JP6259336B2 - Ni-based alloy and method for producing the same - Google Patents

Ni-based alloy and method for producing the same Download PDF

Info

Publication number
JP6259336B2
JP6259336B2 JP2014064103A JP2014064103A JP6259336B2 JP 6259336 B2 JP6259336 B2 JP 6259336B2 JP 2014064103 A JP2014064103 A JP 2014064103A JP 2014064103 A JP2014064103 A JP 2014064103A JP 6259336 B2 JP6259336 B2 JP 6259336B2
Authority
JP
Japan
Prior art keywords
concentration
based alloy
passive film
alloy
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2014064103A
Other languages
Japanese (ja)
Other versions
JP2015183290A (en
Inventor
孝文 菊竹
孝文 菊竹
秀信 横尾
秀信 横尾
轟 秀和
秀和 轟
富高 韋
富高 韋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=54350178&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6259336(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP2014064103A priority Critical patent/JP6259336B2/en
Publication of JP2015183290A publication Critical patent/JP2015183290A/en
Application granted granted Critical
Publication of JP6259336B2 publication Critical patent/JP6259336B2/en
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、化学プラント、天然ガス配管及び容器に代表される各種用途に使用される耐食性に優れたNi基合金に関するものである。   The present invention relates to a Ni-based alloy having excellent corrosion resistance and used for various applications represented by chemical plants, natural gas piping and containers.

Ni基合金は、優れた耐食性を有するため腐食性の強い過酷な環境で使用される。Ni基合金は、主成分であるNi、Cr、Mo、合金によってはNb、Wといった比較的高価な金属元素を含有し、その母材そのものの耐食性を高めている。   Ni-based alloys have excellent corrosion resistance and are used in harsh environments with strong corrosivity. Ni-based alloys contain relatively expensive metal elements such as Ni, Cr, Mo, which are main components, and Nb and W depending on the alloy, and enhance the corrosion resistance of the base material itself.

この合金の耐食性を十分に引き出すには、適切な表面処理を施す必要がある。ステンレス鋼では、各種表面処理方法により耐食性を維持する技術が開示されている(たとえば、特許文献1参照)。   In order to fully bring out the corrosion resistance of this alloy, it is necessary to perform an appropriate surface treatment. For stainless steel, a technique for maintaining corrosion resistance by various surface treatment methods is disclosed (for example, see Patent Document 1).

しかしながら、Ni基合金においては、耐食性に及ぼす表面状態の影響が十分に解明されているとは言いがたかった。その理由は、Ni含有量が高くなるほど不動態皮膜は緻密になるが薄くなることに起因する。   However, it has not been said that the influence of the surface state on the corrosion resistance has been sufficiently elucidated in the Ni-based alloy. The reason is that the higher the Ni content, the denser and thinner the passive film.

このような事実から、Ni基合金の表面状態を均一かつ安定に制御することは困難であったといえる。さらに、その表面状態つまり不動態皮膜の厚みや組成を正確に測定する技術も完成しているとは言いがたかった。   From these facts, it can be said that it was difficult to control the surface state of the Ni-based alloy uniformly and stably. Furthermore, it was difficult to say that the technology for accurately measuring the surface state, that is, the thickness and composition of the passive film was completed.

また、合金に含有される非金属介在物や析出物の存在も、耐食性に影響を及ぼす事が知られている。その理由は、非金属介在物や析出物の上に皮膜が形成せずに、腐食の起点になるためである。代表的な非金属介在物としては、脱酸生成物、硫化物があり、代表的な析出物には炭化物あるいは金属間化合物がある。したがって、合金中の酸素(O)、硫黄(S)、炭素(C)濃度を安定して低下させる技術も望まれていた(以上、例えば、非特許文献参照)。   It is also known that the presence of non-metallic inclusions and precipitates contained in the alloy affects the corrosion resistance. The reason is that a film is not formed on non-metallic inclusions or precipitates, and becomes a starting point of corrosion. Typical non-metallic inclusions include deoxidation products and sulfides, and typical precipitates include carbides or intermetallic compounds. Therefore, a technique for stably reducing the oxygen (O), sulfur (S), and carbon (C) concentrations in the alloy has also been desired (see, for example, non-patent literature).

特開2012−170961号公報JP 2012-170961 A

杉本克久:“金属腐食工学”、内田老鶴圃、2009年P.113Sugimoto Katsuhisa: “Metal Corrosion Engineering”, Uchida Otsukuru, 2009, p. 113 原 信義:“鉄鋼材料の腐食科学に関する最近の進歩と今後の展望”、第211、212回西山記念技術講座、2012年P.137Nobuyoshi Hara: “Recent Advances and Future Prospects on Corrosion Science of Steel Materials”, No. 211, 212 Nishiyama Memorial Technology Course, 2012, p. 137 杉本克久:鉄と鋼、70(1984)、P.637Sugimoto Katsuhisa: Iron and Steel, 70 (1984), p. 637 和泉 修 監修:“非鉄材料”、日本金属学会編、丸善、(1987)、P.154Supervised by Osamu Izumi: “Nonferrous Materials”, edited by the Japan Institute of Metals, Maruzen (1987), p. 154

上記した従来技術に鑑み、まずNi基合金の表面状態を正しく測定する技術開発を推進した。その測定技術に基づいて、不動態皮膜の厚み並びに組成を把握することを第一の目的に置いた。すなわち、本発明は、優れた耐食性を引き出すことのできる不動態皮膜の状態を有するNi基合金を提供することを目的とする。さらに、本発明では、合金の耐食性を安定化するために、O、S、Cを低く制御する製造方法も提案することを目的とする。   In view of the above-described conventional technology, first, technological development for correctly measuring the surface state of the Ni-based alloy was promoted. Based on the measurement technique, the primary purpose was to grasp the thickness and composition of the passive film. That is, an object of the present invention is to provide a Ni-based alloy having a state of a passive film that can bring out excellent corrosion resistance. Furthermore, an object of the present invention is to propose a manufacturing method in which O, S, and C are controlled to be low in order to stabilize the corrosion resistance of the alloy.

本発明のNi基合金は、C:0.002〜0.05%、S:0.0001〜0.005%、Cr:10〜25%、Mo:5〜20%、O:0.0001〜0.005%、Al:0.01〜0.5%、Fe:0.5〜10%、残部Niおよび不可避的不純物からなるNi基合金であって、オージェ電子分光法を用いて、加速電圧10kV、試料電流量0.01μAとしてNi基合金の深さ方向に1kVの条件でスパッタしながら測定した各元素のプロファイルから算出した場合の、合金の表面に形成される不動態皮膜部におけるCr濃度(at.%)/Ni濃度(at.%)の比が0.2以上であり、ASTM G48 Method D試験において臨界隙間腐食発生温度(CCT)が40℃以上であることを特徴とするものである。 The Ni-based alloy of the present invention has C: 0.002 to 0.05%, S: 0.0001 to 0.005%, Cr: 10 to 25%, Mo: 5 to 20%, O: 0.0001 to 0.005%, Al: 0.01-0.5%, Fe: 0.5-10%, Ni-base alloy consisting of the balance Ni and inevitable impurities, using Auger electron spectroscopy, acceleration voltage Cr concentration in the passive film formed on the surface of the alloy when calculated from the profile of each element measured while sputtering at 1 kV in the depth direction of the Ni-based alloy with a sample current of 0.01 μA at 10 kV (At.%) / Ni concentration (at.%) Ratio is 0.2 or more, and critical crevice corrosion occurrence temperature (CCT) is 40 ° C. or more in the ASTM G48 Method D test. is there.

本発明においては、前述のオージェ電子分光法を用いて測定した不動態皮膜の母材側境界部におけるMo濃度(at.%)/Ni濃度(at.%)の比が0.1以上、かつ、不動態皮膜最表層部における酸素濃度が55(at.%)以上であることを好ましい態様としている。 In the present invention, the ratio of Mo concentration (at.%) / Ni concentration (at.%) At the base material side boundary portion of the passive film measured using the above-mentioned Auger electron spectroscopy is 0.1 or more, and The oxygen concentration in the outermost layer portion of the passive film is preferably 55 (at.%) Or more.

本発明においては、Si:0.01〜1%、Mn:0.01〜1%、Ti:0.01〜1%、Nb:0.5〜5%、W:0.5〜10%のいずれか1種または2種以上を含有することを好ましい態様としている。   In the present invention, Si: 0.01-1%, Mn: 0.01-1%, Ti: 0.01-1%, Nb: 0.5-5%, W: 0.5-10% It is a preferable embodiment to contain any one or more of them.

本発明のNi基合金の製造方法は、上記いずれかに記載のNi基合金を製造する方法であって、原料を電気炉で溶解し、AODおよび/またはVODにて脱炭、Cr還元、脱硫を行い、溶融合金を、C:0.002〜0.05%、S:0.0001〜0.005%、O:0.0001〜0.005%、Al:0.01〜0.5%に調整することを特徴とするものである。   A method for producing a Ni-based alloy according to the present invention is a method for producing any of the above-described Ni-based alloys, wherein raw materials are melted in an electric furnace, decarburized, Cr reduced, and desulfurized by AOD and / or VOD. And the molten alloy is C: 0.002-0.05%, S: 0.0001-0.005%, O: 0.0001-0.005%, Al: 0.01-0.5% It is characterized by adjusting to.

本発明においては、前記Ni基合金を所望の形状に成形した後、硝酸溶液に浸漬して不動態化処理を行うことを特徴とするものである。   In the present invention, the Ni-based alloy is formed into a desired shape, and is then immersed in a nitric acid solution to perform a passivation treatment.

本発明においては、前記不動態化処理は、X:硝酸濃度(%)、Y:浸漬時間(分)、Z:温度(℃)とした場合、下記式を満足するように行うことを特徴とするものである。
8000≦X×Y+Z (但し10≦X≦50、1≦Y≦100、40≦Z≦85)
In the present invention, the passivation treatment is performed so as to satisfy the following formula when X is nitric acid concentration (%), Y is immersion time (minutes), and Z is temperature (° C.). To do.
8000 ≦ X 2 × Y + Z (where 10 ≦ X ≦ 50, 1 ≦ Y ≦ 100, 40 ≦ Z ≦ 85)

本発明によれば、介在物を抑制し、良好な不動態皮膜を形成することにより、極めて耐食性に優れたNi基合金を製造することができる。   According to the present invention, it is possible to produce a Ni-based alloy with extremely excellent corrosion resistance by suppressing inclusions and forming a good passive film.

NCF625の不動態皮膜組成を示し、各元素濃度とスパッタ時間(表面からの深さ)の関係を示すグラフである。It is a graph which shows the passive film composition of NCF625, and shows the relationship between each element density | concentration and sputtering time (depth from the surface). Cr濃度(at.%)/Ni濃度(at.%)比とスパッタ時間(表面からの深さ)の関係を示すグラフである。It is a graph which shows the relationship between Cr concentration (at.%) / Ni concentration (at.%) Ratio and sputtering time (depth from the surface). Mo濃度(at.%)/Ni濃度(at.%)比とスパッタ時間(表面からの深さ)の関係を示すグラフである。It is a graph which shows the relationship between Mo concentration (at.%) / Ni concentration (at.%) Ratio and sputtering time (depth from the surface).

本発明者らは、上記課題を解決するために鋭意研究を重ねた。まず、不動態皮膜の状態を精度よく測定する方法、つまり、耐食性を十分維持する皮膜とそうではない皮膜の差を見出す測定方法を、実験を通して開発することから始めた。具体的には、Niをベースに0.015%C、0.12%Si、0.11%Mn、0.0001%S、22%Cr、9.1%Mo、3.42%Nb、2.86%Fe、0.23%Ti、0.21%Alを含有するNCF625(UNS N06625)の試験片を用いて実験した。試験片サイズは厚み2mm、幅25mm、長さ50mmとした。   The inventors of the present invention have made extensive studies to solve the above problems. First of all, we started by developing through experiments the method of measuring the state of the passive film with high accuracy, that is, the method of finding the difference between the film that maintains sufficient corrosion resistance and the film that does not. Specifically, based on Ni, 0.015% C, 0.12% Si, 0.11% Mn, 0.0001% S, 22% Cr, 9.1% Mo, 3.42% Nb, 2 Experiments were performed using NCF625 (UNS N06625) specimens containing .86% Fe, 0.23% Ti, 0.21% Al. The test piece size was 2 mm in thickness, 25 mm in width, and 50 mm in length.

基本的に、ASTM G48 Method Dに定められた調整方法により試験片を仕上げた。この規格の中には、湿式研磨の詳細な実施方法や、研磨後の乾燥手順は定められていない。そこで、本発明者らは、様々な研磨方法や乾燥方法、具体的には熱風や冷風などを試した。   Basically, the test piece was finished by the adjustment method defined in ASTM G48 Method D. In this standard, a detailed method of wet polishing and a drying procedure after polishing are not defined. Therefore, the present inventors tried various polishing methods and drying methods, specifically hot air and cold air.

このようにして試料調整した後、各試験片に対して、不動態化処理(45%HNO、80℃、6分間)を行った。この試験片について、オージェ電子分光法(Auger Electron Spectroscopy;AES)を用いて、不動態皮膜の板厚方向の組成を測定した。AESは、日本電子製JAMP−9500F、測定条件は、加速電圧10kV、試料電流量0.01μAを用いて深さ方向に1kVの条件でスパッタしながら、測定した各元素のプロファイルからその原子比を求めた。 After preparing the sample in this way, each test piece was subjected to passivation treatment (45% HNO 3 , 80 ° C., 6 minutes). About this test piece, the composition of the thickness direction of the passive film was measured using Auger Electron Spectroscopy (AES). AES is JAMP-9500F manufactured by JEOL, and measurement conditions are the acceleration voltage of 10 kV and the sample current amount of 0.01 μA, and the sputtering is performed in the depth direction at 1 kV, and the atomic ratio is determined from the profile of each element measured. Asked.

その結果、精度よく、かつ正しく皮膜を測定するために必要とされる手順として、次の事項を見出した。
(1)最終仕上げである#2000のエメリー研磨紙は、試験片毎に新しい研磨紙に交換して研磨すること。
(2)湿式研磨工程の後、キシレンおよびエタノールにて脱脂を行うが、その後の乾燥は冷風で行うこと。
このように試行錯誤を繰り返し行った末に、図1に示す不動態皮膜の組成プロファイルを得るに至った。なお、図1〜3の横軸に示すスパッタ時間は、金属の厚さと関連しており、本実施形態においては、スパッタ時間1分がほぼ厚さ3.5nmに相当する。
As a result, the following items were found as procedures required to accurately and correctly measure the film.
(1) The final finish of # 2000 emery abrasive paper should be replaced with new abrasive paper for each test piece and polished.
(2) After the wet polishing step, degreasing is performed with xylene and ethanol, but the subsequent drying is performed with cold air.
Thus, after repeating trial and error, the composition profile of the passive film shown in FIG. 1 was obtained. Note that the sputtering time indicated on the horizontal axis in FIGS. 1 to 3 is related to the thickness of the metal, and in this embodiment, one minute of sputtering time corresponds to approximately 3.5 nm in thickness.

次に、十分な耐食性を示す不動態皮膜状態を把握するために、ASTM G48 Method Dに定められた臨界すきま腐食試験を実施した。すなわち、以下に示す方法により試験した。試験片のサイズは、厚み2mm、幅25mm、長さ50mmであり、平面中央に直径7mmの孔を空けた。#120のエメリー紙で研磨して仕上げた。ASTM G48 Type Bに規定されているセラミック製の冶具を、Ti製ボルトとナットを用いて、0.28N・mの締め付けトルクで固定した。この試験片を6%FeCl3と1%HClを混合した600mL以上の溶液に、5℃間隔で様々に温度を変えて、各温度あたり72時間浸漬した。浸漬後冶具を取り外し、腐食生成物を除去し洗浄後、すきま腐食の深さを測定し、0.025mm以上発生した場合をすきま腐食が発生したと見なした。試験は5℃間隔でそれぞれ2回ずつ試験し、すきま腐食が発生した最低温度を臨界すきま腐食発生温度(CCT)とした。   Next, in order to grasp the state of the passive film exhibiting sufficient corrosion resistance, a critical crevice corrosion test defined in ASTM G48 Method D was conducted. That is, it tested by the method shown below. The test piece had a thickness of 2 mm, a width of 25 mm, and a length of 50 mm, and a hole having a diameter of 7 mm was formed in the center of the plane. Polished with # 120 emery paper and finished. A ceramic jig specified in ASTM G48 Type B was fixed with a tightening torque of 0.28 N · m using Ti bolts and nuts. The test piece was immersed in a solution of 600 mL or more in which 6% FeCl 3 and 1% HCl were mixed at various intervals at 5 ° C. for 72 hours for each temperature. After immersion, the jig was removed, the corrosion products were removed and washed, and the depth of crevice corrosion was measured. If it occurred 0.025 mm or more, crevice corrosion was considered to have occurred. The test was conducted twice at intervals of 5 ° C., and the lowest temperature at which crevice corrosion occurred was defined as the critical crevice corrosion occurrence temperature (CCT).

Figure 0006259336
Figure 0006259336

表1に、試料調整後の表面処理と、対応するCCTの結果を示す。まず、表1に示す3種類の処理方法で比較を試みた。上記に説明した方法により、不動態皮膜組成のプロファイルを測定した。このグラフから、Cr濃度(at.%)とNi濃度(at.%)の比率を算出して、図2にCr濃度(at.%)/Ni濃度(at.%)とスパッタ時間の関係として示す。図から、表面から見ていくと一旦極大値を示し、その後極小値を示す傾向が明らかである。この研究から、Cr濃度(at.%)/Ni濃度(at.%)の比率が、0.2以上あれば、要求されるCCT≧40℃を満足できることが明らかとなった。さらに、このグラフから分かることは、スパッタ時間1分にて、Cr濃度(at.%)/Ni濃度(at.%)の比率が、極小を取ることである。まだ、Ni基合金の不動態皮膜に関しては明確にされていない点が多いが、本発明ではこの極小値を取る深さまでを厚みと定義した。   Table 1 shows the surface treatment after sample preparation and the corresponding CCT results. First, comparison was attempted using the three types of treatment methods shown in Table 1. The profile of the passive film composition was measured by the method described above. From this graph, the ratio between the Cr concentration (at.%) And the Ni concentration (at.%) Is calculated. FIG. 2 shows the relationship between the Cr concentration (at.%) / Ni concentration (at.%) And the sputtering time. Show. From the figure, it is clear that when viewed from the surface, the maximum value is once shown and then the minimum value is shown. From this study, it was revealed that the required CCT ≧ 40 ° C. can be satisfied if the ratio of Cr concentration (at.%) / Ni concentration (at.%) Is 0.2 or more. Furthermore, it can be seen from this graph that the ratio of Cr concentration (at.%) / Ni concentration (at.%) Takes a minimum at a sputtering time of 1 minute. Although there are still many points that have not been clarified regarding the passive film of the Ni-based alloy, in the present invention, the depth up to the minimum value is defined as the thickness.

同様に、Mo濃度(at.%)/Ni濃度(at.%)の比率をスパッタ時間に対してプロットしたものを図3に示す。スパッタ時間1分、つまり、皮膜の最深位置におけるMo濃度(at.%)/Ni濃度(at.%)の比率は、0.1以上あれば、強固な皮膜となることが分かった。さらに、この条件を満たす時、不動態皮膜の最表層部における酸素濃度も55(at.%)以上となり、耐食性に優れた皮膜となることも明らかとなった。   Similarly, FIG. 3 shows a plot of the Mo concentration (at.%) / Ni concentration (at.%) Ratio versus sputtering time. It was found that when the sputtering time was 1 minute, that is, the Mo concentration (at.%) / Ni concentration (at.%) Ratio at the deepest position of the film was 0.1 or more, a strong film was obtained. Furthermore, when this condition was satisfied, the oxygen concentration in the outermost layer portion of the passive film was also 55 (at.%) Or more, and it became clear that the film was excellent in corrosion resistance.

以上をまとめると、的確な不動態化処理を行うことにより、Cr濃度(at.%)/Ni濃度(at.%)≧0.2、Mo濃度(at.%)/Ni濃度(at.%)≧0.1、かつ、不動態皮膜の最表層部における酸素濃度も55(at.%)以上となり、要求する耐食性CCT≧40℃を確実に満足できることが明確となった。的確な不動態化処理については、硝酸濃度、温度、時間などの条件を、実施例にて明確に説明する。   In summary, by performing an appropriate passivation treatment, Cr concentration (at.%) / Ni concentration (at.%) ≧ 0.2, Mo concentration (at.%) / Ni concentration (at.%) ) ≧ 0.1, and the oxygen concentration in the outermost layer portion of the passive film was also 55 (at.%) Or more, and it became clear that the required corrosion resistance CCT ≧ 40 ° C. could be satisfied with certainty. For precise passivation treatment, conditions such as nitric acid concentration, temperature, time, etc. will be clearly described in the examples.

さらに、本発明者らは合金の耐食性を安定化するために、O、S、Cを低く制御する製造方法も、鋭意研究を重ねた。具体的には20kgの高周波誘導炉を用いて、基本組成Ni−22%Cr−10%Mo−3.5Nb−3%Fe としたNCF625を溶解した。C濃度を無添加〜0.1の範囲で変化させた。OとSは、CaO−SiO−Al−MgO−F系スラグを添加し、かつAl濃度を変化させることで、脱酸、脱硫の度合いを変化させて、種々のOとS濃度を得た。このようにして鋼塊を製造し、鍛造して冷間圧延を行い、厚み2mm、幅25mm、長さ50mmの試験片を作製した。これを、上記した試験方法により耐食性を評価した。その結果、C:0.002〜0.05%、S:0.0001〜0.005%、O:0.0001〜0.005%、Al:0.01〜0.5%が好ましいことが分かった。 Furthermore, the present inventors have intensively studied a manufacturing method in which O, S, and C are controlled to be low in order to stabilize the corrosion resistance of the alloy. Specifically, NCF625 having a basic composition of Ni-22% Cr-10% Mo-3.5Nb-3% Fe 2 was dissolved using a 20 kg high-frequency induction furnace. The C concentration was varied in the range of no addition to 0.1. O and S are added with CaO—SiO 2 —Al 2 O 3 —MgO—F slag, and by changing the Al concentration, the degree of deoxidation and desulfurization is changed, and various O and S concentrations are obtained. Got. In this way, the steel ingot was manufactured, forged and cold-rolled to prepare a test piece having a thickness of 2 mm, a width of 25 mm, and a length of 50 mm. This was evaluated for corrosion resistance by the test method described above. As a result, C: 0.002-0.05%, S: 0.0001-0.005%, O: 0.0001-0.005%, Al: 0.01-0.5% are preferable. I understood.

なお、S:0.0001〜0.005%以下、O:0.0001〜0.005%以下に制御するには、Al濃度を0.01〜0.5%に制御すれば良いことも分かった。この制御を行うには、スラグ中SiO濃度は10%以下に制御すべきとの指針も得た。 It is also understood that the Al concentration should be controlled to 0.01 to 0.5% in order to control S: 0.0001 to 0.005% or less and O: 0.0001 to 0.005% or less. It was. In order to perform this control, a guideline was obtained that the SiO 2 concentration in the slag should be controlled to 10% or less.

すなわち、本発明は実験を繰り返すことにより完成したものであり、以下の通りである。まず、合金の表面に形成される不動態皮膜部におけるCr濃度(at.%)/Ni濃度(at.%)の比が0.2以上であり、ASTM G48 Method D試験において臨界隙間腐食発生温度(CCT) が40℃以上であることを特徴とする耐食性に優れたNi基合金を提案する。   That is, the present invention has been completed by repeating experiments, and is as follows. First, the ratio of Cr concentration (at.%) / Ni concentration (at.%) In the passive film portion formed on the surface of the alloy is 0.2 or more, and the critical crevice corrosion occurrence temperature in the ASTM G48 Method D test. A Ni-base alloy excellent in corrosion resistance, characterized in that (CCT) is 40 ° C. or higher is proposed.

さらに、本Ni基合金の不動態皮膜の母材側境界部におけるMo濃度(at.%)/Ni濃度(at.%)の比が0.1以上、かつ不動態皮膜中の酸素濃度が55(at.%)以上であると、さらに耐食性が向上する。   Furthermore, the ratio of Mo concentration (at.%) / Ni concentration (at.%) At the base material side boundary of the passive film of the Ni-based alloy is 0.1 or more, and the oxygen concentration in the passive film is 55. If it is (at.%) Or more, the corrosion resistance is further improved.

さらに、本発明のNi基合金は、Ni基合金に含有するC:0.002〜0.05%、S:0.0001〜0.005%、Cr:10〜25%、Mo:5〜20%、O:0.0001〜0.005%、Al:0.01〜0.5%、Fe:0.5〜10%以下、残部Niおよび不可避的不純物からなることが望ましい。   Further, the Ni-based alloy of the present invention contains C: 0.002-0.05%, S: 0.0001-0.005%, Cr: 10-25%, Mo: 5-20 contained in the Ni-based alloy. %, O: 0.0001 to 0.005%, Al: 0.01 to 0.5%, Fe: 0.5 to 10% or less, the balance Ni and unavoidable impurities.

また、本Ni基合金は、Si:0.01〜1%、Mn:0.01〜1%、Ti:0.01〜1%、Nb:0.5〜5%、W:0.5〜10%のいずれか1種または2種以上を含有しても良い。   Further, the present Ni-based alloy has Si: 0.01 to 1%, Mn: 0.01 to 1%, Ti: 0.01 to 1%, Nb: 0.5 to 5%, W: 0.5 to Any one or two or more of 10% may be contained.

さらに本発明では、上記の化学成分を持つNi基合金の製造方法も提案する。つまり、原料を電気炉で溶解し、AODおよび/またはVODにて脱炭、Cr還元、脱硫を行い、溶融合金を、C:0.002〜0.05%、S:0.0001〜0.005%、O:0.0001〜0.005%以下、Al:0.01〜0.5%に調整することを特徴とする耐食性に優れたNi基合金の製造方法である。   Furthermore, the present invention also proposes a method for producing a Ni-based alloy having the above chemical components. That is, the raw material is melted in an electric furnace, decarburized, Cr reduced and desulfurized by AOD and / or VOD, and the molten alloy is C: 0.002-0.05%, S: 0.0001-0. It is the manufacturing method of the Ni base alloy excellent in corrosion resistance characterized by adjusting to 005%, O: 0.0001-0.005% or less, and Al: 0.01-0.5%.

以下に本発明における各数値の限定理由を以下に述べる。
不動態皮膜部におけるCr濃度(at.%)/Ni濃度(at.%)の比が0.2以上:
必要とされるCCT≧40℃以上の耐食性を有するためには、不動態皮膜中にNiに対するCrの濃度比は、0.2以上が必要である。そのため、不動態皮膜部におけるCr濃度(at.%)/Ni濃度(at.%)の比を0.2以上と規定した。好ましくは0.22以上、より好ましくは、0.25以上である。
The reasons for limiting each numerical value in the present invention will be described below.
The ratio of Cr concentration (at.%) / Ni concentration (at.%) In the passive film portion is 0.2 or more:
In order to have the required corrosion resistance of CCT ≧ 40 ° C., the concentration ratio of Cr to Ni in the passive film needs to be 0.2 or more. Therefore, the ratio of Cr concentration (at.%) / Ni concentration (at.%) In the passive film portion was specified to be 0.2 or more. Preferably it is 0.22 or more, More preferably, it is 0.25 or more.

不動態皮膜の母材側境界部におけるMo濃度(at.%)/Ni濃度(at.%)の比が0.1以上:
不動態皮膜中のMoは、特に皮膜の最深部に濃化して、耐食性を向上させる性質を持つ。上記のとおり、不動態皮膜部におけるCr濃度(at.%)/Ni濃度(at.%)の比が0.2以上を満たし、不動態皮膜部と母材側境界部におけるMo濃度(at.%)/Ni濃度(at.%)の比が0.1以上を満たすことにより、さらに耐食性を向上させることが出来る。具体的には、後述する酸素濃度、Al濃度、硫黄濃度が本発明の範囲を外れても、必要とされるCCT≧40℃以上を満たすことができる。そのため、不動態皮膜の母材側境界部におけるMo濃度(at.%)/Ni濃度(at.%)の比を0.1以上と定めた。好ましくは、0.13以上、より好ましくは0.15以上である。
Ratio of Mo concentration (at.%) / Ni concentration (at.%) At the base material side boundary portion of the passive film is 0.1 or more:
Mo in the passive film has the property of concentrating at the deepest part of the film and improving the corrosion resistance. As described above, the ratio of Cr concentration (at.%) / Ni concentration (at.%) In the passive film portion satisfies 0.2 or more, and the Mo concentration (at. %) / Ni concentration (at.%) Satisfying 0.1 or more, the corrosion resistance can be further improved. Specifically, even if the oxygen concentration, Al concentration, and sulfur concentration described below are outside the scope of the present invention, the required CCT ≧ 40 ° C. or more can be satisfied. Therefore, the ratio of Mo concentration (at.%) / Ni concentration (at.%) At the base material side boundary portion of the passive film was determined to be 0.1 or more. Preferably, it is 0.13 or more, more preferably 0.15 or more.

不動態皮膜最表層部における酸素濃度が55(at.%)以上:
不動態皮膜最表層部における酸素濃度が55(at.%)以上となると、不動態皮膜部と母材側境界部におけるMo濃度(at.%)/Ni濃度(at.%)の比が0.1以上を満たし、より強固な不動態皮膜を構成することが出来る。そのため、不動態皮膜最表層部における酸素濃度は55(at.%)以上と規定した。より好ましくは、57(at.%)以上、さらに好ましくは、60(at.%)以上である。
The oxygen concentration in the outermost layer of the passive film is 55 (at.%) Or more:
When the oxygen concentration in the outermost layer portion of the passive film is 55 (at.%) Or more, the ratio of Mo concentration (at.%) / Ni concentration (at.%) In the boundary portion between the passive film and the base material is 0. .1 or more can be satisfied, and a stronger passive film can be formed. Therefore, the oxygen concentration in the outermost layer portion of the passive film is specified to be 55 (at.%) Or more. More preferably, it is 57 (at.%) Or more, and more preferably 60 (at.%) Or more.

不動態皮膜は上記の態様が望ましい。特に限定はしないが、この態様を得るためには、不動態化処理にて達成することが出来る。この皮膜を得るには、下記の条件を満足することが好ましい。
8000≦X×Y+Z
(X:硝酸濃度(%)、Y:浸漬時間(分)、Z:温度(℃)、ただし、硝酸濃度10〜50%、時間1〜100分、温度40〜85℃の範囲とする。)
The above-described embodiment is desirable for the passive film. Although not particularly limited, in order to obtain this embodiment, it can be achieved by a passivation treatment. In order to obtain this film, it is preferable to satisfy the following conditions.
8000 ≦ X 2 × Y + Z
(X: nitric acid concentration (%), Y: immersion time (min), Z: temperature (° C.), where nitric acid concentration is 10 to 50%, time is 1 to 100 minutes, temperature is 40 to 85 ° C.)

続けて、本発明で定めた合金元素の限定理由を説明する。
C:0.002〜0.05%
Cは合金の強度を保つために有用な元素であるため、0.002%は必要である。しかしながら、熱処理過程や溶接時における熱影響部等において、CrやMoと結合し炭化物を析出する。Cr、Moは耐食性を維持するために有効な元素であり、析出物の周囲では欠乏層が生じてしまい、その部位の耐食性を低下させるとともに、析出物上には不動態皮膜が形成しにくくなるため、耐食性を損なう。そのため、Cは0.002〜0.05%以下と定めた。好ましくは、0.003〜0.03%以下、さらに好ましくは、0.004〜0.02%以下である。
Next, the reasons for limiting the alloy elements defined in the present invention will be described.
C: 0.002 to 0.05%
Since C is an element useful for maintaining the strength of the alloy, 0.002% is necessary. However, it combines with Cr and Mo to precipitate carbide in the heat treatment process and heat affected zone during welding. Cr and Mo are effective elements for maintaining corrosion resistance, and a deficient layer is formed around the precipitate, which reduces the corrosion resistance of the site and makes it difficult to form a passive film on the precipitate. Therefore, the corrosion resistance is impaired. Therefore, C is determined to be 0.002 to 0.05% or less. Preferably, it is 0.003-0.03% or less, More preferably, it is 0.004-0.02% or less.

S:0.0001〜0.005%
Sは構造材の溶接時に湯流れ性を向上させるために有用な元素であるため、最低0.0001%は必要である。硫化物を形成する元素でもある。特にMnと結合してMnSを形成する。硫化物上には不動態皮膜が形成しにくくなるため、耐食性を損なう。そのため、0.0001〜0.005%とした。好ましくは、0.0001〜0.002%、より好ましくは、0.0002〜0.001%である。なお、S濃度を0.0001〜0.005%に制御するためには、精錬工程でAlを本発明で定める範囲0.01〜0.5%に制御して、脱酸することによって、酸素濃度を0.0001〜0.005%に制御することで達成できる。つまり、下記の反応を、より右辺に進行することで脱硫する。
Al+3+3(CaO)=3(CaS)+(Al) …(1)
下線は溶鋼中成分、括弧はスラグ中の成分を示す。
S: 0.0001 to 0.005%
Since S is an element useful for improving the hot metal flowability during welding of the structural material, a minimum of 0.0001% is necessary. It is also an element that forms sulfides. In particular, it combines with Mn to form MnS. Since it becomes difficult to form a passive film on the sulfide, the corrosion resistance is impaired. Therefore, it was set as 0.0001 to 0.005%. Preferably, it is 0.0001 to 0.002%, more preferably 0.0002 to 0.001%. In addition, in order to control S concentration to 0.0001 to 0.005%, oxygen is controlled by deoxidizing by controlling Al to a range defined by the present invention 0.01 to 0.5% in the refining process. This can be achieved by controlling the concentration to 0.0001 to 0.005%. That is, the following reaction is desulfurized by proceeding to the right side.
2 Al +3 S +3 (CaO) = 3 (CaS) + (Al 2 O 3 ) (1)
Underlined components in molten steel, parentheses indicate components in slag.

Cr:10〜25%
Crは不動態皮膜を構成して耐食性を維持するために重要な元素である。母材のCr濃度は10%以上の含有、なおかつ、後述する本発明の表面処理を施すことで、不動態皮膜部におけるCr濃度(at.%)/Ni濃度(at.%)の比が0.2以上を有することが可能である。したがって、10%以上含有する必要がある。しかし、過剰な含有は炭化物を析出し易くする。25%を超えるとこの傾向が顕著となり、耐食性を低下させるため10〜25%と規定した。好ましくは、14〜23%であり、より好ましくは、16〜23%である。
Cr: 10 to 25%
Cr is an important element for constituting a passive film and maintaining corrosion resistance. The Cr concentration of the base material is 10% or more, and the ratio of Cr concentration (at.%) / Ni concentration (at.%) In the passive film portion is 0 by applying the surface treatment of the present invention described later. .2 or more. Therefore, it is necessary to contain 10% or more. However, excessive inclusion facilitates precipitation of carbides. When it exceeds 25%, this tendency becomes remarkable, and in order to reduce the corrosion resistance, it is defined as 10 to 25%. Preferably, it is 14-23%, More preferably, it is 16-23%.

Mo:5〜20%
Moは不動態皮膜を構成して耐食性を維持するために重要な元素である。母材のMo濃度は5%以上の含有、なおかつ、後述する本発明の表面処理を施すことで、不動態皮膜の最深部におけるMo濃度(at.%)/Ni濃度(at.%)の比が0.1以上を有することが可能である。したがって、5%以上含有する必要がある。しかし、過剰な含有は炭化物を析出し易くなることに加え、強度が高くなり加工性が悪化するため5〜20%と規定した。好ましくは、7〜15%であり、より好ましくは、9〜12%である。
Mo: 5-20%
Mo is an important element for constituting a passive film and maintaining corrosion resistance. The Mo concentration of the base material is 5% or more, and the ratio of Mo concentration (at.%) / Ni concentration (at.%) In the deepest part of the passive film by applying the surface treatment of the present invention described later. Can have 0.1 or more. Therefore, it is necessary to contain 5% or more. However, the excessive content not only facilitates precipitation of carbides, but also increases the strength and deteriorates the workability, so it is specified as 5 to 20%. Preferably, it is 7 to 15%, and more preferably 9 to 12%.

O:0.0001〜0.005%
Oは非金属介在物を形成する元素である。その非金属介在物が合金表面に存在すると、不動態皮膜が安定に形成されずに腐食の起点と成り得るために0.005%以下と定めた。しかし、低下させすぎると、介在物組成がMgO・Alとなり、連続鋳造機の浸漬ノズル内に堆積して、ノズルが閉塞してしまう。そのため、0.0001〜0.005%と定めた。好ましくは、0.0002〜0.002%以下、より好ましくは0.0002〜0.001%以下である。なお、酸素濃度を0.0001〜0.005%以下に制御するためには、精錬工程でAlを本発明で定める範囲0.01〜0.5%に制御すればよい。すなわち、下記の反応を、より右に進行することで酸素濃度を低下させる。
Al+3=(Al) …(2)
O: 0.0001 to 0.005%
O is an element that forms non-metallic inclusions. If the non-metallic inclusions are present on the alloy surface, the passive film is not formed stably and can be a starting point of corrosion. However, if it is lowered too much, the inclusion composition becomes MgO.Al 2 O 3 and deposits in the immersion nozzle of the continuous casting machine, and the nozzle is blocked. Therefore, it was determined as 0.0001 to 0.005%. Preferably, it is 0.0002 to 0.002% or less, more preferably 0.0002 to 0.001% or less. In order to control the oxygen concentration to 0.0001 to 0.005% or less, it is only necessary to control Al in the refining step within a range of 0.01 to 0.5% defined in the present invention. That is, the oxygen concentration is lowered by proceeding the following reaction to the right.
2 Al +3 O = (Al 2 O 3 ) (2)

Al:0.01〜0.5%
Alは脱酸および脱硫のために重要な元素である。脱酸、脱硫を行い、本発明の範囲であるS:0.005%以下、O:0.005%以下を満足するためには0.01%は必要であるが、0.5%を超えての添加は、非金属介在物をMgO・Alに変化させてしまい、浸漬ノズルの閉塞を引き起こす危険性がある。そのため、0.01〜0.5%と規定した。好ましくは、0.02〜0.3、より好ましくは0.03〜0.25%である。なお、精錬工程時に、スラグ中のSiO濃度を10%以下に抑えることで、Alを本発明で定める範囲0.01〜0.5%に制御し易くなる。この理由は、スラグ中のSiO濃度が10%を超えて高いと、下記の反応が右側に進行して溶鋼中のAlを消費してしまうためである。
Al+3(SiO)=2(Al)+3Si …(3)
Al: 0.01 to 0.5%
Al is an important element for deoxidation and desulfurization. In order to satisfy deoxidation and desulfurization and satisfy S: 0.005% or less and O: 0.005% or less, which are the scope of the present invention, 0.01% is necessary, but exceeds 0.5%. All the additions change the non-metallic inclusions to MgO.Al 2 O 3 , and there is a risk of causing the clogging of the immersion nozzle. Therefore, it was specified as 0.01 to 0.5%. Preferably, it is 0.02 to 0.3, more preferably 0.03 to 0.25%. Incidentally, during the refining process, by reducing the SiO 2 concentration in the slag to less than 10% tends to control the range 0.01-0.5% specified by the present invention to Al. This is because if the SiO 2 concentration in the slag is higher than 10%, the following reaction proceeds to the right side and consumes Al in the molten steel.
4 Al +3 (SiO 2 ) = 2 (Al 2 O 3 ) +3 Si (3)

Fe:0.5〜10%
Feは製造コストを低減させるために添加されることがある。0.5%未満の添加ではコストが著しく上昇する。また、不動態皮膜中のFe濃度が高くなると耐食性を低下させるために、0.5〜10%と定めた。
Fe: 0.5 to 10%
Fe may be added to reduce manufacturing costs. Addition of less than 0.5% significantly increases the cost. Moreover, in order to reduce corrosion resistance when the Fe concentration in the passive film increases, the content is determined to be 0.5 to 10%.

基本的に本発明の合金はNi基合金である。その理由は、次の通りである。Niは貴金属であるから、Feより耐食性に優れている。不動態皮膜中においてはFeのように水酸化物Fe(OH)を生成しないため、不動態皮膜は緻密かつ保護作用も高い。また、Ni基合金はFe基合金に比べて固溶できる合金元素の含有量が高いため、CrやMo等の耐食性を高める元素をより多く含有できる。そのため優れた耐食性を有する保護皮膜を母材表面に形成させるためにはNi基合金である必要がある。また、本発明で言う不可避的不純物とは、P、Cu、Co、Ta、V、N、B、Hである。 Basically, the alloy of the present invention is a Ni-based alloy. The reason is as follows. Since Ni is a noble metal, it has better corrosion resistance than Fe. In the passive film, since the hydroxide Fe (OH) 2 is not generated like Fe, the passive film is dense and has a high protective effect. In addition, since the Ni-based alloy has a higher content of alloying elements that can be dissolved than the Fe-based alloy, it can contain more elements such as Cr and Mo that improve corrosion resistance. Therefore, in order to form a protective film having excellent corrosion resistance on the surface of the base material, it is necessary to be a Ni-based alloy. Inevitable impurities referred to in the present invention are P, Cu, Co, Ta, V, N, B, and H.

なお、本発明の合金では、Si:0.01〜1%以下、Mn:0.01〜1%以下、Ti:0.01〜1%以下、Nb:0.5〜5%以下、W:0.5〜10%以下のいずれか1種または2種以上を含有しても構わない。
Si:0.01〜1%
Siは脱酸のために有効な元素であり、0.01〜1%の範囲で添加しても構わない。
In the alloy of the present invention, Si: 0.01 to 1% or less, Mn: 0.01 to 1% or less, Ti: 0.01 to 1% or less, Nb: 0.5 to 5% or less, W: Any one or more of 0.5 to 10% or less may be contained.
Si: 0.01 to 1%
Si is an element effective for deoxidation, and may be added in a range of 0.01 to 1%.

Mn:0.01〜1%
Mnは脱酸のために有効な元素であり、0.01〜1%の範囲で添加しても構わない。
Mn: 0.01 to 1%
Mn is an element effective for deoxidation, and may be added in a range of 0.01 to 1%.

Ti:0.01〜1%以下
Tiは炭素と結合しTiCを形成するため、Crと炭素の結合を防ぐ。そのため、耐食性を高める性質を持つため、0.01〜1%の範囲で添加しても構わない。
Ti: 0.01 to 1% or less Ti binds to carbon to form TiC, thus preventing the bond between Cr and carbon. Therefore, since it has the property which improves corrosion resistance, you may add in 0.01 to 1% of range.

Nb:0.5〜5%
Nbは強度を高める元素である。さらに、炭素と結合しNbCを形成するため、Crと炭素の結合を防ぐため、耐食性を高める役割もある。そのため、0.5〜5%の範囲で添加しても構わない。
Nb: 0.5-5%
Nb is an element that increases the strength. Furthermore, since it combines with carbon to form NbC, it also has a role of enhancing corrosion resistance in order to prevent the bond between Cr and carbon. Therefore, you may add in 0.5 to 5% of range.

W:0.5〜10%
Wは、Moと同様に不動態皮膜を構成して耐食性を維持するために重要な元素である。そのため、0.5〜10%の範囲で添加しても構わない。
W: 0.5-10%
W, like Mo, is an important element for constituting a passive film and maintaining corrosion resistance. Therefore, you may add in 0.5 to 10% of range.

本発明では、上記の化学成分を持つNi基合金の製造方法も提案する。
原料を電気炉で溶解し、AOD(Argon Oxygen Decarburization)および/またはVOD(Vacuum Oxygen Decarburization)にて脱炭を行い、C濃度を0.05%以下とする。AODおよびVODは、送酸速度が高く発生するCOガス分圧を低下できるため、Cr含有合金の精錬に適している。その後、スラグ中に移行したCr酸化物を還元するCr還元を行う。還元剤は、特に限定しないが、FeSi合金またはAlが好適である。同時に、石灰石および蛍石を添加するとともに、脱酸に必要なAlを添加する。
The present invention also proposes a method for producing a Ni-based alloy having the above chemical components.
The raw material is melted in an electric furnace, and decarburized by AOD (Argon Oxygen Decarburization) and / or VOD (Vacuum Oxygen Decarburization), so that the C concentration is 0.05% or less. AOD and VOD are suitable for refining Cr-containing alloys because CO gas partial pressure generated at a high acid feed rate can be reduced. Thereafter, Cr reduction is performed to reduce the Cr oxide transferred into the slag. The reducing agent is not particularly limited, but FeSi alloy or Al is preferable. At the same time, limestone and fluorite are added, and Al necessary for deoxidation is added.

この操作により、溶融合金上に形成するスラグはCaO−SiO−Al−MgO−F系となる。スラグ中SiO濃度を10%以下に制御することで、Al濃度を安定して0.01〜0.5%に制御することが可能となる。スラグ中SiO濃度を10%以下に制御するのは、FeSi合金の投入量を調節すれば良い。この操作により、脱酸だけではなく、脱硫も進行し、S:0.005%以下、O:0.005%以下に調整することができる。 By this operation, the slag formed on the molten alloy becomes a CaO—SiO 2 —Al 2 O 3 —MgO—F system. By controlling the SiO 2 concentration in the slag to 10% or less, the Al concentration can be stably controlled to 0.01 to 0.5%. The SiO 2 concentration in the slag can be controlled to 10% or less by adjusting the amount of FeSi alloy input. By this operation, not only deoxidation but also desulfurization proceeds, and it can be adjusted to S: 0.005% or less and O: 0.005% or less.

スクラップ、Ni、Cr、Moなどの原料を電気炉で溶解し、AODおよび/またはVODにて酸素吹精して脱炭を行った。その後、Alと石灰石を投入してCr還元を行い、さらに石灰石と蛍石を投入し、溶融合金上にCaO−SiO−Al−MgO−F系スラグを形成して脱酸、脱硫を行った。スラグ中SiO濃度は10%以下に制御した。このようにして精錬した溶融合金を、連続鋳造機にて鋳造しスラブを得た。その後、スラブを熱間圧延し、冷間圧延して板厚2mmの冷延板を製造した。 Raw materials such as scrap, Ni, Cr, and Mo were melted in an electric furnace, and decarburized by blowing oxygen with AOD and / or VOD. Thereafter, Al and limestone are added to perform Cr reduction, and further limestone and fluorite are added to form CaO—SiO 2 —Al 2 O 3 —MgO—F slag on the molten alloy to deoxidize and desulfurize. Went. The SiO 2 concentration in the slag was controlled to 10% or less. The molten alloy refined in this way was cast with a continuous casting machine to obtain a slab. Thereafter, the slab was hot-rolled and cold-rolled to produce a cold-rolled plate having a thickness of 2 mm.

原料の配合比を様々に変更し、上記方法によって製造することで、表3に化学成分を示す発明例1〜8および比較例9〜13の冷延板を製造した。このようにして製造した各冷延板について、次の方法により耐食性および不動態皮膜の評価を実施した。   The cold-rolled sheets of Invention Examples 1 to 8 and Comparative Examples 9 to 13 whose chemical components are shown in Table 3 were manufactured by changing the blending ratio of the raw materials in various ways and manufacturing by the above method. Each cold-rolled sheet thus manufactured was evaluated for corrosion resistance and passive film by the following method.

(1)CCT試験
耐食性の評価は、基本的にASTM G48 Method Dにしたがい行った。試験片は、上記の冷延板から、厚み2mm、幅25mm、長さ50mmのサイズを切り出して、平面中央に直径7mmの孔を空けた。その後、エメリー紙#120番まで湿式研磨を行い、アルコールによる脱脂後、冷風によってアルコールを除去し、表3に示すように各発明例・比較例毎に定めた硝酸溶液への浸漬による表面処理A〜Gを施した。なお、処理A〜Gの実施条件は下記表2に示した。
(1) CCT test Corrosion resistance was evaluated basically according to ASTM G48 Method D. The test piece was cut out of a size of 2 mm in thickness, 25 mm in width, and 50 mm in length from the cold-rolled plate, and a hole having a diameter of 7 mm was formed in the center of the plane. Thereafter, wet polishing is performed up to emery paper # 120, and after degreasing with alcohol, the alcohol is removed by cold air, and surface treatment A by immersion in a nitric acid solution determined for each invention example and comparative example as shown in Table 3 ~ G was applied. The execution conditions for the treatments A to G are shown in Table 2 below.

Figure 0006259336
Figure 0006259336

表面処理後、ASTM G48 Type Bに規定されているセラミック製の冶具をTi製ボルトとナットを用いて、各冷延板に0.28N・mの締め付けトルクで固定した。この試験片を6%FeCl3と1%HClを混合した600mL以上の溶液に、5℃間隔で様々に温度を変えて、各温度あたり72時間浸漬した。浸漬後冶具を取り外し、腐食生成物を除去し洗浄後、すきま腐食の深さを測定し、0.025mm以上発生した場合をすきま腐食が発生したと見なした。試験は5℃間隔でそれぞれ2回ずつ試験し、すきま腐食が発生した最低温度を臨界すきま腐食発生温度(CCT)とした。判定方法は、表3において、CCT≧50℃のものを◎、CCT≧40℃を○とし、CCT<40℃のものを×とした。   After the surface treatment, a ceramic jig specified in ASTM G48 Type B was fixed to each cold-rolled plate with a tightening torque of 0.28 N · m using Ti bolts and nuts. The test piece was immersed in a solution of 600 mL or more in which 6% FeCl 3 and 1% HCl were mixed at various intervals at 5 ° C. for 72 hours for each temperature. After immersion, the jig was removed, the corrosion products were removed and washed, and the depth of crevice corrosion was measured. If it occurred 0.025 mm or more, crevice corrosion was considered to have occurred. The test was conducted twice at intervals of 5 ° C., and the lowest temperature at which crevice corrosion occurred was defined as the critical crevice corrosion occurrence temperature (CCT). In Table 3, the case of CCT ≧ 50 ° C. is indicated by “◎”, the case of CCT ≧ 40 ° C. is indicated by “◯”, and the case of CCT <40 ° C. is indicated by “x”.

(2)不動態皮膜の評価
耐食性試験と同様に、エメリー紙#2000番まで湿式研磨を行い、アルコールによる脱脂後、冷風によってアルコールを除去した。表3に示すように上記の表面処理A〜Gを施した後、AESを用いて不動態皮膜厚みと組成を測定した。AESは、日本電子製 JAMP−9500F、測定条件は、加速電圧10kV、試料電流量0.01μAを用いて深さ方向に1kVでスパッタしながら、測定した各元素のプロファイルからその原子比を求めた。求められた各元素の比から、Cr/Ni比、Mo/Ni比、不動態皮膜最表層部の酸素濃度を求め、表3に示した。その他の測定方法は、以下の通りとした。
(2) Evaluation of Passive Film Similarly to the corrosion resistance test, wet polishing was performed up to emery paper # 2000, and after degreasing with alcohol, the alcohol was removed with cold air. As shown in Table 3, after the surface treatments A to G described above, the thickness and composition of the passive film were measured using AES. AES was JAMP-9500F manufactured by JEOL, and measurement conditions were an acceleration voltage of 10 kV and a sample current amount of 0.01 μA, and the sputtering was performed at 1 kV in the depth direction, and the atomic ratio was determined from the profile of each element measured. . From the obtained ratio of each element, the Cr / Ni ratio, the Mo / Ni ratio, and the oxygen concentration in the outermost layer of the passive film were determined and shown in Table 3. Other measurement methods were as follows.

(3)合金の化学成分
蛍光X線分析により行った。ただし、CとSは燃焼重量法、Oは不活性ガスインパルス融解赤外線吸収法によった。
(4)スラグ成分
蛍光X線分析により行った。
(3) Chemical component of alloy It performed by the fluorescent X ray analysis. However, C and S were based on the combustion weight method, and O was based on an inert gas impulse melting infrared absorption method.
(4) Slag component It was performed by fluorescent X-ray analysis.

Figure 0006259336
Figure 0006259336

表3に実施例を示して、本発明の効果を明確にする。発明例であるNo.1〜5は、全て本発明の好ましい範囲を満たすことから、CCTは全て50℃以上となり極めて良好(◎)な結果を得た。   Examples are shown in Table 3 to clarify the effects of the present invention. Inventive examples Nos. 1 to 5 all satisfy the preferred range of the present invention, so all CCTs were 50 ° C. or higher, and very good (◎) results were obtained.

No.6の合金は、Mo/Niの比率が0.1を下回って0.09であった。さらに、不動態皮膜最表層部の酸素濃度が54(at.%)と低く、CCTは概ね良好(○)ではあるものの少々低い45℃であった。   In the alloy No. 6, the ratio of Mo / Ni was less than 0.1 and 0.09. Further, the oxygen concentration in the outermost layer of the passive film was as low as 54 (at.%), And the CCT was generally good (◯), but was a little lower 45 ° C.

No.7の合金は、脱炭がうまく進行せず、C濃度が0.079%と高かったため、Cr炭化物を形成したのとMo/Niの比率が0.1を下回って0.08であった。さらに、不動態皮膜最表層部の酸素濃度は54(at.%)と低く、CCTは40℃であった。No.1〜7の合金を製造する際のスラグ組成は、いずれもスラグ中SiO濃度が10%を下回っており、問題ないことを確認している。 In the No. 7 alloy, decarburization did not proceed well and the C concentration was as high as 0.079%. Therefore, Cr carbide was formed and the ratio of Mo / Ni was less than 0.1 and was 0.08. It was. Furthermore, the oxygen concentration in the outermost layer of the passive film was as low as 54 (at.%), And the CCT was 40 ° C. Slag composition in the production of alloys No.1~7 are all well below the 10% SiO 2 concentration in the slag, it has been confirmed that no problem.

No.8の合金は、Al濃度が0.01%を下回って低く、そのために脱酸、脱硫が進まず、SとO濃度が高かった。しかし、Cr濃度(at.%)/Ni濃度(at.%)=0.28、Mo濃度(at.%)/Ni濃度(at.%)=0.14、かつ、不動態皮膜の最表層部における酸素濃度も57(at.%)と、これらの範囲は満たしたために、CCTは40℃を満足した。なお、Al濃度が0.01%を下回って低くなったのは、スラグ中のSiO濃度が11.2%と10%を超えて高かったためである。 The alloy No. 8 had an Al concentration lower than 0.01%, and therefore, deoxidation and desulfurization did not proceed, and the S and O concentrations were high. However, Cr concentration (at.%) / Ni concentration (at.%) = 0.28, Mo concentration (at.%) / Ni concentration (at.%) = 0.14, and the outermost layer of the passive film Since the oxygen concentration in the part was 57 (at.%) And these ranges were satisfied, the CCT satisfied 40 ° C. The reason why the Al concentration became lower than 0.01% was that the SiO 2 concentration in the slag was higher than 11.2% and 10%.

一方、比較例No.9〜12はいずれかの範囲を外れたため、CCTは40℃未満と低くなってしまった。まず、No.9は表面処理がA処理、つまり、15%HNO中に60℃で6分浸漬という不十分な不動態化条件であったため、不動態皮膜が十分な組成を有さず、Cr/Niの比率、Mo/Niの比率、不動態皮膜の最表層部における酸素濃度、いずれも本発明の範囲を下回ってしまった。そのため、CCTは35℃となってしまった。 On the other hand, since Comparative Examples No. 9 to 12 were out of any range, the CCT was as low as less than 40 ° C. First, No. 9 had a surface treatment A treatment, that is, an insufficient passivation condition of immersion in 15% HNO 3 at 60 ° C. for 6 minutes, so the passive film did not have a sufficient composition, The ratio of Cr / Ni, the ratio of Mo / Ni, and the oxygen concentration in the outermost layer of the passive film were all below the range of the present invention. Therefore, CCT became 35 degreeC.

No.10は、表面処理がB処理、つまり、15%HNO中に60℃で30分浸漬という不十分な不動態化条件であったため、不動態皮膜が十分な組成を有さず、Cr/Niの比率、Mo/Niの比率、不動態皮膜の最表層部における酸素濃度、いずれも本発明の範囲を下回ってしまった。さらに脱炭がうまく行かず、0.092%と高濃度になったため、CCTは30℃となってしまった。 In No. 10, the surface treatment was a B treatment, that is, an insufficient passivation condition of immersion in 15% HNO 3 at 60 ° C. for 30 minutes, so the passive film did not have a sufficient composition, Cr The ratio of / Ni, the ratio of Mo / Ni, and the oxygen concentration in the outermost layer of the passive film were all below the range of the present invention. Furthermore, since decarburization did not go well and became a high concentration of 0.092%, CCT became 30 ° C.

No.11は、表面処理がD処理、つまり、30%HNO中に60℃で1分浸漬という不十分な不動態化条件であったため、不動態皮膜が十分な組成を有さず、Cr/Niの比率、Mo/Niの比率、不動態皮膜の最表層部における酸素濃度、いずれも本発明の範囲を下回ってしまった。さらに脱炭がうまく行かず、0.061%と高濃度になった。さらにAl濃度が0.01%を下回って低く、そのために脱酸、脱硫が進まず、SとO濃度が高くなってしまった。なお、Al濃度が0.01%を下回って低くなったのは、スラグ中のSiO濃度が12.8%と10%を超えて高かったためである。このため、CCTは30℃となってしまった。 In No. 11, the surface treatment was D treatment, that is, an insufficient passivation condition of immersion in 30% HNO 3 at 60 ° C. for 1 minute. Therefore, the passivation film did not have a sufficient composition, and Cr The ratio of / Ni, the ratio of Mo / Ni, and the oxygen concentration in the outermost layer of the passive film were all below the range of the present invention. Furthermore, decarburization did not go well and became a high concentration of 0.061%. Further, the Al concentration was lower than 0.01%, so that deoxidation and desulfurization did not proceed, and the S and O concentrations increased. The reason why the Al concentration became lower than 0.01% was that the SiO 2 concentration in the slag was 12.8%, which was higher than 10%. For this reason, CCT has become 30 degreeC.

No.12は、表面処理がA処理、つまり、15%HNO中に60℃で6分浸漬という不十分な不動態化条件であったため、不動態皮膜が十分な組成を有さず、Cr/Niの比率、Mo/Niの比率、不動態皮膜の最表層部における酸素濃度、いずれも本発明の範囲を下回ってしまった。さらにAl濃度が0.01%を下回って低く、そのために脱酸、脱硫が進まず、SとO濃度が高くなってしまった。なお、Al濃度が0.01%を下回って低くなったのは、スラグ中のSiO濃度が10.9%と10%を超えて高かったためである。このため、CCTは30℃となってしまった。 In No. 12, the surface treatment was A treatment, that is, the insufficient passivation condition of dipping in 15% HNO 3 at 60 ° C. for 6 minutes. Therefore, the passive film did not have a sufficient composition, Cr The ratio of / Ni, the ratio of Mo / Ni, and the oxygen concentration in the outermost layer of the passive film were all below the range of the present invention. Further, the Al concentration was lower than 0.01%, so that deoxidation and desulfurization did not proceed, and the S and O concentrations increased. The reason why the Al concentration became lower than 0.01% was that the SiO 2 concentration in the slag was 10.9%, which was higher than 10%. For this reason, CCT has become 30 degreeC.

No.13は、Alが高く介在物組成がMgO・Alとなってしまい、ノズル閉塞により鋳造中止のため、製品が製造できなかった。 No. 13 had a high Al content and the inclusion composition was MgO.Al 2 O 3, and the product was not able to be manufactured because the casting was stopped due to nozzle clogging.

また、不動態化処理の特性式8000≦X×Y+Z(X:硝酸濃度(%)、Y:浸漬時間(分)、Z:温度(℃)、ただし、硝酸濃度10〜50%、時間1〜100分、温度40〜85℃の範囲)を満たす表面処理C、E、F、G(表2の評価で○)は、全て良好な結果であったのに対して、特性式を満たさない処理A、B、D(表2の評価で×)は、CCTを満足しなかった。 Further, the characteristic formula of passivation treatment 8000 ≦ X 2 × Y + Z (X: nitric acid concentration (%), Y: immersion time (minute), Z: temperature (° C.), but nitric acid concentration 10-50%, time 1 The surface treatments C, E, F, and G (○ in the evaluation of Table 2) satisfying ~ 100 minutes and the temperature range of 40 to 85 ° C did not satisfy the characteristic formulas, although all the results were satisfactory. Processes A, B, and D (x in the evaluation of Table 2) did not satisfy CCT.

腐食性の強い過酷な環境下で長期間に亘って使用することができる高耐食性のNi基合金を製造することができ、有望である。
A highly corrosion-resistant Ni-based alloy that can be used over a long period of time in a highly corrosive and harsh environment can be produced, which is promising.

Claims (6)

C:0.002〜0.05%、S:0.0001〜0.005%、Cr:10〜25%、Mo:5〜20%、O:0.0001〜0.005%、Al:0.01〜0.5%、Fe:0.5〜10%、残部Niおよび不可避的不純物からなるNi基合金であって、
オージェ電子分光法を用いて、加速電圧10kV、試料電流量0.01μAとして前記Ni基合金の深さ方向に1kVの条件でスパッタしながら測定した各元素のプロファイルから算出した場合の、合金の表面に形成される不動態皮膜部におけるCr濃度(at.%)/Ni濃度(at.%)の比が0.2以上であり、ASTM G48 Method D試験において臨界隙間腐食発生温度(CCT)が40℃以上であることを特徴とするNi基合金。
C: 0.002-0.05%, S: 0.0001-0.005%, Cr: 10-25%, Mo: 5-20%, O: 0.0001-0.005%, Al: 0 .01-0.5%, Fe: 0.5-10%, Ni-base alloy consisting of the balance Ni and inevitable impurities,
The surface of the alloy when calculated from the profile of each element measured while being sputtered under the conditions of 1 kV in the depth direction of the Ni-based alloy with an acceleration voltage of 10 kV and a sample current of 0.01 μA using Auger electron spectroscopy The ratio of Cr concentration (at.%) / Ni concentration (at.%) In the passive film portion formed on the surface is 0.2 or more, and the critical crevice corrosion temperature (CCT) is 40 in the ASTM G48 Method D test. Ni-base alloy characterized by being at or above ° C.
前記オージェ電子分光法を用いて測定した不動態皮膜の母材側境界部におけるMo濃度(at.%)/Ni濃度(at.%)の比が0.1以上、かつ、不動態皮膜最表層部における酸素濃度が55(at.%)以上であることを特徴とする請求項1に記載のNi基合金。 The ratio of Mo concentration (at.%) / Ni concentration (at.%) At the base material side boundary portion of the passive film measured using the Auger electron spectroscopy is 0.1 or more and the outermost surface layer of the passive film The Ni-based alloy according to claim 1, wherein the oxygen concentration in the part is 55 (at.%) Or more. Si:0.01〜1%、Mn:0.01〜1%、Ti:0.01〜1%、Nb:0.5〜5%、W:0.5〜10%のいずれか1種または2種以上を含有することを特徴とする請求項1または2に記載のNi基合金。 Si: 0.01 to 1%, Mn: 0.01 to 1%, Ti: 0.01 to 1%, Nb: 0.5 to 5%, W: 0.5 to 10% Ni based alloy according to claim 1 or 2, characterized by containing two or more. 請求項1〜3のいずれかに記載のNi基合金を製造する方法であって、原料を電気炉で溶解し、AODおよび/またはVODにて脱炭、Cr還元、脱硫を行い、溶融合金を、C:0.002〜0.05%、S:0.0001〜0.005%、O:0.0001〜0.005%、Al:0.01〜0.5%に調整することを特徴とするNi基合金の製造方法。   A method for producing the Ni-based alloy according to any one of claims 1 to 3, wherein the raw material is melted in an electric furnace, decarburized, Cr reduced, and desulfurized by AOD and / or VOD, , C: 0.002 to 0.05%, S: 0.0001 to 0.005%, O: 0.0001 to 0.005%, Al: 0.01 to 0.5% A method for producing a Ni-based alloy. 前記Ni基合金を所望の形状に成形した後、硝酸溶液に浸漬して不動態化処理を行うことを特徴とする請求項に記載のNi基合金の製造方法。 5. The method for producing a Ni-based alloy according to claim 4 , wherein the Ni-based alloy is formed into a desired shape and then immersed in a nitric acid solution to perform passivation treatment. 前記不動態化処理は、X:硝酸濃度(%)、Y:浸漬時間(分)、Z:温度(℃)とした場合、下記式を満足するように行うことを特徴とする請求項に記載のNi基合金の製造方法。
8000≦X×Y+Z
(10≦X≦50、1≦Y≦100、40≦Z≦85)
The passivation process, X: nitric acid concentration (%), Y: Immersion Time (min), Z: when the temperature (° C.), to claim 5, characterized in that so as to satisfy the following formula The manufacturing method of Ni-based alloy of description.
8000 ≦ X 2 × Y + Z
(10 ≦ X ≦ 50, 1 ≦ Y ≦ 100, 40 ≦ Z ≦ 85)
JP2014064103A 2014-03-26 2014-03-26 Ni-based alloy and method for producing the same Ceased JP6259336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014064103A JP6259336B2 (en) 2014-03-26 2014-03-26 Ni-based alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014064103A JP6259336B2 (en) 2014-03-26 2014-03-26 Ni-based alloy and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015183290A JP2015183290A (en) 2015-10-22
JP6259336B2 true JP6259336B2 (en) 2018-01-10

Family

ID=54350178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014064103A Ceased JP6259336B2 (en) 2014-03-26 2014-03-26 Ni-based alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JP6259336B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6015884B1 (en) * 2015-04-14 2016-10-26 新日鐵住金株式会社 Plated steel sheet and manufacturing method thereof
JP6702416B2 (en) * 2016-06-28 2020-06-03 日本製鉄株式会社 Austenitic alloy material and austenitic alloy tube
RU2672647C1 (en) * 2017-08-01 2018-11-16 Акционерное общество "Чепецкий механический завод" Corrosive-resistant alloy
JP6937190B2 (en) * 2017-08-22 2021-09-22 日本冶金工業株式会社 Ni-Cr-Mo-Nb alloy and its manufacturing method
JP6723210B2 (en) 2017-09-14 2020-07-15 日本冶金工業株式会社 Nickel-based alloy
CN113684387B (en) * 2021-08-25 2022-11-01 中航上大高温合金材料股份有限公司 GH6159 alloy ingot for fastener and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602641A (en) * 1984-05-21 1985-01-08 Res Inst Iron Steel Tohoku Univ Amorphous nickel alloy having high resistance to pitting corrosion, crevice corrosion and general corrosion
JPH07190656A (en) * 1993-12-27 1995-07-28 Mitsubishi Materials Corp Heat pipe
DE19929354C2 (en) * 1999-06-25 2001-07-19 Krupp Vdm Gmbh Use of an austenitic Ni-Cr-Mo-Fe alloy
JP5324149B2 (en) * 2008-07-28 2013-10-23 日本冶金工業株式会社 Corrosion resistant austenitic stainless steel

Also Published As

Publication number Publication date
JP2015183290A (en) 2015-10-22

Similar Documents

Publication Publication Date Title
JP6259336B2 (en) Ni-based alloy and method for producing the same
JP5177310B2 (en) High tensile strength steel sheet with excellent low temperature toughness of weld heat affected zone and method for producing the same
JP7059357B2 (en) Duplex stainless clad steel sheet and its manufacturing method
WO2015088040A1 (en) Steel sheet and method for manufacturing same
JP6675846B2 (en) Fe-Cr-Ni alloy with excellent high-temperature strength
JP4949497B2 (en) Zinc-based alloy plated steel with excellent resistance to molten metal embrittlement cracking
JP6245352B2 (en) High-tensile steel plate and manufacturing method thereof
CN102933732B (en) The excellent structure stainless steel plate of corrosion resistance at welded part and its manufacture method
JP5708349B2 (en) Steel with excellent weld heat affected zone toughness
WO2019069998A1 (en) Austenitic stainless steel
JP5331700B2 (en) Ferritic stainless steel excellent in workability of welds and corrosion resistance of steel materials and method for producing the same
JP7223210B2 (en) Precipitation hardening martensitic stainless steel sheet with excellent fatigue resistance
JP7460761B2 (en) Alloy material and its manufacturing method
JP5246280B2 (en) Steel sheet for high strength steel pipe and high strength steel pipe
WO2022210651A1 (en) Duplex stainless steel wire rod, and duplex stainless steel wire
CN114101969B (en) Nuclear-grade nickel-chromium-iron alloy welding wire and preparation method and application thereof
JP5884183B2 (en) Structural stainless steel sheet
TW202220779A (en) Welded joint and production method therefor
EP3733890B1 (en) Low alloy high strength seamless steel pipe for oil country tubular goods
WO2020121817A1 (en) Ferritic stainless steel sheet and method for producing same
JP6191783B2 (en) Stainless steel
JP7009666B1 (en) Ni—Cr—Mo alloy for welded pipes with excellent workability and corrosion resistance
JP2009280850A (en) Stainless steel sheet for structure having excellent weld zone corrosion resistance, and weld structure
JP7261345B1 (en) Austenitic Ni-Cr-Fe alloy excellent in oxidation resistance and its production method
JP5890342B2 (en) Duplex stainless steel and duplex stainless steel pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171208

R150 Certificate of patent or registration of utility model

Ref document number: 6259336

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RVOP Cancellation by post-grant opposition