JPH024B2 - - Google Patents

Info

Publication number
JPH024B2
JPH024B2 JP58227602A JP22760283A JPH024B2 JP H024 B2 JPH024 B2 JP H024B2 JP 58227602 A JP58227602 A JP 58227602A JP 22760283 A JP22760283 A JP 22760283A JP H024 B2 JPH024 B2 JP H024B2
Authority
JP
Japan
Prior art keywords
distance
area
traveling
vehicle
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58227602A
Other languages
Japanese (ja)
Other versions
JPS60120904A (en
Inventor
Shingo Yoshimura
Katsumi Ito
Shigeru Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP58227602A priority Critical patent/JPS60120904A/en
Publication of JPS60120904A publication Critical patent/JPS60120904A/en
Publication of JPH024B2 publication Critical patent/JPH024B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Guiding Agricultural Machines (AREA)

Description

【発明の詳細な説明】 本発明は、自動走行作業車、詳しくは、所定範
囲の作業地を、外周方向から内周方向へと作業幅
分減じながら前記作業地内側の未処理作業地と外
側の処理済作業地との境界に沿つて前記作業地の
各辺を順次自動走行すべく、前記境界を検出する
倣いセンサーを備えた自動走行作業車に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an automatic traveling working vehicle, and more particularly, a working area within a predetermined range, while reducing the working area from the outer circumferential direction to the inner circumferential direction by the working width. The present invention relates to an automatic traveling work vehicle equipped with a tracing sensor that detects the boundary so as to sequentially automatically travel along each side of the work site along the boundary with the treated work site.

従来より、この種の自動走行作業車において
は、所定範囲の作業地内の対地作業等を自動的に
行なうために、作業地の未処理部分と処理済部分
との境界を検出するセンサーを設けてこの境界に
沿つて走行するようにステアリング操作を自動的
に行なう倣い制御が行なわれている。
Conventionally, this type of self-driving work vehicle has been equipped with a sensor that detects the boundary between untreated and treated areas of the work area in order to automatically perform ground work within a predetermined area of the work area. Tracing control is performed to automatically perform steering operations so that the vehicle travels along this boundary.

そして、前記作業車の作業幅が有限であること
からある程度広い範囲の作業地を走行するために
は作業地一辺の長さを一行程とする複数行程を順
次方向転換を繰返して走行する必要が有り、その
方向転換の形式によつて、各行程を平行に隣接し
て設定して各行程端部で180度方向転換する往復
走行形式と、作業地外周部の各辺を90度方向転換
して順次作業幅を減じながら走行する回り走行形
式とが有るが、この回り走行形式では作業地を一
周するとその後の未処理部の各辺の距離が順次小
さくなるために最終行程近辺では全体に一辺すな
わち一行程当りの走行距離が短くなるために以下
に示すような不都合が有つた。
Since the working width of the working vehicle is finite, in order to travel over a reasonably wide working area, it is necessary to repeatedly change direction and travel in multiple strokes, with one stroke being the length of one side of the working area. Yes, depending on the type of direction change, there is a reciprocating type where each stroke is set adjacent to each other in parallel and the direction is changed 180 degrees at the end of each stroke, and a reciprocating type where the direction is changed 90 degrees on each side of the outer periphery of the work area. There is a detouring method in which the work area is sequentially reduced while the work width is reduced, but in this detour method, the distance of each side of the unprocessed area becomes smaller as the work area is circumnavigated, so near the final step, the entire width is reduced to one side. In other words, the distance traveled per stroke is shortened, resulting in the following disadvantages.

即ち、従来は、自動走行を自動的に停止させる
に、方向転換後所定距離走行しても倣いセンサー
が未処理作業地を検出しなかつた場合に停止させ
る手段が採用されていたために、上述したように
一行程の距離が短かつたり、その行程、特に最終
行程では未処理作業地の幅が作業幅より広いとは
限らないために、何らかの原因で走行方向が処理
済作業地方向にずれて、上記所定距離走行すると
誤まつて停止してしまう場合が有つた。
That is, conventionally, to automatically stop automatic driving, a method was adopted in which the automatic driving was stopped when the scanning sensor did not detect an untreated work area even after traveling a predetermined distance after changing direction. Because the distance of one stroke is short, or the width of the untreated work area is not always wider than the working width in that process, especially the final stroke, the traveling direction may shift toward the treated work area for some reason. However, there were cases where the vehicle accidentally stopped after traveling the predetermined distance.

本発明は、上記実情に鑑みてなされたものであ
つて、その目的は、未処理部を残すこと無く確実
に全行程を走行後自動的に停止させることが可能
な制御手段を備えた自動走行作業車を提供するこ
とにある。
The present invention has been made in view of the above-mentioned circumstances, and its purpose is to provide an automatic running system equipped with a control means that can automatically stop the vehicle after running the entire journey without leaving any unprocessed parts. Our goal is to provide work vehicles.

上記目的を達成すべく、本発明による自動走行
作業車は、車体の移動距離を検出する距離センサ
ーを設け、前記作業地の一辺の走行を終了後次辺
方向へ方向転換後自動的に前記各辺の距離を前記
作業幅分減算して、この減算後の距離が負になつ
た場合はその距離を予め設定された所定距離に設
定するとともに、その設定回数をカウントする手
段を設け、前記各辺の距離に設定した回数のカウ
ント結果に基いて、前記回数が複数回に達した場
合はその辺を走行後自動的に走行を停止すべく制
御する手段を設けてある点に特徴を有する。
In order to achieve the above object, the automatic traveling work vehicle according to the present invention is provided with a distance sensor that detects the distance traveled by the vehicle body, and after completing traveling on one side of the work area and changing direction to the next side, the automatic traveling work vehicle automatically moves the vehicle to each side of the work area. The distance of the side is subtracted by the working width, and if the distance after this subtraction becomes negative, the distance is set to a predetermined distance set in advance, and a means is provided for counting the number of times the setting is performed, and each of the above-mentioned Based on the result of counting the number of times set to the distance of a side, the vehicle is characterized in that it is provided with means for controlling the vehicle to automatically stop traveling after traveling on that side if the number of times reaches a plurality of times.

上記特徴故に下記の如き優れた効果が発揮され
るに至つた。
Because of the above characteristics, the following excellent effects have been achieved.

即ち、残存未処理作業地の大きさに対応する各
辺の残存距離をチエツクして、この残存距離が計
算上無くなつても更に所定距離走行するように暫
定的に所定距離を設定するとともに、その回数を
チエツクして、複数辺の残存距離が計算上負にな
つた場合に走行を停止すべく制御するので、一辺
当りの走行距離が短いことのみによつては誤まつ
て停止することが無くなるに至つた。又、計算上
は残存未処理作業地が負になつても上記所定距離
は走行するように制御するから、計算上の作業幅
と実際の作業幅の変動等による誤差が有つても未
処理部を残して走行を停止するようなことが無い
ものにできたのである。
That is, the remaining distance of each side corresponding to the size of the remaining unprocessed work area is checked, and a predetermined distance is provisionally set so that the vehicle will continue to travel a predetermined distance even if this remaining distance is calculated to be exhausted. The number of times the vehicle runs is checked and the vehicle is controlled to stop traveling when the remaining distance on multiple sides becomes negative in calculations, so it is possible to stop the vehicle accidentally just because the distance traveled per side is short. It has come to disappear. In addition, since the calculation is controlled so that the vehicle travels the predetermined distance even if the remaining unprocessed work area becomes negative, the unprocessed area is This made it possible to avoid the possibility of the vehicle stopping due to any residual damage.

以下、本発明の実施例を図面に基いて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第1図に示すように、車体1の前・後輪2,3
の中間部に芝刈装置4を上下動自在に懸架すると
ともに、作業地Aの境界である未刈地Bと既刈地
Cの境界Lを判別するための後記構成になる倣い
センサー5,5を車体1前方左右夫々に設け、こ
の倣いセンサー5,5による前記境界L検出結果
に基いてステアリング制御されて所定走行コース
を自動走行可能な自動走行作業車としての芝刈作
業車を構成している。
As shown in FIG. 1, the front and rear wheels 2 and 3 of the vehicle body 1
A lawn mowing device 4 is suspended in the middle part of the lawn mower 4 so as to be movable up and down, and tracing sensors 5, 5 having the configuration described later are installed for determining the boundary L between the unmown area B and the mowed area C, which are the boundaries of the working area A. The mowing vehicle is provided on the front left and right sides of the vehicle body 1, and constitutes a lawn mowing vehicle as an automatic traveling vehicle capable of automatically traveling a predetermined travel course by being steering controlled based on the boundary L detection result by the tracing sensors 5, 5.

更に、前記車体1には、この車体1の移動距離
lを連続的に検出すべく、単位走行距離l0当り所
定個数のパルス信号を発生する距離センサー6と
しての第5輪6Aを設けるとともに、車体1の向
き(方位)を検出すべく、地磁気の強度変化を検
出することによつて方位を検出する地磁気センサ
ーを方位センサー7として設けてある。
Further, the vehicle body 1 is provided with a fifth wheel 6A as a distance sensor 6 that generates a predetermined number of pulse signals per unit travel distance l0 in order to continuously detect the travel distance l of the vehicle body 1, In order to detect the orientation (azimuth) of the vehicle body 1, a geomagnetic sensor is provided as an azimuth sensor 7, which detects the azimuth by detecting changes in the strength of the earth's magnetic field.

尚、前記前輪2,2および後輪3,3はそのい
ずれをもステアリング操作可能に構成してあり、
前・後輪2,3を同一方向にステアリング操作す
ることによつて、車体1の向きを変えること無く
平行移動するとともに、前・後輪2,3を相対的
に逆方向にステアリング操作することによつて非
常に小さな旋回半径で旋回可能にしてある。
The front wheels 2, 2 and the rear wheels 3, 3 are both configured to be able to be operated by steering.
By steering the front and rear wheels 2 and 3 in the same direction, the vehicle body 1 moves in parallel without changing its orientation, and at the same time, the front and rear wheels 2 and 3 are steered in relatively opposite directions. This allows it to turn with a very small turning radius.

前記倣いセンサー5は、2つの光センサーS1
S2によつて構成してあり、この光センサーS1,S2
は、第2図に示すように、前記芝刈装置4に基端
部を固定された支持フレーム8の先端部に夫々コ
の字形状をしたセンサーフレーム9,9を車体1
左右方向に隣接して配置するとともに、このセン
サーフレーム9の内側対向面に夫々発光素子P1
と受光素子P2とを一対として設け、この発光素
子P1と受光素子P2との間を通過する芝の有・無
を感知することによつて未刈地B、既刈地Cを判
別すべく構成してある。なお、倣いセンサー5と
しては光センサーS1,S2を用いるものに限らず、
接触式、非接触式をとわず、どのような形式のセ
ンサーから構成してもよい。
The scanning sensor 5 includes two optical sensors S 1 ,
The optical sensors S 1 and S 2
As shown in FIG. 2, U-shaped sensor frames 9 and 9 are attached to the vehicle body 1 at the distal ends of the support frame 8 whose base end is fixed to the lawn mower 4.
Light emitting elements P 1 are arranged adjacent to each other in the left and right direction, and light emitting elements P 1 are respectively arranged on the inner facing surface of this sensor frame 9.
and a light-receiving element P2 are provided as a pair, and by sensing the presence or absence of grass passing between the light-emitting element P1 and the light-receiving element P2 , it is possible to distinguish between an unmowed area B and a mown area C. It is configured as expected. Note that the copying sensor 5 is not limited to those using optical sensors S 1 and S 2 ;
It may be constructed from any type of sensor, whether contact type or non-contact type.

そして、前記光センサーS1,S2の各受光素子
P1,P2から得られる未刈地Bと既刈地Cの判別
信号は芝が断続的に通過するために、非連続なパ
ルス状の信号となる。従つて、連続した判別信号
に変換すべく、積分処理を行なつた後に後記制御
装置10に入力すべく構成してある。
Each light receiving element of the optical sensors S 1 and S 2
The discrimination signal for unmowed area B and mown area C obtained from P 1 and P 2 becomes a discontinuous pulse-like signal because the grass passes intermittently. Therefore, in order to convert the signal into a continuous discrimination signal, the signal is configured to be inputted to the control device 10, which will be described later, after performing an integral process.

前記受光素子P2の出力信号C1を積分処理する
に、前記距離センサー6の出力パルス数をカウン
トして予め設定されたカウント値毎にキヤリー信
号C2を出力するプログラマブルカウンタ11と、
このカウンタ11のキヤリー信号C2によつてリ
セツトされるフリツプフロツプ12を設け、前記
受光素子P1の出力信号C1によつて前記カウンタ
11をリセツトするとともにフリツプフロツプ1
2をセツトすべく構成してあり、このカウンタ1
1とフリツプフロツプ12によつてデジタルフイ
ルタ13に構成して、未刈地Bおよび既刈地C
夫々の状態に対応する連続した境界Lの判別信号
C0を得るようにしてある。
a programmable counter 11 that counts the number of output pulses of the distance sensor 6 and outputs a carry signal C 2 for each preset count value in order to integrate the output signal C 1 of the light receiving element P 2 ;
A flip-flop 12 is provided which is reset by the carry signal C2 of the counter 11, and the counter 11 is reset by the output signal C1 of the light receiving element P1 .
2, and this counter 1
1 and a flip-flop 12 to form a digital filter 13 to filter the uncut area B and the already cut area C.
Continuous boundary L discrimination signal corresponding to each state
It is designed to obtain C 0 .

以下、このデジタルフイルタ13の動作を簡単
に説明する。
The operation of this digital filter 13 will be briefly explained below.

前記カウンタ11はそのカウント値に拘わらず
前記受光素子P2の出力パルス信号C1によつて繰
り返しリセツトされるとともに、フリツプフロツ
プ12はセツトされる。そして、芝が無くなつて
このパルス信号C1が“L”レベルになり、かつ
所定距離l0走行して、前記カウンタ11がこの所
定距離l0に対応するカウント値まで前記距離セン
サー6の出力信号C3をカウントした場合にのみ、
前記カウンタ11はキヤリー信号C2を出力して
フリツプフロツプ12がリセツトされる。従つ
て、このフリツプフロップ12の出力には芝検出
状態すなわち未刈地B検出に対応する“H”レベ
ルまたは芝無状態すなわち既刈地C検出に対応す
る“L”レベルを連続的に繰返す判別信号C0
得られるのである。
The counter 11 is repeatedly reset by the output pulse signal C1 of the light receiving element P2 regardless of its count value, and the flip-flop 12 is set. Then, when the grass disappears, this pulse signal C1 becomes "L" level, and after traveling a predetermined distance l0 , the output of the distance sensor 6 reaches the count value corresponding to the predetermined distance l0 . Only if you count signal C 3 ,
The counter 11 outputs a carry signal C2 , and the flip-flop 12 is reset. Therefore, the output of the flip-flop 12 is a discrimination signal that continuously repeats the "H" level corresponding to the grass detection state, that is, the detection of uncut land B, or the "L" level corresponding to the grassless state, that is, the detection of mowed land C. C 0 is obtained.

以下、前記構成になる倣いセンサー5,5、距
離センサー6、および方位センサー7による各検
出パラメータに基いて、芝刈作業車の走行を制御
する制御システムについて説明する。
Hereinafter, a control system for controlling the travel of the lawn mowing vehicle based on the parameters detected by the tracing sensors 5, 5, distance sensor 6, and direction sensor 7 configured as described above will be described.

第3図に示すように、制御システムは主要部を
マイクロコンピユータによつて構成された制御装
置10に、前記各センサー5,5,6,7からの
信号を入力してあり、これら各センサー5,5,
6,7の検出パラメータを演算処理することによ
つて、車体の走行方向および走行束度を自動的に
制御すべく、前・後輪2,3夫々のステアリング
操作用の油圧シリンダ14,15を作動させる電
磁バルブ16,17および油圧式無段変速装置1
8の変速位置を操作するモータ19等の各アクチ
ユエータを駆動する制御信号を生成すべく構成し
てある。
As shown in FIG. 3, the control system has signals from each of the sensors 5, 5, 6, and 7 inputted to a control device 10 whose main part is composed of a microcomputer. ,5,
By calculating and processing the detected parameters 6 and 7, hydraulic cylinders 14 and 15 for steering operation of the front and rear wheels 2 and 3 are activated to automatically control the running direction and the running density of the vehicle body. Electromagnetic valves 16 and 17 to be operated and hydraulic continuously variable transmission 1
The control signal is configured to generate a control signal for driving each actuator such as a motor 19 that operates the shift position of 8.

第4図中、R1,R2は前・後輪2,3の実際の
ステアリング角を検出して制御装置10にフイー
ドバツクするためのポテンシヨメータで、R3
同様にして変速装置18の変速位置を検出するポ
テンシヨメータである。
In FIG. 4, R 1 and R 2 are potentiometers for detecting the actual steering angles of the front and rear wheels 2 and 3 and providing feedback to the control device 10, and R 3 is a potentiometer for detecting the actual steering angles of the front and rear wheels 2 and 3 and providing feedback to the control device 10. This is a potentiometer that detects the shift position.

そして、第4図に示すように、予め外周テイー
チング等により周囲を既刈地Cにするとともに、
その大きさすなわち4辺のL1,L2,L3,L4が既
知の所定範囲の作業地Aを、この作業地A内側の
未刈地Bと外側の既刈地Cとの境界Lに沿つて自
動走行すべく、前記倣いセンサー5,5による境
界L検出結果に基いてステアリング制御するとと
もに、一辺すなわち一行程の端部で次行程方向に
90度方向転換して次行程距離を前記芝刈装置4の
作業幅Sを減じて、順次各辺を自動的に走行する
のである。
Then, as shown in Fig. 4, the surrounding area is made into an already cut area C by teaching the outer periphery etc.
A working area A in a predetermined range whose size, that is, the four sides L 1 , L 2 , L 3 , and L 4 are known, is defined as the boundary L between the uncut area B on the inside of this working area A and the already mown area C on the outside. In order to automatically drive along
After changing the direction by 90 degrees, the working width S of the lawn mowing device 4 is reduced for the next distance, and the lawn mowing device 4 automatically travels along each side in sequence.

そして、前記各辺(n)n=1234の距離lnを
作業幅3分減算した後、その距離lnが負になつた
場合は予め設定してある所定距離kに置換すると
ともに、その辺nが残り行程1であることを示す
ラストフラグlfnをセツトする。
Then, after subtracting the distance ln of each side (n) n = 1 , 2 , 3 , 4 by 3 working widths, if the distance ln becomes negative, replace it with a predetermined distance k set in advance. At the same time, a last flag lfn indicating that side n has 1 remaining stroke is set.

次に、前記ラストフラグlfnがセツトされた回
数mをカウントして、そのカウント数が2以上す
なわちラストフラグlfnのセツトが複数である場
には、その辺nが最終行程であることを示す最終
行程フラグfeセツトする。
Next, count the number of times m that the last flag lfn has been set, and if the count is 2 or more, that is, there are multiple sets of the last flag lfn, then the last flag lfn is Set the process flag fe.

そして、前記最終行程フラグfeのセツトの有・
無に基いて、前記倣いセンサー5,5の境界L検
出結果に拘らず、このフラグfeがセツトされてい
ない限り自動走行を続行させるのである。
Then, whether or not the final process flag fe is set.
Based on this, automatic travel is continued as long as this flag fe is not set, regardless of the boundary L detection result of the copying sensors 5, 5.

一方、前記最終行程フラグfeがセツトされた場
合は、その辺を走行後に前記変速装置18をニユ
ートラル位置に復帰させて自動的に走行を停止す
るのである。
On the other hand, if the final stroke flag fe is set, the transmission 18 is returned to the neutral position after traveling in that area, and traveling is automatically stopped.

尚、第5図は以上説明した制御装置10の動作
を示すフローチヤートである。
Incidentally, FIG. 5 is a flowchart showing the operation of the control device 10 described above.

又、前記方向転換は前・後進を伴なう90度ター
ンによる予め設定してある所定のシーケンスに基
いて行なうのであるが、例えば、前記前・後輪
2,3を相対的に逆方向にステアリング操作して
非常に小さな旋回半径で前進のみによつて旋回す
ることによつて行なつてもよい。
Further, the direction change is performed based on a preset sequence of 90 degree turns with forward and reverse movement, for example, by turning the front and rear wheels 2 and 3 in relatively opposite directions. This may also be done by operating the steering wheel and turning only by moving forward with a very small turning radius.

更に又、前記方向転換の開始は、現走行行程す
なわち走行している辺nの距離lnと実際の走行距
離lとの比較結果および前記倣いセンサー5,5
の両方が既刈地Cを検出したことに基いて行なう
のであるが、いずれか一方のみの結果に基いて行
なつてもよい。
Furthermore, the start of the direction change is determined based on the current travel distance, that is, the comparison result between the distance ln of the side n being traveled and the actual travel distance l, and the tracing sensors 5, 5.
Both of these are performed based on the detection of the mown area C, but it may be performed based on the results of only one of them.

更に又、前記ラストフラグlfnをセツトした後
の走行におけるステアリング制御は、境界Lの状
態が悪い場合には前記倣いセンサー5,5のみな
らず前記方位センサー7による検出方位と予め
設定してある各辺nの基準方位nとの比較結果
に基いてステアリング操作する方位制御を併用し
てもよい。
Furthermore, when the state of the boundary L is poor, steering control during driving after the last flag lfn is set is based on not only the scanning sensors 5, 5 but also the direction detected by the direction sensor 7 and each preset direction. Orientation control that performs steering operation based on the comparison result of side n with reference orientation n may also be used.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係る自動走行作業車の実施例を
示し、第1図は芝刈作業車の全体平面図、第2図
は倣いセンサーの要部正面図、第3図は制御シス
テムのブロツク図、第4図は自動走行の説明図、
そして、第5図は制御装置の動作を示すフローチ
ヤートである。 1……車体、5,5……倣いセンサー、6……
距離センサー、A……作業地、B……未処理作業
地、C……処理済作業地、S……作業幅、L……
境界、n……作業地の辺、l……移動距離、ln…
…各辺の距離、k……所定距離、m……設定回
数。
The drawings show an embodiment of the automatic driving vehicle according to the present invention, in which FIG. 1 is an overall plan view of the lawn mowing vehicle, FIG. 2 is a front view of the main parts of the scanning sensor, and FIG. 3 is a block diagram of the control system. Figure 4 is an explanatory diagram of automatic driving,
FIG. 5 is a flowchart showing the operation of the control device. 1... Vehicle body, 5, 5... Copying sensor, 6...
Distance sensor, A... Working area, B... Untreated working area, C... Treated working area, S... Working width, L...
Boundary, n...Side of work area, l...Distance traveled, ln...
...distance of each side, k...predetermined distance, m...set number of times.

Claims (1)

【特許請求の範囲】[Claims] 1 所定範囲の作業地Aを、外周方向から内周方
向へと作業幅S分減じながら前記作業地A内側の
未処理作業地Bと外側の処理済作業地Cとの境界
Lに沿つて前記作業地Aの各辺nを順次自動走行
すべく、前記境界Lを検出する倣いセンサー5,
5を備えた自動走行作業車であつて、車体1の移
動距離lを検出する距離センサー6を設け、前記
作業地Aの一辺の走行を終了後次辺方向へ方向転
換後自動的に前記各辺nの距離lnを前記作業幅S
分減算して、この減算後の距離lnが負になつた場
合はその距離lnを予め設定された所定距離kに設
定するとともに、その設定回数mをカウントする
手段を設け、前記各辺nの距離lnを所定距離kに
設定した回数mのカウント結果に基いて、前記回
数mが複数回に達した場合はその辺を走行後自動
的に走行を停止すべく制御する手段を設けてある
ことを特徴とする自動走行作業車。
1. A predetermined range of the working area A is reduced by the working width S from the outer circumferential direction to the inner circumferential direction while the above-mentioned a tracing sensor 5 for detecting the boundary L in order to automatically travel along each side n of the work area A in sequence;
The self-driving work vehicle is equipped with a distance sensor 6 for detecting the moving distance l of the vehicle body 1, and after completing traveling on one side of the work area A and changing direction to the next side, the automatic traveling work vehicle automatically moves to the next side. The distance ln of side n is the working width S
If the distance ln after this subtraction becomes negative, the distance ln is set to a predetermined distance k set in advance, and a means is provided for counting the number of times m of this setting. Based on the count result of the number of times m that the distance ln is set to a predetermined distance k, if the number of times m reaches a plurality of times, a control means is provided to automatically stop traveling after traveling in that area. An autonomous work vehicle featuring:
JP58227602A 1983-12-01 1983-12-01 Self-propelling working machine Granted JPS60120904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58227602A JPS60120904A (en) 1983-12-01 1983-12-01 Self-propelling working machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58227602A JPS60120904A (en) 1983-12-01 1983-12-01 Self-propelling working machine

Publications (2)

Publication Number Publication Date
JPS60120904A JPS60120904A (en) 1985-06-28
JPH024B2 true JPH024B2 (en) 1990-01-05

Family

ID=16863504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58227602A Granted JPS60120904A (en) 1983-12-01 1983-12-01 Self-propelling working machine

Country Status (1)

Country Link
JP (1) JPS60120904A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6626282B1 (en) 1998-11-04 2003-09-30 Honda Giken Kogyo Kabushiki Kaisha Transfer system
US6664337B2 (en) 1996-09-09 2003-12-16 Daikin Industries, Ltd. Method for stabilizing fluorine-containing polymer
US6722259B2 (en) 2000-12-18 2004-04-20 Denso Corporation Fluid machinery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6664337B2 (en) 1996-09-09 2003-12-16 Daikin Industries, Ltd. Method for stabilizing fluorine-containing polymer
US6626282B1 (en) 1998-11-04 2003-09-30 Honda Giken Kogyo Kabushiki Kaisha Transfer system
US6722259B2 (en) 2000-12-18 2004-04-20 Denso Corporation Fluid machinery

Also Published As

Publication number Publication date
JPS60120904A (en) 1985-06-28

Similar Documents

Publication Publication Date Title
JPH0147967B2 (en)
JPH024B2 (en)
JPH0241282B2 (en)
JPH0372241B2 (en)
JPS5911410A (en) Unmanned traveling truck
JPH023B2 (en)
JPH0214005B2 (en)
JPS61108302A (en) Automatic propelling working vehicle
JPH0410086B2 (en)
JPH0365122B2 (en)
JPH0365922B2 (en)
JPS5972523A (en) Unmanned traveling truck
JPS63240707A (en) Running control apparatus of automatic running working vehicle
JPH0439286B2 (en)
JPH04259014A (en) Automatic steering type working vehicle
JPS61108303A (en) Automatic propelling working vehicle
JPH0214003B2 (en)
JPH0214002B2 (en)
JPH0327931B2 (en)
JPH0241281B2 (en)
JPS60114104A (en) Self-propelling working machine
JPS61111605A (en) Automatic propelling working vehicle
JPH0365921B2 (en)
JPS59151802A (en) Automatic running working car
JPH0214004B2 (en)