸炭性及び耐メタルダスティング性にすぐれる耐熱合金。  By weight%, C: 0.05-0.6%, Si: 2.5% or less, Mn: 1.5-6%, Cr: 23-46%, Ni: 23-50%, Ce: 0 0.005 to 0.25%, and carburization resistant carbon containing at least one selected from the group consisting of W: 6% or less, Nb: 2% or less, and Mo: 2% or less, the balance being Fe and inevitable impurities Heat resistant alloy with excellent metal dusting resistance.
JP2000061535A 2000-03-07 2000-03-07 Heat resistant alloy with excellent carburization and metal dusting resistance Expired - Lifetime JP3895089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000061535A JP3895089B2 (en) 2000-03-07 2000-03-07 Heat resistant alloy with excellent carburization and metal dusting resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000061535A JP3895089B2 (en) 2000-03-07 2000-03-07 Heat resistant alloy with excellent carburization and metal dusting resistance

Publications (2)

Publication Number Publication Date
JP2001247940A JP2001247940A (en) 2001-09-14
JP3895089B2 true JP3895089B2 (en) 2007-03-22

Family

ID=18581663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000061535A Expired - Lifetime JP3895089B2 (en) 2000-03-07 2000-03-07 Heat resistant alloy with excellent carburization and metal dusting resistance

Country Status (1)

Country Link
JP (1) JP3895089B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3952861B2 (en) 2001-06-19 2007-08-01 住友金属工業株式会社 Metal material with metal dusting resistance
JP4513466B2 (en) * 2004-09-07 2010-07-28 住友金属工業株式会社 Welded joints and welding materials
CN101300371B (en) * 2005-10-31 2011-02-09 株式会社久保田 Heat-resistant alloy capable of depositing fine Ti-Nb-Cr carbide or Ti-Nb-Zr-Cr carbide
JP5346649B2 (en) * 2009-03-31 2013-11-20 株式会社クボタ Nb-containing austenitic heat resistant steel with excellent creep resistance after aging
CN105200338B (en) * 2014-05-30 2017-07-28 中国石油化工股份有限公司 A kind of anti-coking alloy material and application
CN107326217A (en) * 2017-06-27 2017-11-07 西北工业大学 A kind of ni-fe-based alloy of high-carbon containing niobium and preparation method
CN108130492A (en) * 2017-12-03 2018-06-08 江苏长友特钢机械有限公司 Overhang roll and its manufacturing method

Also Published As

Publication number Publication date
JP2001247940A (en) 2001-09-14

Similar Documents

Publication Publication Date Title
JP5177330B1 (en) Carburization-resistant metal material
CA2711415C (en) Carburization resistant metal material
JP6068158B2 (en) Cast products having an alumina barrier layer
JP2003073763A (en) Metal material having metal dusting resistance
WO2013141030A1 (en) Cast product having alumina barrier layer, and method for manufacturing same
JP6309576B2 (en) Reaction tube for ethylene production having an alumina barrier layer
JPWO2010113830A1 (en) Cast products having an alumina barrier layer
JP2019085643A (en) Heat-resistant alloy and reaction tube
JPWO2018003823A1 (en) Austenitic stainless steel
CN111394663A (en) Heat-resistant iron-based alloy and preparation method thereof
JP3895089B2 (en) Heat resistant alloy with excellent carburization and metal dusting resistance
JP2004197150A (en) Metal dusting resistant metallic material having excellent high temperature strength
JP2004052036A (en) Member for heating furnace having excellent carburization resistance
JP5977054B2 (en) Method for producing a cast product having an alumina barrier layer
JP3644532B2 (en) Ni-base heat-resistant alloy with excellent hot workability, weldability and carburization resistance
WO2019088075A1 (en) Heat-resistant alloy, and reaction tube
KR102645013B1 (en) Welding metal for dissimilar base material joint and welding method using the same
JP3921943B2 (en) Ni-base heat-resistant alloy
EP0765948B1 (en) Heat-resistant Ni-Cr alloy
JPH07258783A (en) Heat resistant alloy excellent in carburization resistance
JP4023288B2 (en) Metal composite tube with excellent carburization resistance
JP2018003064A (en) Austenite-based stainless steel
JPH07258780A (en) Heat resistant alloy excellent in carburization resistance
JP2022155181A (en) austenitic stainless steel
JPH03111537A (en) Heat-resistant alloy excellent in carburization resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061213

R150 Certificate of patent or registration of utility model

Ref document number: 3895089

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

EXPY Cancellation because of completion of term