JPH0291416A - Suction device for engine - Google Patents

Suction device for engine

Info

Publication number
JPH0291416A
JPH0291416A JP63243273A JP24327388A JPH0291416A JP H0291416 A JPH0291416 A JP H0291416A JP 63243273 A JP63243273 A JP 63243273A JP 24327388 A JP24327388 A JP 24327388A JP H0291416 A JPH0291416 A JP H0291416A
Authority
JP
Japan
Prior art keywords
intake passage
speed
intake
low
speed intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63243273A
Other languages
Japanese (ja)
Inventor
Kazumi Okamura
和美 岡村
Takeshi Tsuchida
土田 剛
Hiroyuki Matsumoto
裕之 松本
Hideo Nakayama
中山 英夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP63243273A priority Critical patent/JPH0291416A/en
Publication of JPH0291416A publication Critical patent/JPH0291416A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0247Plenum chambers; Resonance chambers or resonance pipes
    • F02B27/0252Multiple plenum chambers or plenum chambers having inner separation walls, e.g. comprising valves for the same group of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0205Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the charging effect
    • F02B27/021Resonance charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B2075/1804Number of cylinders
    • F02B2075/1824Number of cylinders six
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/22Multi-cylinder engines with cylinders in V, fan, or star arrangement
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)

Abstract

PURPOSE:To reduce the suction resistance of low speed suction passages by setting the opening area of the opening sections to the high speed suction passages of the low speed suction passages larger than the cross area of the low speed suction passages. CONSTITUTION:The down-stream end sections of low speed suction passages 25 and 26 are connected from the upper side to high speed passages 21 and 22 at opening sections 27 and 28, which are set to the same dimension d1 as the internal diameter in the car longitudinal direction of the low speed suction passages 25 and 26 in the longitudinal direction, but are set to specified value d2 larger than the internal diameter in the vertical direction of the low speed passages 25 and 26 in the car cross direction. The opening cross area of the opening sections 27 and 28 are, therefore, larger than the cross area of the low speed suction passages 25 and 26. This allows the suction air in the low speed suction passages to flow into the high speed suction passages 21 and 22 smoothly resulting in the practical elimination of the generation of the suction resistance near the opening sections 27 and 28.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はエンジンの吸気装置に関するものであって、と
くに圧力波の伝播に関する実質的吸気経路長が異なる2
種の吸気通路を設け、エンジン回転数に応じて上記2種
の吸気通路を使い分け、広い回転域で高い共鳴効果を得
られるようにしたエンジンの吸気装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an engine intake system, and in particular, two systems having different substantial intake path lengths regarding the propagation of pressure waves.
The present invention relates to an engine intake system in which different types of intake passages are provided and the two types of intake passages are selectively used depending on the engine speed, thereby achieving a high resonance effect over a wide rotation range.

[従来の技術] 慣性効果あるいは共鳴効果を利用して圧力波過給を行い
、充填効率を高めるようにした多気筒エンジンは一般に
知られている。
[Prior Art] Multi-cylinder engines that perform pressure wave supercharging using inertia effects or resonance effects to increase charging efficiency are generally known.

ここにおいて、慣性効果による圧力波過給とは、各気筒
の吸気弁が開かれた時に吸気ポートに発生する負圧波を
、該吸気ポートに接続された独立吸気通路内を上流に向
かって音速で所定の容積部まで伝播させ、この容積部で
上記負圧波を正圧波に反転させ、この正圧波を上記と同
一の吸気経路を下流に向かって音速で伝播させて吸気弁
が閉じられる直前に吸気ポートに到達させ、この正圧波
によって吸気を燃焼室内に押し込んで充填効率を高める
ようにした過給方法である。そして、レイアウト上等の
制約から各気筒の独立吸気通路は比較的短く設定せざる
を得ないので、圧力波の往復伝播に要する時間が比較的
短(なり、したがって、上記慣性効果は吸気弁の開弁時
間が短い比較的高回転域において効果を発揮するといっ
た特性を有する。
Here, pressure wave supercharging due to inertial effect means that when the intake valve of each cylinder is opened, the negative pressure wave generated at the intake port is moved upstream at the speed of sound within the independent intake passage connected to the intake port. The negative pressure wave is inverted into a positive pressure wave in this volume, and this positive pressure wave is propagated downstream at the speed of sound through the same intake path as above, and the intake air is generated just before the intake valve is closed. This is a supercharging method in which the intake air is forced into the combustion chamber by the positive pressure wave, increasing the charging efficiency. Since the independent intake passages of each cylinder must be set relatively short due to layout constraints, the time required for the pressure waves to propagate back and forth is relatively short (therefore, the above-mentioned inertial effect is It has the characteristic that it is effective in a relatively high rotation range where the valve opening time is short.

一方、共鳴効果による圧力波過給とは、夫々点火時期が
連続しないいくつかの気筒で構成される複数の気筒群を
形成し、これらの気筒群毎にこれに属する各気筒の独立
吸気通路を上流で1つの共鳴吸気通路に集合させ、この
共鳴吸気通路の所定の位置に圧力反転部を設け、各気筒
と圧力反転部との間を往復伝播する各気筒の圧力波を共
鳴吸気通路内で共鳴させ、これによって各気筒毎に個々
に発生する圧力振動より大きな振幅を有する共鳴圧力波
を発生させ、この共鳴圧力波によって吸気を燃焼室に押
し込んで充填効率を高めるようにした過給方法である。
On the other hand, pressure wave supercharging using the resonance effect involves forming multiple cylinder groups consisting of several cylinders with discontinuous ignition timing, and creating independent intake passages for each cylinder belonging to each cylinder group. They are gathered into one resonant intake passage upstream, and a pressure reversal section is provided at a predetermined position of this resonant intake passage, so that the pressure waves of each cylinder that propagate back and forth between each cylinder and the pressure reversal section are transmitted within the resonant intake passage. This is a supercharging method that generates resonance pressure waves with a larger amplitude than the pressure vibrations that occur individually in each cylinder, and uses these resonance pressure waves to force intake air into the combustion chamber to increase charging efficiency. be.

この場合、圧力波の伝播経路長が、上記慣性効果の圧力
波伝播経路長より共鳴吸気通路の分だけ長くなるので、
共鳴効果は吸気弁の開弁時間が比較的長い中・低回転域
において効果を発揮するといった特性を有する。ところ
が、このような従来の吸気装置では、かかる吸気経路長
に対応する比較的狭い回転域でしか共鳴効果が高まらな
いので、広い回転域(中・低回転域)で共鳴効果を有効
に利用することができないといった問題があった。
In this case, the pressure wave propagation path length is longer than the pressure wave propagation path length due to the inertial effect by the amount of the resonant intake passage, so
The resonance effect has a characteristic that it is effective in the middle and low rotation ranges where the intake valve opening time is relatively long. However, with such conventional intake devices, the resonance effect only increases in a relatively narrow rotation range corresponding to the intake path length, so the resonance effect is effectively utilized in a wide rotation range (medium and low rotation range). The problem was that I couldn't do it.

そこで、共鳴吸気通路を、圧力波の伝播に関して、実質
的吸気経路長が短く設定された高速用吸気通路と、実質
的吸気経路長が長く設定された低速用吸気通路の2種の
吸気通路で構成し、共鳴効果を利用するエンジン回転域
(中・低速域)において、比較的高速時には高速用吸気
通路を用いて共鳴効果を高める一方、比較的低速時には
低速用吸気通路を用いて共鳴効果を高め、広い回転域に
わたって高い共鳴効果を得られるようにしたエンジンの
吸気装置が提案されている(例えば、特開昭62−21
0219号公報参照)。
Therefore, regarding the propagation of pressure waves, the resonant intake passage is divided into two types: a high-speed intake passage with a short effective intake path length, and a low-speed intake passage with a long actual intake path length. In the engine speed range (medium/low speed range) where the resonance effect is utilized, the high-speed intake passage is used to enhance the resonance effect at relatively high speeds, while the low-speed intake passage is used to enhance the resonance effect at relatively low speeds. An engine intake system has been proposed that has a high rotation speed and can obtain a high resonance effect over a wide rotation range (for example, Japanese Patent Laid-Open No. 62-21
(See Publication No. 0219).

[発明が解決しようとする課題] ところで、近年ボンネットの低い車種が好まれる関係上
、エンジン上部の空間部が狭くなる傾向があり、この空
間部に配置される吸気装置のコンパクト化が求められて
いるが、高速用吸気通路と低速用吸気通路の2種の共鳴
用吸気通路が設けられた吸気装置は大型化するので、レ
イアウトが非常に難しくなるといった問題があった。
[Problems to be Solved by the Invention] In recent years, as car models with low bonnets have been preferred, the space above the engine has tended to become narrower, and there has been a demand for a more compact intake system to be placed in this space. However, an intake system in which two types of resonant intake passages, a high-speed intake passage and a low-speed intake passage, are provided has a problem in that the layout becomes very difficult because the intake system is large in size.

また、高速用吸気通路と低速用吸気通路とが設けられた
吸気装置において、より低速域まで共鳴効果を得られる
ようにするには、低速用吸気通路の実質的吸気経路長を
大きくしなければならないが、吸気装置をコンパクト化
する必要があるので、低速用吸気通路の長さ自体はそれ
程大きくできない。したがって、低速用吸気通路の実質
的吸気経路長を、低速用吸気通路の長さをそれ程太き(
することなく大きくするには、低速用吸気通路の通路断
面積を小さくする必要がある。ところが、高速用吸気通
路と低速用吸気通路とを備えた従来の吸気装置では、低
速用吸気通路の通路断面積を小さくすると、その吸気抵
抗が太き(なり吸気の充填を妨げるので、実質的には共
鳴効果による充填効率の向上効果が失われ、実質的に低
速域まで有効に共鳴効果を利用することができないとい
った問題があった。
In addition, in an intake system equipped with a high-speed intake passage and a low-speed intake passage, in order to obtain a resonance effect even in the low-speed range, the effective intake path length of the low-speed intake passage must be increased. However, since it is necessary to make the intake device more compact, the length of the low-speed intake passage itself cannot be increased that much. Therefore, the actual intake path length of the low-speed intake passage can be increased by increasing the length of the low-speed intake passage (
In order to increase the size without increasing the speed, it is necessary to reduce the cross-sectional area of the low-speed intake passage. However, in conventional intake systems equipped with a high-speed intake passage and a low-speed intake passage, when the passage cross-sectional area of the low-speed intake passage is made small, the intake resistance becomes large (which impedes intake air filling, so However, there was a problem in that the effect of improving the filling efficiency due to the resonance effect was lost, and the resonance effect could not be utilized effectively up to a substantially low speed range.

本発明は上記従来の問題点に鑑みてなされたものであっ
て、上記のような高速用吸気通路と低速用吸気通路とを
備えたエンジンにおいて、広い回転域にわたって慣性効
果あるいは共鳴効果による圧力波過給を有効に行うこと
ができ、かつボンネットの低い車両に対しても容易にレ
イアウトができるコンパクトな構成の吸気装置を提供す
ることを目的とする。
The present invention has been made in view of the above-mentioned conventional problems, and in an engine equipped with a high-speed intake passage and a low-speed intake passage as described above, pressure waves caused by inertial effect or resonance effect over a wide rotation range are generated. It is an object of the present invention to provide an intake device with a compact configuration that can effectively perform supercharging and can be easily laid out even for a vehicle with a low bonnet.

[課題を解決するための手段] 本願発明者らは、高速用吸気通路と低速用吸気通路とを
略平行に配置し、低速用吸気通路の下流側端部を高速用
吸気通路に開口させた場合、低速用吸気通路の吸気抵抗
は、主として吸気の流れ方向が急激に約90°変えられ
る上記開口部において発生し、この部分の吸気抵抗を低
減することができれば、低速用吸気通路の吸気抵抗を大
幅に低減することができるという事実を発見した。
[Means for Solving the Problems] The inventors arranged the high-speed intake passage and the low-speed intake passage approximately parallel to each other, and opened the downstream end of the low-speed intake passage to the high-speed intake passage. In this case, the intake resistance of the low-speed intake passage mainly occurs at the opening where the flow direction of the intake air is suddenly changed by about 90 degrees.If the intake resistance in this part can be reduced, the intake resistance of the low-speed intake passage will be reduced. discovered that it is possible to significantly reduce

本発明は、このような事実に鑑み、上記の目的を達する
ため、圧力波の伝播に関して、実質的吸気経路長が比較
的短く設定された高速用吸気通路と、下流側端部が該高
速用吸気通路に接続され、実質的吸気経路長が上記高速
用吸気通路より長く設定された低速用吸気通路とが設け
られたエンジンにおいて、上記高速用吸気通路と上記低
速用吸気通路とを略平行状態で近接して配置するととも
に、低速用吸気通路の高速用吸気通路への開口部の開口
面積を、低速用吸気通路の通路断面積より大きく設定し
たことを特徴とするエンジンの吸気装置を提供する。
In view of these facts, and in order to achieve the above object, the present invention provides a high-speed intake passage in which the substantial intake path length is set to be relatively short in terms of pressure wave propagation, and a downstream end of the high-speed intake passage. In an engine provided with a low-speed intake passage connected to an intake passage and having a longer substantial intake path length than the high-speed intake passage, the high-speed intake passage and the low-speed intake passage are placed in a substantially parallel state. To provide an engine intake device characterized in that the opening area of the opening of the low-speed intake passage to the high-speed intake passage is set larger than the passage cross-sectional area of the low-speed intake passage. .

[発明の作用・効果] 本発明によれば、圧力波の伝播に関して、実質的吸気経
路長が短(設定された高速用吸気通路と、実質的吸気経
路長が長く設定された低速用吸気通路とを略平行状態で
近接して配置しているので、吸気装置のコンパクト化を
図ることができる。
[Operations and Effects of the Invention] According to the present invention, regarding the propagation of pressure waves, the effective intake path length is short (the high-speed intake passage is set, and the low-speed intake passage is set to have a long substantial intake path length). Since these are arranged close to each other in a substantially parallel state, the intake device can be made more compact.

また、低速用吸気通路の高速用吸気通路への開口部の開
口面積を、低速用吸気通路の通路断面積より大きく設定
しているので、開口部の吸気抵抗を大幅に低減すること
ができ、したがって、低速用吸気通路の吸気抵抗を大幅
に低減することができる。このため、低速用吸気通路を
通して吸気を供給する場合にも、共鳴効果による充填効
率の向上効果を妨げないので、エンジン回転数に応じて
高速用吸気通路と低速用吸気通路を切り替えて、広い回
転域で高い共鳴効果を得つつ、吸気系統をコンパクト化
して自動車の°低ボンネット化傾向に有効に対処するこ
とができる。
In addition, since the opening area of the low-speed intake passage to the high-speed intake passage is set larger than the passage cross-sectional area of the low-speed intake passage, the intake resistance at the opening can be significantly reduced. Therefore, the intake resistance of the low-speed intake passage can be significantly reduced. Therefore, even when intake air is supplied through the low-speed intake passage, the effect of improving filling efficiency due to the resonance effect is not hindered, so the high-speed intake passage and the low-speed intake passage are switched according to the engine speed, allowing a wide rotation speed. While achieving a high resonance effect in the area, the intake system can be made more compact, effectively responding to the trend toward lower bonnets in automobiles.

[実施例] 以下、本発明の実施例を具体的に説明する。[Example] Examples of the present invention will be specifically described below.

第2図に示すように、第1〜第6気筒#1〜#6の順に
点火される、6気筒横置き■型エンジンCEは、点火順
序が連続しない第1.第3、第5気筒#1.#3.#5
が、車両の前後方向にみて、フロント側バンクFに配置
される一方、点火順序が連続しない第2.第4.第6気
筒#2.#4.#6がリヤ側バンクRに配置されている
As shown in FIG. 2, the 6-cylinder horizontal ■-type engine CE, in which the first to sixth cylinders #1 to #6 are ignited in order, has the first to sixth cylinders #1 to #6 in which the firing order is not consecutive. 3rd and 5th cylinder #1. #3. #5
is located in the front side bank F when viewed in the longitudinal direction of the vehicle, while the second ignition order is not consecutive. 4th. 6th cylinder #2. #4. #6 is placed in the rear bank R.

そして、例えば第1気筒#lは、吸気弁lが開かれたと
きに、吸気ポート2を介して独立吸気通路3から燃焼室
4内に吸気を吸入し、この吸気をピストン(図示せず)
で圧縮して、点火プラグ(図示せず)で着火燃焼させ、
排気弁5が開かれたときに、燃焼ガスを排気ポート6を
介して独立排気通路7に排出するようになっており、上
記独立吸気通路3には、吸気ポート2のやや上流におい
て、吸気中に燃料を噴射する燃料噴射弁8が、噴射口を
下流側に傾けて配置されている。そして、この燃料噴射
弁8へは燃料供給通路9を通して燃料が供給されるよう
になっている。また、燃焼室4にはブローバイガス通路
10(第1図参照)を通してブローバイガスが導入され
るようになっている。
For example, when the intake valve l is opened, the first cylinder #l sucks intake air into the combustion chamber 4 from the independent intake passage 3 through the intake port 2, and transfers this intake air to the piston (not shown).
compress it, ignite it with a spark plug (not shown), and burn it.
When the exhaust valve 5 is opened, the combustion gas is discharged through the exhaust port 6 into the independent exhaust passage 7. A fuel injection valve 8 for injecting fuel is arranged with its injection port inclined toward the downstream side. Fuel is supplied to the fuel injection valve 8 through a fuel supply passage 9. Further, blow-by gas is introduced into the combustion chamber 4 through a blow-by gas passage 10 (see FIG. 1).

ナオ、第2〜第6気筒#2〜#6についても同様の構成
となっている。
Similarly, the second to sixth cylinders #2 to #6 have a similar configuration.

上記エンジンCEは、車両のリヤ側に行くほど高くなる
ようなゆるやかな傾斜をもうて形成されたボンネットB
Nの下側のエンジンルームER内に、両バンクF、Rの
軸線が車幅方向を向くようにして配置されている(いわ
ゆる横置き)。そして、リヤ側バンクRのシリンダヘッ
ドSの上端部とボンネットBNとの間には、スロットル
ボディ14(第1図参照)を介して、共通吸気通路11
(第1図参照)と接続された吸気マニホールドIMが配
置されている。リヤ側バンクRの上部ではボンネットB
Nがかなり高(なっており、シリンダヘッドSの上方の
空間部が上下方向に比較的余裕をもって確保されるので
、吸気マニホールドIMをボンネットBNと干渉させる
ことなく配置することができる。この吸気マニホールド
!Mは、マニホールド本体部Mと独立吸気通路部Nとで
構成され、このマニホールド本体部Mは、以下に詳述す
るように、吸気の供給を安定化するためのサージタンク
として作用するとともに、中・低速時においては共鳴効
果を有効に生じさせるための共鳴通路として作用し、高
速時においては慣性効果を有効に生じさせるための容積
部として作用する。また、上記独立吸気通路部Nは、夫
々マニホールド本体部Mと各気筒#l〜#6の吸気ポー
ト2とを接続する6つの独立吸気通路3で構成されてい
る。
The engine CE has a bonnet B formed with a gentle slope that becomes higher toward the rear of the vehicle.
Both banks F and R are arranged in the engine room ER on the lower side of N so that their axes face in the vehicle width direction (so-called horizontal placement). A common intake passage 11 is connected between the upper end of the cylinder head S of the rear side bank R and the bonnet BN via a throttle body 14 (see FIG. 1).
An intake manifold IM (see FIG. 1) connected to the intake manifold IM is arranged. At the top of the rear bank R, the bonnet B
N is quite high, and the space above the cylinder head S is secured with a relatively large margin in the vertical direction, so the intake manifold IM can be placed without interfering with the bonnet BN.This intake manifold !M is composed of a manifold main body part M and an independent intake passage part N, and this manifold main body part M acts as a surge tank for stabilizing the supply of intake air, as will be explained in detail below. At medium and low speeds, it acts as a resonance passage to effectively produce a resonance effect, and at high speeds, it acts as a volume part to effectively produce an inertial effect.Furthermore, the independent intake passage section N is It is composed of six independent intake passages 3 each connecting the manifold main body M and the intake port 2 of each cylinder #l to #6.

上記マニホールド本体部Mは、車幅方向に伸長するフロ
ント側高速用吸気通路21と、そのリヤ側側面に沿って
配置されたフロント側低速用吸気通路25と、上記フロ
ント側高速用吸気通路21よりリヤ側のやや低い位置で
これと略平行して車幅方向に伸長するリヤ側高速用吸気
通路22と、その上面に沿って配置されたリヤ側低速用
吸気通路26とが設けられている。そして、上記フロン
ト側高速用吸気通路″21の下流側端部とリヤ側高速用
吸気通路22の下流側端部とは連通路33(第1図参照
)でループ状に接続され、これらの3つの吸気通路21
,22.33は略U字型の吸気通路を形成しており(第
1図参照)、上記連通路33には、エンジンCEの運転
状態に応じて開閉される連通路開閉弁37(第1図参照
)が設けられている。また、後で詳説するように、フロ
ント側低速用吸気通路25の下流側端部は、フロント側
低速用吸気通路25の通路断面積より大きい開口面積を
有するフロント側開口部27(第1図参照)で、フロン
ト側高速用吸気通路21に側方から開口し、一方リャ側
低速用吸気通路26の下流側端部は、リヤ側低速用吸気
通路26の通路断面積より大きい開口面積を有するリヤ
側開口部28(第1図参照)で、リヤ側高速用吸気通路
22に上側から開口している(第1図28参照)。これ
らのフロント側、リヤ側高速用吸気通路21.22の上
流側端部はフランジ部18に開口され、一方フロント側
The manifold body M includes a front high-speed intake passage 21 extending in the vehicle width direction, a front low-speed intake passage 25 arranged along the rear side surface of the front high-speed intake passage 21, and a front high-speed intake passage 21 extending in the vehicle width direction. A rear high speed intake passage 22 extending in the vehicle width direction substantially parallel to the rear side at a slightly lower position, and a rear low speed intake passage 26 disposed along the upper surface of the rear high speed intake passage 22 are provided. The downstream end of the front high-speed intake passage 21 and the downstream end of the rear high-speed intake passage 22 are connected in a loop through a communication passage 33 (see FIG. 1). two intake passages 21
, 22, 33 form a substantially U-shaped intake passage (see Fig. 1), and the communication passage 33 has a communication passage opening/closing valve 37 (a first (see figure). Further, as will be explained in detail later, the downstream end of the front low-speed intake passage 25 has a front opening 27 (see FIG. 1) that has a larger opening area than the cross-sectional area of the front low-speed intake passage 25. ), the front side high-speed intake passage 21 opens from the side, and the rear side low-speed intake passage 26 has a downstream end that has an opening area larger than the passage cross-sectional area of the rear side low-speed intake passage 26. A side opening 28 (see FIG. 1) opens into the rear high-speed intake passage 22 from above (see FIG. 128). The upstream ends of these front-side and rear-side high-speed intake passages 21, 22 are opened to the flange portion 18, while the front side.

リヤ側低速用吸気通路25.26の上流側は共通低速用
吸気通路23を介してフランジ部18に開口されている
(第1図参照)。
The upstream side of the rear low-speed intake passages 25 and 26 opens into the flange portion 18 via the common low-speed intake passage 23 (see FIG. 1).

一方、フロント側気筒#l、#3.#5の独立吸気通路
3の上流側端部はフロント側高速用吸気通路21のフロ
ント側側面に接続され、これらの独立吸気通路3はここ
からフロント方向に緩やかに下降しながらほぼ直線的に
伸長した後、はぼ鉛直下向きとなるように湾曲し、フロ
ント側バンクFの対応する気筒の吸気ポート2に接続さ
れている。
On the other hand, front cylinders #l and #3. The upstream end of the #5 independent intake passage 3 is connected to the front side surface of the front high-speed intake passage 21, and these independent intake passages 3 extend almost linearly from here while gradually descending toward the front. After that, it curves vertically downward and is connected to the intake port 2 of the corresponding cylinder in the front bank F.

また、リヤ側気筒#2.#4.#6の独立吸気通路3の
上流側端部はリヤ側高速用吸気通路22のフロント側側
面に接続され、これらの独立吸気通路3はここからフロ
ント方向に上方に凸となるように湾曲しながら伸長し、
下流部ではほぼ下向きに伸長して、リヤ側バンクRの対
応する吸気ボート2に接続されている。
Also, rear cylinder #2. #4. The upstream end of the #6 independent intake passage 3 is connected to the front side surface of the rear high-speed intake passage 22, and these independent intake passages 3 are curved upwardly in the front direction from here. Stretch,
The downstream portion extends substantially downward and is connected to the corresponding intake boat 2 of the rear bank R.

以下、吸気装置の各部の構成についてさらに詳しく説明
する。
The configuration of each part of the intake device will be explained in more detail below.

第1図に示すように、エンジンCEの上方の空間部を有
効に利用するために、上下方向にやや偏平な形状に形成
され、その断面が横長の略長方形に形成された共通吸気
通路11は、分岐部12で、フロント側分岐吸気通路1
1fとリヤ側分岐吸気通路11rとに分岐している。こ
れらのフロント側、リヤ側分岐吸気通路11f、11r
の下流側端部は、スロットルボディ14を介してマニホ
ールド本体部Mのフランジ部18に接続されている。
As shown in FIG. 1, in order to effectively utilize the space above the engine CE, the common intake passage 11 is formed into a slightly flattened shape in the vertical direction and whose cross section is formed into a horizontally elongated substantially rectangular shape. , at the branch part 12, the front side branch intake passage 1
1f and a rear branch intake passage 11r. These front side and rear side branch intake passages 11f, 11r
A downstream end of the manifold main body M is connected to a flange 18 of the manifold main body M via a throttle body 14 .

上記スロットルボディ14内には、フロント側分岐吸気
通路ttrの吸気の絞り量を調節するフロント側スロッ
トル弁13Fと、リヤ側分岐吸気通路11rの吸気の絞
り量を調節するリヤ側スロットル弁13rとが設けられ
ている。これらのフロント側、リヤ側スロットル弁13
f、13rは、夫々スロットルボディ14内において弁
軸15に取り付けられ、アクセルペダル(図示せず)の
踏み込みに応じて、非線形な開度特性をもったリンク機
構16を介して一体的に開閉されるようになっている。
Inside the throttle body 14, there are a front throttle valve 13F that adjusts the throttle amount of intake air in the front branch intake passage ttr, and a rear throttle valve 13r that adjusts the throttle amount of intake air in the rear branch intake passage 11r. It is provided. These front side and rear side throttle valves 13
f and 13r are each attached to a valve shaft 15 within the throttle body 14, and are integrally opened and closed via a link mechanism 16 having non-linear opening characteristics in response to depression of an accelerator pedal (not shown). It has become so.

そして、マニホールド本体部Mのフランジ部18内では
、フロント側吸気通路11fとリヤ側吸気通路11rと
が再び集合され、集合部17が形成されている(第4図
参照)。この集合部17は、フロント側バンクF側の吸
気系統の吸気脈動と、リヤ側バンクR側の吸気系統の吸
気脈動との干渉作用によってほぼ均圧状態となる現象を
利用して、共鳴効果を利用する際の圧力波の反転部(開
放端)を形成するために設けられている。そして、集合
部17のすぐ下流で、吸気系統は、後で詳説するように
、フロント側高速用吸気通路21と、リヤ側高速用吸気
通路22と、共通低速用吸気通路23とに分岐している
。この場合、フロント側、リヤ側高速用吸気通路21.
22は、横長の長方形状断面を有するフランジ部18の
下半部に開口し、一方共通低速用吸気通路23はフラン
ジ部18の上半部中央に開口している(第2図参照)。
Then, within the flange portion 18 of the manifold main body portion M, the front side intake passage 11f and the rear side intake passage 11r are assembled again to form a gathering portion 17 (see FIG. 4). This gathering portion 17 utilizes the phenomenon that the pressure is almost equalized due to the interference between the intake pulsation of the intake system on the front side bank F side and the intake pulsation of the intake system on the rear side bank R side, and produces a resonance effect. It is provided to form an inversion part (open end) of pressure waves when used. Immediately downstream of the gathering portion 17, the intake system branches into a front high-speed intake passage 21, a rear high-speed intake passage 22, and a common low-speed intake passage 23, as will be explained in detail later. There is. In this case, the front side and rear side high speed intake passages 21.
22 opens in the lower half of the flange portion 18 having a horizontally long rectangular cross section, while the common low-speed intake passage 23 opens in the center of the upper half of the flange portion 18 (see FIG. 2).

さらに、共通低速用吸気通路23は、フランジ部18の
やや下流の低速用吸気通路分岐部24でフロント側低速
用吸気通路25 、!= l/サヤ側低速吸気通路26
とに分岐している。なお、フロント側、リヤ側高速用吸
気通路21.22の通路断面積は、高速時に多量の空気
を供給しうるよう、フロント側。
Furthermore, the common low-speed intake passage 23 is connected to the front-side low-speed intake passage 25 at a low-speed intake passage branch 24 slightly downstream of the flange portion 18 . = l/shell side low speed intake passage 26
It is branched into. The cross-sectional areas of the front and rear high-speed intake passages 21 and 22 are on the front side so that a large amount of air can be supplied at high speeds.

リヤ側低速用吸気通路25.26の通路断面積に比して
十分大きく設定する。そして、前記したように、フロン
ト側低速用吸気通路25の下流側端部は、フロント側開
口部27でフロント側高速用吸気通路21に側方から接
続され、一方リャ側低速用吸気通路26の下流側端部は
、リヤ側開口部28でリヤ側高速用吸気通路22に上側
から接続されている。したがって、低速時には、低速用
吸気通路25.26の吸気は、高速用吸気通路21゜2
2に一旦流入し、ここで分散したうえで、各独立吸気通
路3から対応する気筒に供給される。つまり、高速用吸
気通路21.22は、低速時に一種のサージタンクとし
て機能する。
It is set sufficiently larger than the passage cross-sectional area of the rear low-speed intake passages 25 and 26. As described above, the downstream end of the front low-speed intake passage 25 is laterally connected to the front high-speed intake passage 21 through the front opening 27, while the rear low-speed intake passage 26 is connected from the side to the front high-speed intake passage 21 through the front opening 27. The downstream end is connected from above to the rear high-speed intake passage 22 through a rear opening 28 . Therefore, at low speeds, the intake air in the low speed intake passages 25, 26 is transferred to the high speed intake passages 21°2.
2, where it is dispersed and then supplied from each independent intake passage 3 to the corresponding cylinder. In other words, the high-speed intake passages 21 and 22 function as a kind of surge tank during low-speed operation.

ところで、上記リヤ側開口部28は、車両の前後方向(
第1図では左右方向)については、リヤ側低速用吸気通
路26の車両の前後方向の内径と同一の寸法d、に設定
されているが、車幅方向く第1図では上下方向)につい
ては、リヤ側低速用吸気通路26の上下方向の内径(高
さ)よりも大きい所定の値d、に設定されている。この
ため、リヤ側開口部28の形状は、リヤ側低速用吸気通
路26の断面をその高さ方向にのみ拡大したような形状
となっており、したがって、リヤ側開口部28の開口面
積は、リヤ側低速用吸気通路26の通路断面積よりも大
きくなっている。なお、リヤ側開口部28の車両の前後
方向の寸法d1をリヤ側低速用吸気通路26の車両の前
後方向の内径と同一にしているので、リヤ側低速用吸気
通路26の外形は従来のものと変わらず、フンバクトな
構成となる。
By the way, the rear side opening 28 is located in the longitudinal direction of the vehicle (
In the left-right direction in Fig. 1), the dimension d is set to be the same as the inner diameter of the rear low-speed intake passage 26 in the longitudinal direction of the vehicle, but in the vehicle width direction (in the vertical direction in Fig. 1), , and is set to a predetermined value d that is larger than the vertical inner diameter (height) of the rear low-speed intake passage 26. Therefore, the shape of the rear side opening 28 is such that the cross section of the rear side low speed intake passage 26 is expanded only in the height direction, and therefore the opening area of the rear side opening 28 is It is larger than the passage cross-sectional area of the rear low-speed intake passage 26. The dimension d1 of the rear opening 28 in the longitudinal direction of the vehicle is made the same as the inner diameter of the rear low-speed intake passage 26 in the longitudinal direction of the vehicle, so the outer shape of the rear low-speed intake passage 26 is the same as that of the conventional one. The composition remains the same.

そして、リヤ側低速用吸気通路26内を流れる吸気は、
リヤ側開口部28近傍において、急激に流れ方向を90
″変えてリヤ側高速用吸気通路22に流入するので、従
来のこのような吸気装置では、この部分で大きな吸気抵
抗が生じていたが、水素では、リヤ側開口部28の開口
面積が大きく設定されているので、リヤ側低速用吸気通
路26内の吸気を円滑にリヤ側高速用吸気通路22に流
入させることができ、リヤ側開口部28近傍での吸気抵
抗の発生を実質的になくすことができる。
The intake air flowing through the rear low-speed intake passage 26 is
Near the rear opening 28, the flow direction suddenly changes to 90 degrees.
'' and flows into the rear high-speed intake passage 22, so in conventional intake systems like this, large intake resistance occurred in this part, but with hydrogen, the opening area of the rear opening 28 is set large. Therefore, the intake air in the rear low-speed intake passage 26 can smoothly flow into the rear high-speed intake passage 22, and the occurrence of intake resistance near the rear opening 28 can be substantially eliminated. Can be done.

このため、所定の低速時において、直列的にリヤ側低速
用吸気通路26とリヤ側高速用吸気通路22とを通して
吸気を各気筒に供給する場合でも、共鳴効果による充填
効率の向上効果を損なわない。
Therefore, even if intake air is supplied to each cylinder through the rear low-speed intake passage 26 and the rear high-speed intake passage 22 in series at a predetermined low speed, the effect of improving charging efficiency due to the resonance effect is not impaired. .

したがって、広い回転域で共鳴効果を有効に利用するこ
とができる。なお、第1図からは明らかではないが、フ
ロント側開口部27についても同様の構成となっており
、同様の効果が得られることは勿論である。
Therefore, the resonance effect can be effectively utilized over a wide rotation range. Although it is not clear from FIG. 1, the front side opening 27 also has a similar configuration, and it goes without saying that the same effect can be obtained.

そして、フロント側高速用吸気通路21のフロント側側
面には、フロント側バンクFに属する第1、第3.第5
気筒#1.#3.#5の独立吸気通路3、3.3が接続
され、一方リャ側高速用吸気通路22のフロント側側面
にはリヤ側バンクRに属する第2.第4.第6気筒#2
.#4.#6の独立吸気通路3,3.3が接続されてい
る。なお、フロント側高速用吸気通路21とリヤ側高速
用吸気通路22との位置関係と、各独立吸気通路3の長
手方向の形状は、フロント側バンクFの独立吸気通路3
゜3.3とリヤ側バンクRの独立吸気通路3,3゜3と
が同じ吸気経路長となるように設定されている。
The front side surface of the front high-speed intake passage 21 is provided with first, third, . Fifth
Cylinder #1. #3. The #5 independent intake passages 3, 3.3 are connected to the rear side high-speed intake passage 22. On the front side side surface of the rear side high-speed intake passage 22, the second. 4th. 6th cylinder #2
.. #4. #6 independent intake passage 3, 3.3 is connected. The positional relationship between the front high-speed intake passage 21 and the rear high-speed intake passage 22 and the longitudinal shape of each independent intake passage 3 are as follows:
3.3 and the independent intake passages 3, 3.3 of the rear bank R are set to have the same intake path length.

また、集合部17の直ぐ下流において、フロント側、リ
ヤ側高速用吸気通路21.22には、夫々、これらを開
閉するフロント側、リヤ側高速用吸気通路開閉弁31.
32が設けられている。これらのフロント側、リヤ側高
速用吸気通路開閉弁31.32は、後で説明するように
、共鳴効果を利用すべきエンジン回転域において、回転
数が所定値以下のときに閉じられるようになっている。
Immediately downstream of the gathering portion 17, the front and rear high-speed intake passages 21 and 22 are provided with front and rear high-speed intake passage opening/closing valves 31 and 22, respectively, which open and close these.
32 are provided. These front and rear high-speed intake passage opening/closing valves 31 and 32 are designed to close when the engine speed is below a predetermined value in the engine speed range where the resonance effect should be utilized, as will be explained later. ing.

第3図は、吸気マニホールドIMをフランジ部18側か
ら下流側に向かって見た図であり、第4図は、第3図の
X−X線断面説明図である。第3図と第4図とに示すよ
うに、フランジ部18(集合部17)の下半部からはフ
ロント側高速用吸気通路21とリヤ側高速用吸気通路2
2とが下流に向かって分岐・伸長し、集合部17の上半
部からは共通低速用吸気通路23が下流に向かって分岐
・伸長している。
FIG. 3 is a diagram of the intake manifold IM viewed from the flange portion 18 side toward the downstream side, and FIG. 4 is an explanatory cross-sectional view taken along the line X--X in FIG. 3. As shown in FIGS. 3 and 4, from the lower half of the flange portion 18 (collecting portion 17), there is a front high-speed intake passage 21 and a rear high-speed intake passage 2.
2 branch and extend downstream, and a common low-speed intake passage 23 branches and extends downstream from the upper half of the gathering portion 17.

再び第1図に示すように、集合部17から下流側では、
フロント側高速用吸気通路21とリヤ側高速用吸気通路
22とは、徐々に左右に広がりつつ下流に向かって伸長
し、第1気筒#lないし第2気筒#2と対応する位置か
ら下流側では、これらは互いに平行に伸長している。そ
して、これらが互いに平行に伸長している部分(以下、
この部分を平行部という)では、フロント側高速用吸気
通路21は、リヤ側高速用吸気通路22よりもやや高い
位置に配置されている(第8図参照)。また、低速用吸
気通路分岐部24から下流側において、フロント側低速
用吸気通路25とリヤ側低速用吸気通路26とは、徐々
に左右方向に広がりつつ下流に向かって伸長し、この後
、平行部では、フロント側低速用吸気通路25はフロン
ト側高速用吸気通路21の平面状のリヤ側側壁を共有し
て一体的に形成され、一方リャ側低速用吸気通路26は
リヤ側高速用吸気通路22の平面状の土壁を共有して一
体的に形成されている。
As shown in FIG. 1 again, on the downstream side from the gathering part 17,
The front high-speed intake passage 21 and the rear high-speed intake passage 22 gradually widen left and right and extend downstream from the position corresponding to the first cylinder #l to the second cylinder #2. , these extend parallel to each other. Then, the part where these extend parallel to each other (hereinafter referred to as
In this portion (this portion is referred to as a parallel portion), the front high-speed intake passage 21 is located at a slightly higher position than the rear high-speed intake passage 22 (see FIG. 8). In addition, on the downstream side from the low-speed intake passage branch 24, the front low-speed intake passage 25 and the rear low-speed intake passage 26 gradually widen in the left-right direction and extend downstream, and then become parallel to each other. In this section, the front low-speed intake passage 25 is integrally formed with the front high-speed intake passage 21, sharing the planar rear side wall thereof, while the rear low-speed intake passage 26 is integrally formed with the rear high-speed intake passage 21. It is integrally formed by sharing 22 planar earthen walls.

このようなフランジ部18(集合部17)から平行部に
かけての、フロント側、リヤ側高速用吸気通路21.2
2とフロント側、リヤ側低速用吸気通路25.26の位
置関係と断面形状とを示すために、第1図の、A−A線
断面図と、B−B線断面図と、C−C線断面図と、D−
D線断面図とを、夫々、第5図と、第6図と、第7図と
、第8図とに示す。即ち、各吸気通路21,22,25
゜26は、フランジ部18から徐々に、フロント側。
The front and rear high-speed intake passages 21.2 extend from the flange portion 18 (gathering portion 17) to the parallel portion.
2 and the front side and rear side low-speed intake passages 25 and 26, the cross-sectional view taken along the line A-A, the cross-sectional view taken along the line B-B, and the cross-sectional view taken along the line C-C in FIG. Line sectional view and D-
D-line sectional views are shown in FIG. 5, FIG. 6, FIG. 7, and FIG. 8, respectively. That is, each intake passage 21, 22, 25
゜26 gradually moves from the flange portion 18 to the front side.

リヤ側に分離され、平行部(第8図)に到る。It is separated to the rear side and reaches the parallel part (Fig. 8).

第8図に示すように、平行部においては、フロント側、
リヤ側低速用吸気通路25.26の通路断面積は、フロ
ント側、リヤ側高速用吸気通路21.22の通路断面積
よりかなり小さく設定されている。これによって、後で
詳説するように、圧力波の伝播に関して、フロント側、
リヤ側低速用吸気通路25.26の実質的吸気経路長が
、フロント側、リヤ側高速用吸気通路21.22の実質
的吸気経路長よりも長くなる。なお、フロント側高速用
吸気通路21の断面の形状は、吸気系統の高さを押さえ
るため、幅方向の長さが、上下方向の長さより小さく設
定されている。
As shown in Fig. 8, in the parallel part, the front side,
The passage cross-sectional area of the rear low-speed intake passages 25.26 is set to be considerably smaller than the passage cross-sectional area of the front and rear high-speed intake passages 21.22. As will be explained in detail later, this allows the front side to
The substantial intake path length of the rear low speed intake passages 25.26 is longer than the substantial intake path length of the front and rear high speed intake passages 21.22. Note that the cross-sectional shape of the front-side high-speed intake passage 21 is such that the length in the width direction is smaller than the length in the vertical direction in order to suppress the height of the intake system.

また、フロント側高速用吸気通路21は、その下面がリ
ヤ側高速用吸気通路22の上面とほぼ同じ高さとなるよ
うな位置に配置されている。そして、前記したように、
フロント側低速用吸気通路25は、フロント側高速用吸
気通路21のリヤ側側壁を共有して、これと一体的に形
成される一方、リヤ側低速用吸気通路26は、リヤ側高
速用吸気通路の土壁を共有して、これと一体的に形成さ
れているので、これらは、高さが抑制された非常にコン
パクトな形状となっている。また、フロント側低速用吸
気通路25とリヤ側低速用吸気通路26とは、はぼ同じ
高さの位置に配置されているので、一体的に製作される
これらのフロント側低速用吸気通路25とリヤ側低速用
吸気通路26の製作が非常に容易となる。
Further, the front high-speed intake passage 21 is arranged at a position such that its lower surface is approximately at the same height as the upper surface of the rear high-speed intake passage 22. And, as mentioned above,
The front low-speed intake passage 25 shares the rear side wall of the front high-speed intake passage 21 and is formed integrally therewith, while the rear low-speed intake passage 26 is formed integrally with the rear high-speed intake passage 21. Because they share the same earthen wall and are formed integrally with it, they have a very compact shape with limited height. In addition, since the front low-speed intake passage 25 and the rear low-speed intake passage 26 are arranged at almost the same height, the front low-speed intake passage 25 and the rear low-speed intake passage 26 are manufactured integrally. The rear low-speed intake passage 26 can be manufactured very easily.

また、第9図に示すように、フロント側高速用吸気通路
21は、これと交差するようにリヤ側から伸びる第2.
第4.第6気筒#2.  #4.  #6の各独立吸気
通路3. 3. 3の土壁を共有して一体的に形成され
ているので、吸気系統の構成がさらにコンパクトになる
とともに、剛性が高められている。
Further, as shown in FIG. 9, the front side high-speed intake passage 21 has a second intake passage extending from the rear side so as to intersect with the front side high-speed intake passage 21.
4th. 6th cylinder #2. #4. #6 each independent intake passage 3. 3. Since they are integrally formed by sharing the earthen walls of No. 3, the structure of the intake system becomes more compact and its rigidity is increased.

ところで、再び第1図に示すように、フロント側高速用
吸気通路21の下流側端部と、リヤ側高速用吸気通路2
2の下流側端部とは、略U字状の連通路33によって接
続されている。そして、リヤ側高速用吸気通路22との
接続部近傍において、連通路33にはこれを開閉する連
通路開閉弁37が設けられている。この連通路開閉弁3
7は、後で説明するように、所定の高回転域において慣
性効果を利用する場合には、容積部(圧力反転部)を形
成するために開かれるようになっている。
By the way, as shown in FIG. 1 again, the downstream end of the front high-speed intake passage 21 and the rear high-speed intake passage 2
The downstream end of No. 2 is connected to the downstream end of No. 2 by a substantially U-shaped communication path 33. In the vicinity of the connection with the rear high-speed intake passage 22, the communication passage 33 is provided with a communication passage opening/closing valve 37 for opening and closing the communication passage 33. This communication passage opening/closing valve 3
7 is opened to form a volume part (pressure reversal part) when the inertial effect is utilized in a predetermined high rotation range, as will be explained later.

そして、第1O図に示すように、連通路33の下流側端
部の曲がり部(U学の底部分)には開口部38が形成さ
れ、この開口部38はプラスチック製の蓋部材39をボ
ルト等で取り付けるなどして、通常時は閉じられるよう
になっている。この開口部38は、組み立て時、修理時
等において、ここから連通路開閉弁37の弁体を容易に
挿入または撤去できるように、あるいはここからフロン
ト側、リヤ側高速用吸気通路21.22内の清掃等を容
易に行えるように、左右に大きく開いた形状となってい
る。
As shown in FIG. 1O, an opening 38 is formed in the bent part (bottom part of the U) of the downstream end of the communication path 33, and this opening 38 is used to attach a plastic cover member 39 to the bolt. etc., so that it can be closed during normal times. This opening 38 is designed so that the valve body of the communication passage opening/closing valve 37 can be easily inserted or removed from here during assembly or repair, or from here into the front side and rear high speed intake passages 21 and 22. It has a shape that is wide open on the left and right so that cleaning etc. can be done easily.

以下、第1図を参照しつつ上記構成において行われる圧
力波過給について説明する。
Hereinafter, pressure wave supercharging performed in the above configuration will be explained with reference to FIG.

慣性効果を利用すべき所定の高速域では、連通路開閉弁
37とフロント側、リヤ側高速用吸気通路開閉弁31.
32とがともに開かれる。このとき、フロント側、リヤ
側高速用吸気通路21.22は連通路33を介して連通
し、これらは一体的にかなり大きい容積を有する容積部
を形成し、この容積部は圧力波の反転部として作用する
。そして、各気筒#l〜#6において、夫々吸気弁lが
開かれたときに、吸気ポート2に発生する負圧波が独立
吸気通路3を上流に向かって音速で伝播し、フロント側
、リヤ側高速用吸気通路21.22が連通して形成され
た上記容積部で正圧波に反転され、この正圧波が独立吸
気通路3を下流に向かって伝播し、吸気弁lが閉じられ
る直前に吸気ポート2に到達し、この正圧波によって吸
気が燃焼室4に押し込まれ、充填効率が高められる(慣
性効果)。
In a predetermined high speed range where the inertial effect is to be utilized, the communication passage opening/closing valve 37 and the front and rear high speed intake passage opening/closing valves 31.
32 will be held together. At this time, the front side and rear side high-speed intake passages 21 and 22 communicate with each other via the communication passage 33, and they integrally form a volume part having a considerably large volume, and this volume part is the inversion part of the pressure wave. It acts as. When the intake valve 1 of each cylinder #1 to #6 is opened, the negative pressure wave generated in the intake port 2 propagates upstream through the independent intake passage 3 at the speed of sound, and The high-speed intake passages 21 and 22 are connected to each other and the volume is inverted into a positive pressure wave, and this positive pressure wave propagates downstream through the independent intake passage 3, and immediately before the intake valve 1 is closed, the air pressure wave reaches the intake port. 2, this positive pressure wave forces the intake air into the combustion chamber 4, increasing the charging efficiency (inertia effect).

一方、共鳴効果を利用すべき中・低速域において、所定
の高速時には、連通路開閉弁37が閉じられる一方、フ
ロント側、リヤ側高速用吸気通路開閉弁31.32が開
かれる。このとき、フロント側高速用吸気通路21とリ
ヤ側高速用吸気通路22とは連通しないので、慣性効果
利用時のような容積部(圧力反転部)が形成されない。
On the other hand, in the middle/low speed range where the resonance effect is to be utilized, at a predetermined high speed, the communication passage opening/closing valve 37 is closed, while the front side and rear side high speed intake passage opening/closing valves 31, 32 are opened. At this time, the front high-speed intake passage 21 and the rear high-speed intake passage 22 do not communicate with each other, so a volume portion (pressure reversal portion) is not formed as is the case when the inertia effect is utilized.

そして、例えばフロント側バンクFに属する第1.第3
.第5気筒#1.#3.#5については、吸気弁lが開
かれた時に発生する負圧波が順に、独立吸気通路3と、
フロント側高速用吸気通路21とを介して集合部17ま
で音速で伝播する。ところで、この集合部17は、フロ
ント側バンクFに属する各気筒#1.#3.#5から発
生する圧力波と、リヤ側バンクRに属する各気筒#2.
#4.#6から発生する圧力波とが互いに干渉し合って
、圧力均一部となっており、このような圧力均一部は圧
力波の伝播における圧力反転部として作用する。このた
め、フロント側バンクFの各気%R# 1.  #3.
 #5で発生して集合部17まで伝播した負圧波は集合
部17で正圧波に反転され、フロント側高速用吸気通路
21と第1.第3.第5気筒#1.#3.#5の各独立
吸気通路3とを介して、各気筒#l。
For example, the first bank belonging to the front side bank F. Third
.. 5th cylinder #1. #3. Regarding #5, the negative pressure wave generated when the intake valve 1 is opened sequentially connects to the independent intake passage 3,
It propagates at the speed of sound via the front-side high-speed intake passage 21 to the gathering portion 17. By the way, this gathering section 17 is arranged for each cylinder #1. belonging to the front side bank F. #3. The pressure wave generated from #5 and each cylinder #2 belonging to the rear bank R.
#4. The pressure waves generated from #6 interfere with each other to form a pressure uniform portion, and such pressure uniform portion acts as a pressure reversal portion in the propagation of the pressure waves. For this reason, each level of the front side bank F is %R#1. #3.
The negative pressure wave generated at #5 and propagated to the collecting section 17 is reversed into a positive pressure wave at the collecting section 17, and is then transferred to the front side high-speed intake passage 21 and the first. Third. 5th cylinder #1. #3. Each cylinder #l via each independent intake passage 3 of #5.

#3.#5の吸気ポート2に到達する。このような圧力
波の伝播現象は、フロント側バンクFに属する第1.第
3.第5気筒#1.#3.#5で夫々生じるので、高速
用吸気通路21内では、各気筒#1、#3.#5の圧力
波が互いに共鳴し、1つの気筒で発生する圧力波の振動
より大きい振幅を有する共鳴圧力波が発生する。そして
、吸気弁lが閉じられる直前に、このような共鳴圧力波
が吸気ポート2に到達した気筒では、共鳴圧力波によっ
て吸気が燃焼室4内に押し込まれ充填効率が高められる
(共鳴効果)。なお、この場合フロント側低速用吸気筒
25も各吸気ポート2と集合部17とを連通しているが
、前記したようにフロント側低速用吸気通路25は、そ
の内径がフロント側高速用吸気通路21よりかなり小さ
いので、圧力波の伝播に関しては、フロント側高速用吸
気通路21だけが有効となり、フロント側低速用吸気通
路25は実質的には影響を及ぼさない。なお、リヤ側バ
ンクRに属する各気筒#2.#4.#6についても、同
様に共鳴効果による圧力波過給が行われる。
#3. It reaches intake port 2 of #5. Such a pressure wave propagation phenomenon is caused by the first wave belonging to the front side bank F. Third. 5th cylinder #1. #3. #5, so in the high-speed intake passage 21, each cylinder #1, #3. The #5 pressure waves resonate with each other, and a resonant pressure wave is generated that has a larger amplitude than the vibration of the pressure wave generated in one cylinder. In the cylinder in which such a resonance pressure wave reaches the intake port 2 immediately before the intake valve 1 is closed, the intake air is pushed into the combustion chamber 4 by the resonance pressure wave, thereby increasing the charging efficiency (resonance effect). In this case, the front low-speed intake pipe 25 also communicates each intake port 2 with the gathering portion 17, but as described above, the front low-speed intake passage 25 has an inner diameter that is equal to the front high-speed intake passage. 21, only the front high-speed intake passage 21 is effective in propagating pressure waves, and the front low-speed intake passage 25 has no substantial effect. Note that each cylinder #2 belonging to the rear side bank R. #4. For #6, pressure wave supercharging is similarly performed due to the resonance effect.

また、共鳴効果を利用すべき中・低速域にお(て、所定
の低速時には、連通路開閉弁37と、フロント側、リヤ
側高速用吸気通路開閉弁31,32とがともに閉じられ
る。このとき、フロント側。
Furthermore, in the middle and low speed range where the resonance effect should be utilized, at a predetermined low speed, both the communication passage opening/closing valve 37 and the front side and rear side high speed intake passage opening/closing valves 31, 32 are closed. When, the front side.

リヤ側高速用吸気通路21.22が上流側で閉止されて
いるので、例えばフロント側バンクF側の各気筒#1.
  #3. #5については、圧力波は順に、独立吸気
通路3と、フロント側高速用吸気通路21と、フロント
側低速用吸気通路25とを経由して、各気筒#1. #
3. #5の吸気ポート2と低速用吸気通路分岐部24
との間を往復伝播する。なお、この場合、フロント側気
筒#1.  #3゜#5とリヤ側気筒#2.#4.#6
との吸気干渉により、低速用吸気通路分岐部24が均圧
部、すなわち圧力反転部となる。このようにして、圧力
波の伝播経路が長くなり、さらに、フロント側の低速用
吸気通路25はフロント側高速用吸気通路2!より内径
が小さく設定されているので、圧力波の伝播に関する等
価管長が長くなり、したがって、圧力波の往復伝播に要
する時間が長くなり、比較的低速時において共鳴効果を
有効に高めることができ、充填効率の向上を図ることが
できる。
Since the rear high-speed intake passages 21 and 22 are closed on the upstream side, for example, each cylinder #1 on the front bank F side.
#3. As for #5, the pressure wave sequentially passes through the independent intake passage 3, the front high-speed intake passage 21, and the front low-speed intake passage 25 to each cylinder #1. #
3. #5 intake port 2 and low speed intake passage branch part 24
Propagates back and forth between. In this case, the front cylinder #1. #3゜#5 and rear cylinder #2. #4. #6
Due to intake interference with the low-speed intake passage branch part 24, it becomes a pressure equalization part, that is, a pressure inversion part. In this way, the propagation path of the pressure wave becomes longer, and furthermore, the front side low speed intake passage 25 is replaced by the front side high speed intake passage 2! Since the inner diameter is set smaller, the equivalent pipe length for the propagation of pressure waves becomes longer, and therefore the time required for the pressure waves to propagate back and forth becomes longer, making it possible to effectively enhance the resonance effect at relatively low speeds. It is possible to improve filling efficiency.

なお、前記したように、フロント側、リヤ側開口部27
.28の開口面積が、夫々、フロント側。
In addition, as mentioned above, the front side and rear side openings 27
.. 28 opening areas are respectively on the front side.

リヤ側低速用吸気通路25.26の通路断面積より太き
(設定しているので、フロント側、リヤ側低速用吸気通
路25.26の吸気抵抗が大幅に低減され、実質的に共
鳴効果が損なわれない。
The cross-sectional area of the rear low-speed intake passages 25.26 is set to be larger than that of the rear low-speed intake passages, so the intake resistance of the front and rear low-speed intake passages 25.26 is significantly reduced, and the resonance effect is substantially reduced. not damaged.

以上、本発明によれば、広い回転域にわたって慣性効果
と共鳴効果を効果的に利用して充填効率を高めつつ、吸
気装置をコンパクト化することができる。
As described above, according to the present invention, it is possible to effectively utilize the inertia effect and the resonance effect over a wide rotation range to increase the filling efficiency and to make the intake device more compact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例を示す、6気筒横置き■型エ
ンジンの吸気装置の平面説明図である。 第2図は、第1図に示す吸気装置を備えたエンジンの立
面説明図である。 第3図は、第1図に示す吸気装置の集合部より下流の部
分を示す立面説明図である。 第4図は、第3図のX−X線断面説明図である。 第5図は、第1図に示す吸気装置のA−A線断面説明図
である。 第6図は、第1図に示す吸気装置のB−B線断面説明図
である。 第7図は、第1図に示す吸気装置のC−C線断面説明図
である。 第8図は、第1図に示す吸気装置のD−D線断面説明図
である。 第9図は、第1図に示す吸気装置の平行部における、フ
ロント側、リヤ側高速用吸気通路と、フロント側、リヤ
側低速用吸気通路と、独立吸気通路の位置関係を示す図
である。 第1θ図は、蓋部材を取り外した状態で、連通路を下流
側からみた立面説明図である。 CE・・・6気筒横置きV型エンジン、F・・・フロン
ト側バンク、R・・・リヤ側バンク、IM・・・吸気マ
ニホールド、M・・・マニホールド本体部、N・・・独
立吸気通路部、BN・・・ボンネット、#l〜#6・・
・第1〜第6気筒、l・・・吸気弁、2・・・吸気ポー
ト、3・・・独立吸気通路、11・・・共通吸気通路、
11f、11r・・・フロント側、リヤ側分岐吸気通路
、12・・・分岐部、14・・・スロットルボディ、1
7・・・集合部、18・・・7ランデ部、21・・・フ
ロント側高速用吸気通路、22・・・リヤ側高速用吸気
通路、23・・・共通低速用吸気通路、25・・・フロ
ント側低速用吸気通路、26・・・リヤ側低速用吸気通
路、27・・・フロント側開口部、28・・・リヤ側開
口部、31・・・フロント側高速用吸気通路開閉弁、3
2・・・リヤ側高速用吸気通路開閉弁、33・・・連通
路、37・・・連通路開閉弁。
FIG. 1 is an explanatory plan view of an intake system for a six-cylinder horizontal type engine, showing an embodiment of the present invention. FIG. 2 is an explanatory elevational view of an engine equipped with the intake device shown in FIG. 1. FIG. 3 is an explanatory elevational view showing a portion of the intake device shown in FIG. 1 downstream from the collecting section. FIG. 4 is an explanatory cross-sectional view taken along the line X--X in FIG. 3. FIG. 5 is an explanatory cross-sectional view taken along line A-A of the intake device shown in FIG. 1. 6 is an explanatory cross-sectional view taken along line B-B of the intake device shown in FIG. 1. FIG. FIG. 7 is an explanatory cross-sectional view taken along the line CC of the intake device shown in FIG. 1. FIG. 8 is an explanatory cross-sectional view taken along line D-D of the intake device shown in FIG. 1. FIG. 9 is a diagram showing the positional relationship among the front and rear high-speed intake passages, the front and rear low-speed intake passages, and the independent intake passages in the parallel portion of the intake system shown in FIG. 1. . FIG. 1θ is an explanatory elevational view of the communication passage viewed from the downstream side with the lid member removed. CE...6-cylinder horizontal V-type engine, F...front side bank, R...rear side bank, IM...intake manifold, M...manifold body, N...independent intake passage Part, BN...Bonnet, #l~#6...
・1st to 6th cylinders, l...intake valve, 2...intake port, 3...independent intake passage, 11...common intake passage,
11f, 11r... Front side, rear side branch intake passage, 12... Branch part, 14... Throttle body, 1
7... Gathering part, 18... 7 Landing part, 21... Front side high speed intake passage, 22... Rear side high speed intake passage, 23... Common low speed intake passage, 25...・Front side low speed intake passage, 26...Rear side low speed intake passage, 27...Front side opening, 28...Rear side opening, 31...Front side high speed intake passage opening/closing valve, 3
2... Rear side high speed intake passage opening/closing valve, 33... Communication passage, 37... Communication passage opening/closing valve.

Claims (1)

【特許請求の範囲】[Claims] (1)圧力波の伝播に関して、実質的吸気経路長が比較
的短く設定された高速用吸気通路と、下流側端部が該高
速用吸気通路に接続され、実質的吸気経路長が上記高速
用吸気通路より長く設定された低速用吸気通路とが設け
られたエンジンにおいて、 上記高速用吸気通路と上記低速用吸気通路とを略平行状
態で近接して配置するとともに、低速用吸気通路の高速
用吸気通路への開口部の開口面積を、低速用吸気通路の
通路断面積より大きく設定したことを特徴とするエンジ
ンの吸気装置。
(1) Regarding the propagation of pressure waves, the effective intake path length is set to be relatively short, and the downstream end is connected to the high speed intake path, and the effective intake path length is set to be relatively short. In an engine provided with a low-speed intake passage that is longer than the intake passage, the high-speed intake passage and the low-speed intake passage are arranged close to each other in a substantially parallel state, and the low-speed intake passage is arranged close to the low-speed intake passage. An intake system for an engine, characterized in that an opening area of an opening to an intake passage is set larger than a passage cross-sectional area of a low-speed intake passage.
JP63243273A 1988-09-27 1988-09-27 Suction device for engine Pending JPH0291416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63243273A JPH0291416A (en) 1988-09-27 1988-09-27 Suction device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63243273A JPH0291416A (en) 1988-09-27 1988-09-27 Suction device for engine

Publications (1)

Publication Number Publication Date
JPH0291416A true JPH0291416A (en) 1990-03-30

Family

ID=17101415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63243273A Pending JPH0291416A (en) 1988-09-27 1988-09-27 Suction device for engine

Country Status (1)

Country Link
JP (1) JPH0291416A (en)

Similar Documents

Publication Publication Date Title
JPH02146221A (en) Suction device for multi-cylinder v-engine
JPS61116021A (en) Engine intake-air device
JPH03281927A (en) Air intake device of engine
JPH01106922A (en) Intake apparatus of v-shaped engine
JPH0291416A (en) Suction device for engine
JP2760521B2 (en) Engine intake system
JPH0291417A (en) Suction device for engine
JPH0727375Y2 (en) Engine intake system
JP2583528B2 (en) Engine intake system
JP2968066B2 (en) Engine intake system
JPH0291415A (en) Suction system of v-type engine
JPH0724587Y2 (en) V-type engine intake device
JPH02102322A (en) Suction device for type v engine
JPH072981Y2 (en) Engine intake system
JP2502621B2 (en) Engine intake system
JPH0295724A (en) Intake air device for engine
JPH0629559B2 (en) Multi-cylinder engine intake system
JPH0738661Y2 (en) Engine intake system
JPS5843618Y2 (en) Intake system for multi-cylinder internal combustion engine
JPH0559249B2 (en)
JP2583527B2 (en) Engine intake system
JPS6267271A (en) Exhaust gas reflux device for engine
JPH0672533B2 (en) Intake device for V-type multi-cylinder engine
JP2552478B2 (en) V-type engine exhaust system
JP2583529B2 (en) Engine intake system