JPH023023B2 - - Google Patents

Info

Publication number
JPH023023B2
JPH023023B2 JP9837382A JP9837382A JPH023023B2 JP H023023 B2 JPH023023 B2 JP H023023B2 JP 9837382 A JP9837382 A JP 9837382A JP 9837382 A JP9837382 A JP 9837382A JP H023023 B2 JPH023023 B2 JP H023023B2
Authority
JP
Japan
Prior art keywords
engine
amount
cylinder
rotational speed
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9837382A
Other languages
Japanese (ja)
Other versions
JPS58214631A (en
Inventor
Hitoshi Tomijima
Akira Masuda
Toshimi Matsumura
Masahiko Myaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP9837382A priority Critical patent/JPS58214631A/en
Priority to US06/482,884 priority patent/US4495920A/en
Priority to DE19833312697 priority patent/DE3312697A1/en
Publication of JPS58214631A publication Critical patent/JPS58214631A/en
Publication of JPH023023B2 publication Critical patent/JPH023023B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0085Balancing of cylinder outputs, e.g. speed, torque or air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 本発明はエンジンにおける燃料噴射ポンプの燃
料調量装置に関し、特に、多シリンダエンジンの
シリンダ相互間における燃料噴射量のバラツキ
を、燃料噴射ポンプの燃料溢流通路に設置された
流量制御弁を各シリンダに対応して開弁制御する
ことにより修正するようにした燃料調量装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel metering device for a fuel injection pump in an engine, and in particular to a fuel metering device installed in a fuel overflow passage of a fuel injection pump to reduce variations in fuel injection amount between cylinders of a multi-cylinder engine. The present invention relates to a fuel metering device in which correction is made by controlling the opening of a flow rate control valve corresponding to each cylinder.

従来、エンジンに使用される燃料噴射ポンプ
は、エンジン回転数とスロツトルの踏み込み量に
応じて動くガバナレバーにより燃料噴射量を全気
筒共通に一律に制御していた。
Conventionally, fuel injection pumps used in engines uniformly control the fuel injection amount for all cylinders using a governor lever that moves according to the engine speed and the amount of throttle depression.

しかし、製造公差あるいは経時変化などにより
気筒相互間で燃料噴射弁の開口面積にバラツキを
生ずるなどして気筒別の燃料噴射量にバラツキを
生じ、その結果安定した燃焼が得られず、排ガス
中の有害成分が増大したり特にアイドル回転時に
おけるドライバビリテイを損うというような問題
が生じ易かつた。
However, due to manufacturing tolerances or changes over time, the opening area of the fuel injector varies between cylinders, resulting in variations in the amount of fuel injected into each cylinder.As a result, stable combustion cannot be obtained, and the amount of fuel in the exhaust gas increases. Problems such as an increase in harmful components and a loss of drivability, especially during idling, tend to occur.

本発明は上記の点を解決することを目的とし、
各気筒毎に適正な燃料噴射量が得られ上記の如き
エミツシヨンを良好にすることができしかもドラ
イバビリテイの向上を図るものである。
The present invention aims to solve the above points,
It is possible to obtain an appropriate amount of fuel injection for each cylinder, to improve the emission as described above, and to improve drivability.

このため本発明は多シリンダエンジンの各シリ
ンダに対応するエンジン回転速度に応じて燃料噴
射量を調節する燃料噴射ポンプの燃料調量装置で
あつて、該エンジンの回転速度を検出する回転速
度センサと、該エンジンの負荷量を示す信号を出
力するエンジン負荷センサと、上記エンジンの回
転速度にもとづくエンジン平均回転速度と負荷量
とから基本制御量を演算すると共に、上記エンジ
ンの平均回転速度と各シリンダに対応する回転速
度との偏差に応じてシリンダ毎の学習値を算出
し、上記基本制御量をシリンダ毎の学習値により
補正することによりシリンダ毎の制御量を算出す
る制御回路と、噴射ポンプの燃料溢流通路に設置
され、かつ、上記制御回路による制御量のデータ
にもとづく制御信号を受け各シリンダ間の燃料噴
射量の不均量を補正するように開弁動作する電磁
弁とを備えたことを特徴とする。以下図面を参照
しつつ本発明を説明する。
Therefore, the present invention is a fuel metering device for a fuel injection pump that adjusts the amount of fuel injection in accordance with the engine rotational speed corresponding to each cylinder of a multi-cylinder engine, which comprises a rotational speed sensor that detects the rotational speed of the engine. , an engine load sensor that outputs a signal indicating the load amount of the engine, and calculates a basic control amount from the engine average rotation speed and load amount based on the engine rotation speed, and calculates the basic control amount from the engine average rotation speed and each cylinder. A control circuit that calculates a control amount for each cylinder by calculating a learned value for each cylinder according to the deviation from the rotational speed corresponding to and a solenoid valve that is installed in the fuel overflow passage and operates to open in response to a control signal based on control amount data from the control circuit to correct uneven amounts of fuel injection between the cylinders. It is characterized by The present invention will be described below with reference to the drawings.

第1図は本発明の一実施例の全体構成図を示
す。
FIG. 1 shows an overall configuration diagram of an embodiment of the present invention.

第1図において、分配型であつてフエイスカム
式の燃料噴射ポンプの本体1には、燃料の吸入、
圧縮及び分配を行うプランジヤ2が嵌入される。
該プランジヤ2の先端はポンプ本体1と共に圧力
室5を形成する。他端はフエイスカム3が取りつ
けられると共にエンジンのドライブシヤフトと連
結される。該フエイスカム3はローラ保持器14
に固定されたローラピン32で支承されたローラ
31と当接している。従つて、前記プランジヤ2
は回転しながら、図示矢印a,b方向に往復動す
るようになされる。又、前記プランジヤ2には燃
料吸入、分配及び溢流用の各ポートが設けられ、
回転に伴つてポンプ本体1に設けられた吸入通路
10、分配通路6及び溢流通路7とそれぞれタイ
ミング良く合致するようになされている。分配通
路6の末端は吸い戻し弁4を介して噴射ノズルへ
連結され、溢流通路7の間は溢流制御用の電磁弁
8を介して燃料吸入側へ連結されている。
In FIG. 1, a main body 1 of a distribution type and face cam type fuel injection pump includes a fuel intake and a fuel injection pump.
A plunger 2 for compression and distribution is inserted.
The tip of the plunger 2 forms a pressure chamber 5 together with the pump body 1. The other end is attached with the face cam 3 and is connected to the drive shaft of the engine. The face cam 3 has a roller retainer 14
It is in contact with a roller 31 supported by a roller pin 32 fixed to. Therefore, the plunger 2
is made to reciprocate in the directions of arrows a and b while rotating. Further, the plunger 2 is provided with ports for fuel intake, distribution, and overflow,
As it rotates, it is adapted to align with the suction passage 10, distribution passage 6, and overflow passage 7 provided in the pump body 1 in a timely manner. The end of the distribution passage 6 is connected to the injection nozzle via a suction valve 4, and the overflow passage 7 is connected to the fuel suction side via an electromagnetic valve 8 for overflow control.

一方、ECU即ち制御回路9には、エンジンの
クランク軸に取り付けられたリングギアと電磁ピ
ツクアツプとからなる回転速度センサ11、車両
のアクセルペダルの踏み込み具合を検出するポテ
ンシヨメータ等からなるエンジン負荷センサ1
2、又、必要に応じてアクセルが踏み込まれない
状態を検出するアイドルスイツチ13、更に例え
ばエンジンの冷却水温度、吸入空気温度、大気
圧、吸気圧等を検出する各種センサ15及び気筒
判別センサ16が接続される。ECU9はこれら
の入力信号に基づいて所定の演算処理を行い電磁
弁8の開弁時期を決定し対応する指令信号を出力
する。
On the other hand, the ECU, that is, the control circuit 9, includes a rotation speed sensor 11 consisting of a ring gear and an electromagnetic pickup attached to the engine crankshaft, and an engine load sensor consisting of a potentiometer that detects the degree of depression of the vehicle's accelerator pedal. 1
2. Also, an idle switch 13 that detects a state in which the accelerator is not depressed as necessary, and various sensors 15 and cylinder discrimination sensor 16 that detect, for example, engine cooling water temperature, intake air temperature, atmospheric pressure, intake pressure, etc. is connected. The ECU 9 performs predetermined arithmetic processing based on these input signals, determines the opening timing of the solenoid valve 8, and outputs a corresponding command signal.

次に、本実施例の作用を説明する。 Next, the operation of this embodiment will be explained.

プランジヤ2とフエイスカム3はエンジンの回
転に同期して回転しつつ、1回転に気筒数分だけ
往復動し、該1往復動を1サイクルとし、各サイ
クル毎に先ずプランジヤ2の下降時(図示矢印a
方向の動作)に吸入通路10から圧力室5内へ燃
料を吸入し、続いてフエイスカム3がローラ31
に乗り上げてプランジヤ2を押し上げて上昇工程
(図示矢印b方向の動作)に入ると、プランジヤ
2の回転につれて吸入通路10は塞がれ、吸入さ
れた燃料は圧力室5内で圧縮され、引き続いて分
配通路6が開口して、高圧燃料は吸い戻し弁4の
閉弁圧力に打つ克つてノズルから噴射され、更に
所定時間経過後電磁弁8を通電すると、高圧燃料
は溢流通路7を通つて低圧側へ溢流して圧力が低
下してノズルからの噴射は終了する。
The plunger 2 and the face cam 3 rotate in synchronization with the rotation of the engine, and reciprocate by the number of cylinders in one revolution, and each reciprocating motion is defined as one cycle. a
direction), fuel is sucked into the pressure chamber 5 from the suction passage 10, and then the face cam 3
When the plunger 2 is pushed up and enters the ascending process (movement in the direction of arrow b in the figure), the suction passage 10 is closed as the plunger 2 rotates, and the sucked fuel is compressed in the pressure chamber 5. When the distribution passage 6 opens, high-pressure fuel is injected from the nozzle overcoming the closing pressure of the suction valve 4, and when the electromagnetic valve 8 is energized after a predetermined period of time, the high-pressure fuel passes through the overflow passage 7. The water overflows to the low pressure side, the pressure decreases, and the injection from the nozzle ends.

前記電磁弁8の開弁時期はECU9からエンジ
ンの運転状況に応じて各シリンダ毎の最適値に演
算指令されるものである。
The opening timing of the electromagnetic valve 8 is calculated and commanded from the ECU 9 to an optimum value for each cylinder according to the operating condition of the engine.

第2図は制御回路9のブロツク図を示し、10
0は気筒毎の制御量を演算するマイクロプロセツ
サ(CPU)である。101は入力カウンタであ
り、回転速度センサ11からの信号よりエンジン
回転速度をカウントする。またこの信号カウンタ
101はエンジン回転に同期して割り込み制御部
102に割り込み指令信号を送る。割り込み制御
部102はこの信号を受けると、コモンバス15
0を通じてマイクロプロセツサ100に割り込み
信号を出力する。又入力カウンタ101には基準
のシリンダを示すパルス信号を発生するシリンダ
判別センサ16が接続され、そのシリンダを示す
デジタル2進信号をマイクロプロセツサ100に
伝達する。103はA−D変換器から成るアナロ
グの入力ポートであつて、エンジン負荷センサ1
2からの信号をA−D変換してマイクロプロセツ
サ100に読み込ませる機能を持つ。これら各ユ
ニツト101,102,103の出力情報はコモ
ンバス150を通してマイクロプロセツサ100
に伝達される。105は電源回路で後述する
RAM106に電力を供給する。17はバツテ
リ、18はキースイツチであるが電源回路105
はキースイツチ18を通さず直接、バツテリ17
に接続されている。よつて後述するRAM106
はキースイツチ18のオン・オフに関係無く常時
電源が印加されている。104も電源回路である
がキースイツチ18を通してバツチリ17に接続
されている。電源回路104は後述するRAM1
06以外の部分に電源を供給する。106はプロ
グラム動作中一時使用される一時記憶ユニツト
(RAM)であるが前述の様にキースイツチ18
のオン・オフに関係なく常時電源が印加されキー
スイツチ18をオフにして機関の運転を停止して
も記憶内容が消失しない構成となつていて不揮発
性メモリをなす。107は通常の一時記憶メモ
リ、108はプログラムや各種の定数等を記憶し
ておく読み出し専用メモリ(ROM)である。1
10は、電磁弁8に制御信号を送る出力回路であ
り、ラツチ、ダウンカウンタ、増幅回路等を含
み、CPU100で演算された制御量を示すデー
タに基づいて電磁弁8を開弁させる。電磁弁8は
出力回路110からの駆動信号を受けて開弁動作
を行い、燃料を燃料溢流通路7を経て溢流させ
る。111はタイマーであつて、クロツクパルス
信号を発生して経過時間を測定し、CPU100
にクロツク信号を出力したり、割り込み制御部1
02に時間割り込み信号を出力する。入力カウン
タ101は回転速度センサ11の出力によりエン
ジン半回転に1回、エンジン回転速度を測定し、
その測定の終了時に割り込み制御部102に割り
込み指令信号を供給する。割り込み制御部102
はその信号から割り込み信号を発生し、マイクロ
プロセツサ100に制御量の演算を行なう割り込
み処理ルーチンを実行させる。
FIG. 2 shows a block diagram of the control circuit 9.
0 is a microprocessor (CPU) that calculates the control amount for each cylinder. Reference numeral 101 denotes an input counter, which counts the engine rotation speed based on a signal from the rotation speed sensor 11. The signal counter 101 also sends an interrupt command signal to the interrupt control section 102 in synchronization with engine rotation. When the interrupt control unit 102 receives this signal, the interrupt control unit 102 interrupts the common bus 15.
0 to output an interrupt signal to the microprocessor 100. A cylinder discrimination sensor 16 that generates a pulse signal indicating a reference cylinder is connected to the input counter 101, and transmits a digital binary signal indicating the cylinder to the microprocessor 100. 103 is an analog input port consisting of an A-D converter, and is connected to the engine load sensor 1.
The microprocessor 100 has the function of converting the signal from the microprocessor 100 into analog to digital. Output information from each of these units 101, 102, 103 is sent to the microprocessor 100 through a common bus 150.
is transmitted to. 105 is a power supply circuit which will be described later.
Power is supplied to the RAM 106. 17 is a battery, 18 is a key switch, and a power supply circuit 105
is directly connected to the battery 17 without passing through the key switch 18.
It is connected to the. RAM 106, which will be explained later
Power is always applied regardless of whether the key switch 18 is on or off. 104 is also a power supply circuit, which is connected to the socket 17 through a key switch 18. The power supply circuit 104 is RAM1 which will be described later.
Supply power to parts other than 06. 106 is a temporary memory unit (RAM) that is used temporarily during program operation, but as mentioned above, the key switch 18
Power is always applied regardless of whether the key switch 18 is on or off, and the stored contents are not lost even if the key switch 18 is turned off and engine operation is stopped, thus forming a non-volatile memory. Reference numeral 107 is a normal temporary storage memory, and reference numeral 108 is a read-only memory (ROM) for storing programs, various constants, and the like. 1
Reference numeral 10 denotes an output circuit for sending a control signal to the solenoid valve 8, which includes a latch, a down counter, an amplifier circuit, etc., and opens the solenoid valve 8 based on data indicating a control amount calculated by the CPU 100. The solenoid valve 8 receives a drive signal from the output circuit 110 and opens the valve, causing fuel to overflow through the fuel overflow passage 7. 111 is a timer which generates a clock pulse signal to measure the elapsed time, and
It outputs a clock signal to the interrupt controller 1.
A time interrupt signal is output at 02. The input counter 101 measures the engine rotation speed once every half rotation of the engine based on the output of the rotation speed sensor 11.
At the end of the measurement, an interrupt command signal is supplied to the interrupt control section 102. Interrupt control unit 102
generates an interrupt signal from the signal, and causes the microprocessor 100 to execute an interrupt processing routine for calculating the control amount.

尚、回転速度センサ11は、エンジンのクラン
ク軸の回転速度を検出し、回転速度に応じた周波
数のパルス信号を出力する。
Note that the rotational speed sensor 11 detects the rotational speed of the crankshaft of the engine and outputs a pulse signal with a frequency corresponding to the rotational speed.

シリンダ判別センサ16は各シリンダの燃焼順
序に応じて燃料を供給する各シリンダを特定する
ため基準となる第1シリンダの噴射時にパルス信
号を出力する。
The cylinder discrimination sensor 16 outputs a pulse signal at the time of injection of the first cylinder, which serves as a reference, in order to specify each cylinder to which fuel is supplied according to the combustion order of each cylinder.

エンジン負荷センサ12は、エンジンの負荷に
応じたアナログ電圧信号を入力ポート103に出
力する。
Engine load sensor 12 outputs an analog voltage signal according to the engine load to input port 103.

第3図はマイクロプロセツサ100の概略フロ
ーチヤートを示す。以下、このフローチヤートに
もとづきマイクロプロセツサ100の機能を説明
すると共に構成全体の作動をも説明する。
FIG. 3 shows a schematic flowchart of the microprocessor 100. Hereinafter, the functions of the microprocessor 100 will be explained based on this flowchart, and the operation of the entire configuration will also be explained.

キースイツチ18がオンすると同時に、ROM
108内に予め用意されたプログラムがスタート
し、まず後続の処理に先立つて初期化の処理を実
行する。
At the same time that the key switch 18 is turned on, the ROM
A program prepared in advance in 108 starts and first executes initialization processing prior to subsequent processing.

ステツプ200では回転速度センサ11による
回転速度Nからエンジン平均回転速度を算出す
ると共に、エンジン負荷センサ12からエンジン
負荷量αを取り込み、これらのデータ、αから
基本制御量T0を算出する。
In step 200, the engine average rotational speed is calculated from the rotational speed N detected by the rotational speed sensor 11, and the engine load amount α is taken in from the engine load sensor 12, and the basic control amount T 0 is calculated from these data α.

ステツプ201ではシリンダに対応した学習値
を補正する為、シリンダiの判定をシリンダ判別
センサ16からのG信号入力後の回転速度センサ
11からのN信号の入力回数により行う。
In step 201, in order to correct the learning value corresponding to the cylinder, cylinder i is determined based on the number of times the N signal is input from the rotational speed sensor 11 after the G signal from the cylinder discrimination sensor 16 is input.

ステツプ202で不揮発性メモリ106内にあ
る上記判定されたシリンダiに対応する学習値
Kiを取り出し、ステツプ203では学習値Kiに
より基本制御量T0を補正して制御量TiをT0×
(1+Ki)とし、ステツプ204で出力する。
In step 202, the learned value corresponding to the cylinder i determined above is stored in the non-volatile memory 106.
Ki is taken out, and in step 203, the basic control amount T 0 is corrected using the learned value Ki, and the control amount Ti is changed to T 0 ×
(1+Ki) and output in step 204.

ステツプ205〜206の間では、エンジン負
荷およびエンジンの回転速度の安定状態を判別
し、安定状態の時のみステツプ207へ進む。非
安定状態の時はステツプ222へ進み、メモリ1
06内の後述するエンジン回転速度積算値ΣNiを
クリアして偏つたエンジン回転数データで学習値
の補正をしない様にしている。
Between steps 205 and 206, it is determined whether the engine load and engine rotational speed are in a stable state, and the process proceeds to step 207 only when the engine is in a stable state. If it is in an unstable state, proceed to step 222 and store memory 1.
The engine rotational speed integrated value ΣNi, which will be described later, in 06 is cleared to avoid correcting the learned value using biased engine rotational speed data.

上述の安定状態の判別は次の様に実施してい
る。即ち、ステツプ205ではエンジン回転速度
変化量およびエンジン負荷変化量(ΔN=Ni-1
NiおよびΔα=αi-1−αi)がそれぞれ各所定値以
下かどうかを判別し、当該変化量が所定値以下の
場合は更にステツプ206に進み、確実な学習の
ために、負荷変化が無くなつてからエンジン状態
が安定になるまでのデイレイ判定を行なう。そし
て所定デイレイ後はステツプ207に進む。
The above-mentioned stable state determination is performed as follows. That is, in step 205, the amount of change in engine speed and the amount of change in engine load (ΔN=Ni -1 -
It is determined whether Ni and Δα=αi -1 -αi) are each less than a predetermined value, and if the amount of change is less than a predetermined value, the process proceeds to step 206 to ensure that there is no load change for reliable learning. Delay determination is made from the time the engine condition stabilizes until the engine condition becomes stable. After a predetermined delay, the process advances to step 207.

ステツプ207から212間では学習のための
気筒別のエンジン回転速度Niを取り込み後述す
るステツプ213における比較基準を算出する。
即ちステツプ207では燃料噴射後の燃料がエン
ジントルクとして反映されるまのデイレイを考慮
し、所定デイレイ中はそのルーチンから抜けてス
テツプ222へ進むが、所定デイレイ後はステツ
プ208に進む。
Between steps 207 and 212, the engine rotational speed Ni for each cylinder is taken in for learning, and a comparison standard in step 213, which will be described later, is calculated.
That is, in step 207, a delay until the fuel after fuel injection is reflected as engine torque is taken into consideration, and during a predetermined delay, the routine is exited and the process proceeds to step 222, but after the predetermined delay, the process proceeds to step 208.

ステツプ208では燃料がエンジン出力として
反映された時の気筒別のエンジン回転速度Niを
取り込み、ステツプ209に進んで、メモリ10
6内にあるエンジン燃料積算値ΣNiに加えて新た
なΣNiとする。
In step 208, the engine rotational speed Ni for each cylinder when the fuel is reflected as engine output is taken in, and the process proceeds to step 209, where it is stored in the memory 10.
In addition to the engine fuel integrated value ΣNi within 6, a new ΣNi is set.

ステツプ210では前ステツプ209で算出し
たエンジン回転速度積算値ΣNiをメモリ106に
格納する。
In step 210, the engine rotational speed integrated value ΣNi calculated in the previous step 209 is stored in the memory 106.

ステツプ211ではエンジン回転速度Niの取
り込み回数が所定回数(気筒数の整数倍例えば4
回)と一致したかどうかを判定し、所定回数に満
たない場合は本ルーチンから抜けてステツプ20
0にジヤンプするが、所定回数になつた場合には
ステツプ212に進む。
In step 211, the number of times the engine rotational speed Ni is captured is set to a predetermined number (an integral multiple of the number of cylinders, for example, 4).
If the number of times is less than the predetermined number, exit from this routine and proceed to step 20.
It jumps to 0, but if the predetermined number of times has been reached, the process advances to step 212.

ステツプ212では所定回数取り込んだ後のエ
ンジン回転速度積算値ΣNiの平均値を算出し
て、ステツプ213では該平均値と気筒別のエ
ンジン回転速度Niとの差(ΔN=Ni−)が正
か、負かあるいは等しいかの判別を行ない、エン
ジン回転速度Niが平均値より大きい場合は当
該気筒の燃料噴射量が多いと判定しステツプ21
6に進むが、エンジン回転速度Niが平均値よ
り小さい場合は当該気筒の燃料噴射量が少ないと
判定してステツプ214に進み、エンジン回転速
度Niが平均値と等しい場合はステツプ215
に進む。
In step 212, the average value of the engine rotational speed integrated value ΣNi after being captured a predetermined number of times is calculated, and in step 213, it is determined whether the difference (ΔN=Ni-) between the average value and the engine rotational speed Ni for each cylinder is positive. It is determined whether the engine speed Ni is negative or equal, and if the engine speed Ni is greater than the average value, it is determined that the fuel injection amount of the cylinder concerned is large, and step 21
However, if the engine rotation speed Ni is smaller than the average value, it is determined that the fuel injection amount for the cylinder concerned is small and the process proceeds to step 214, and if the engine rotation speed Ni is equal to the average value, the process proceeds to step 215.
Proceed to.

ステツプ216ではステツプ203での制御量
Tiから単位補正量ΔTiを減じ、ステツプ214
では制御量Tiに単位補正量ΔTiを加え、ステツ
プ215では制御量Tiをそのままとし、それぞ
れ補正制御量Ti′とする。
In step 216, the control amount in step 203 is
Subtract the unit correction amount ΔTi from Ti, and step 214
In step 215, the unit correction amount ΔTi is added to the control amount Ti, and in step 215, the control amount Ti is left as it is, and each is set as a correction control amount Ti'.

ステツプ217では補正制御量Ti′と基本制御
量T0との差をとり、単位補正量積算値(ΣΔT)
iを求める。
In step 217, the difference between the correction control amount Ti' and the basic control amount T0 is calculated, and the unit correction amount integrated value (ΣΔT) is calculated.
Find i.

ステツプ218ではステツプ217で求めた単
位補正量積算値(ΣΔT)iが所定値以上である
かどうかを判別し、所定値以上の場合は何らかの
異常があるとしてステツプ219へ進み、学習値
Kiをクリアする。一方、所定値未満の場合は正
常としてステツプ220で単位補正量積算値
(ΣΔT)iとステツプ200で求めた基本制御量
T0との比を新たな学習値Kiとして求める。
In step 218, it is determined whether the unit correction amount integrated value (ΣΔT)i obtained in step 217 is greater than or equal to a predetermined value. If it is greater than or equal to the predetermined value, it is determined that there is some abnormality and the process proceeds to step 219, where the learned value is determined.
Clear Ki. On the other hand, if it is less than the predetermined value, it is considered normal and the unit correction amount integrated value (ΣΔT)i and the basic control amount obtained in step 200 are determined in step 220.
Find the ratio with T 0 as a new learned value Ki.

ステツプ221では学習量Kiを不揮発性メモ
リ106に記憶して、次回の制御量Ti算出に利
用する。
In step 221, the learned amount Ki is stored in the nonvolatile memory 106 and used for calculating the next controlled amount Ti.

マイクロプロセツサの機能は以上の通りであ
る。以上の様にして気筒別の学習値Kiを補正し
各シリンダ相互間の燃料噴射量差をなくすように
電磁弁8のシリンダ毎の開弁時期を決定する。
The functions of the microprocessor are as described above. As described above, the learning value Ki for each cylinder is corrected, and the opening timing of the solenoid valve 8 for each cylinder is determined so as to eliminate the difference in fuel injection amount between the cylinders.

第4a図および第4b図は上述した如き実施例
を従来例と比較して具体的に説明するためのタイ
ムチヤートを示しており、第4a図が従来例に対
応するもの、第4b図が本実施例に対応するもの
として表わしている。
4a and 4b show time charts for specifically explaining the above-described embodiment in comparison with the conventional example, and FIG. 4a corresponds to the conventional example, and FIG. 4b corresponds to the original example. It is shown as corresponding to the embodiment.

従来の方法においては、第4a図に図示する如
く、エンジン回転速度Nが気筒間での供給燃料量
のバラツキによりaに示す如く気筒間でバラツキ
を生じていても、基本制御量T0を一定に設定し、
かつ学習値Kがないため制御量Tはbに示す如く
一定となり、このため供給燃料量qはcに示す如
く依然として気筒間でバラツキをもち、この結果
エンジン回転速度Nは修正されず気筒間でバラツ
キを生じたままの状態とされる。
In the conventional method, as shown in Fig. 4a, even if the engine speed N varies between cylinders as shown in a due to the variation in the amount of fuel supplied between cylinders, the basic control amount T 0 is kept constant. and set it to
In addition, since there is no learning value K, the control amount T remains constant as shown in b, and therefore the supplied fuel amount q still varies between cylinders as shown in c, and as a result, the engine speed N is not corrected and varies between cylinders. It is assumed that variations remain.

これに対し、本実施例においては、第4a図の
aに示す如くエンジン回転速度Nにバラツキが発
生すると、第3図で上述した如く、学習値Kを気
筒別に補正するため、第4b図に図示する如く制
御量Tはbに示す如く気筒別に補正され、この結
果供給燃料量qはcに示す如く気筒間でのバラツ
キが解消されて全気筒について略同一の値をもつ
ようになる。従つてエンジン回転速度Nはaに示
す如く気筒間でのバラツキが解消し全気筒につい
て略同一の値となり回転ムラのない運転状態とな
る。
On the other hand, in this embodiment, when a variation occurs in the engine speed N as shown in a of FIG. 4a, the learned value K is corrected for each cylinder as described above in FIG. As shown in the figure, the control amount T is corrected for each cylinder as shown in b, and as a result, the supplied fuel amount q has substantially the same value for all cylinders, with variations among the cylinders being eliminated as shown in c. Therefore, as shown in a, the variation among the cylinders in the engine rotational speed N is eliminated, and all the cylinders have substantially the same value, resulting in an operating state with no uneven rotation.

以上説明した如く、本発明に多シリンダエンジ
ンの各シリンダに対応するエンジン回転速度に応
じて燃料噴射量を調節する燃料噴射ポンプの燃料
調量装置であつて、該エンジンの回転速度を検出
する回転速度センサと、該エンジンの負荷量を示
す信号を出力するエンジン負荷センサと、上記エ
ンジンの回転速度にもとづくエンジン平均回転速
度と負荷量とから基本制御量を演算すると共に、
上記エンジンの平均回転速度と各シリンダに対応
する回転速度との偏差に応じてシリンダ毎の学習
値を算出し、上記基本制御量をシリンダ毎の学習
値により補正することによりシリンダ毎の制御量
を算出する制御回路と、噴射ポンプの燃料溢流通
路に設置され、かつ、上記制御回路による制御量
のデータにもとづく制御信号を受け各シリンダ間
の燃料噴射量の不均量を補正するように開弁動作
する電磁弁とを備えてなる。
As explained above, the present invention provides a fuel metering device for a fuel injection pump that adjusts the amount of fuel injection according to the engine rotational speed corresponding to each cylinder of a multi-cylinder engine, and a rotational speed that detects the rotational speed of the engine. A basic control amount is calculated from a speed sensor, an engine load sensor that outputs a signal indicating the load amount of the engine, and an engine average rotational speed based on the engine rotational speed and the load amount,
A learned value for each cylinder is calculated according to the deviation between the average rotation speed of the engine and the rotation speed corresponding to each cylinder, and the control amount for each cylinder is calculated by correcting the above basic control amount using the learned value for each cylinder. A control circuit that is installed in the fuel overflow passage of the injection pump and that opens to correct the uneven amount of fuel injection between each cylinder in response to a control signal based on data on the control amount by the control circuit. It is equipped with a solenoid valve that operates as a valve.

このため本発明によれば気筒間で燃料噴射量に
バラツキを生ずるようになつても適切な修正を行
なうため全気筒について均一な燃料噴射量に補正
でき、このためエミツシヨンの改善、ドライバビ
リテイの向上を充分に達成することが可能にな
る。更にアイドル運転の安定性上により燃費の改
善を図ることもできる。
Therefore, according to the present invention, even if the fuel injection amount varies between cylinders, it can be corrected to a uniform fuel injection amount for all cylinders by making appropriate corrections, thereby improving emissions and drivability. It becomes possible to achieve sufficient improvement. Furthermore, it is possible to improve fuel efficiency by improving the stability of idling operation.

上述した実施例では基本制御量T0の大小に無
関係に学習値Kiを定め補正を行なつているが、
基本制御量T0の値に応じて学習値Kiを定め該定
められた学習値Kiにより補正を行なうようにし
てもよい。
In the embodiment described above, the learning value Ki is determined and corrected regardless of the magnitude of the basic control amount T0 .
A learning value Ki may be determined according to the value of the basic control amount T 0 and correction may be performed using the determined learning value Ki.

また本発明の構成要素である電磁弁は1個に限
定されるものではなく、複数個例えば気筒と同数
個でそれぞれ対応する気筒の噴射量を制御するも
のであつてもよい。
Further, the number of electromagnetic valves that are a component of the present invention is not limited to one, but may be a plurality, for example, the same number as the cylinders, each controlling the injection amount of the corresponding cylinder.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例全体構成、第2図は
その電気ブロツク構成、第3図は本実施例の処理
の一例を表わすフローチヤート、第4a図は従来
例の説明図、第4b図は本発明の説明図をそれぞ
れ示す。 1…燃料噴射ポンプ本体、7…燃料溢流通路、
8…電磁弁、9…制御回路、11…回転速度セン
サ、12…エンジン負荷センサ、16…気筒判別
センサ。
FIG. 1 is an overall configuration of an embodiment of the present invention, FIG. 2 is an electrical block configuration thereof, FIG. 3 is a flowchart showing an example of processing of this embodiment, FIG. 4a is an explanatory diagram of a conventional example, and FIG. 4b The figures each show an explanatory diagram of the present invention. 1...Fuel injection pump main body, 7...Fuel overflow passage,
8... Solenoid valve, 9... Control circuit, 11... Rotational speed sensor, 12... Engine load sensor, 16... Cylinder discrimination sensor.

Claims (1)

【特許請求の範囲】[Claims] 1 各シリンダエンジンの各シリンダに対応する
エンジン回転速度に応じて燃料噴射量を調節する
燃料噴射ポンプの燃料調量装置であつて、該エン
ジンの回転速度を検出する回転速度センサと、該
エンジンの負荷量を示す信号を出力するエンジン
負荷センサと、上記エンジンの回転速度にもとづ
くエンジン平均回転速度と負荷量とから基本制御
量を演算すると共に、上記エンジンの平均回転速
度と各シリンダに対応する回転速度との偏差に応
じてシリンダ毎の学習値を算出し、上記基本制御
量をシリンダ毎の学習値により補正することによ
りシリンダ毎の制御量を算出する制御回路と、噴
射ポンプの燃料溢流通路に設置され、かつ、上記
制御回路による制御量のデータにもとづく制御信
号を受け各シリンダ間の燃料噴射量の不均量を補
正するように開弁動作する電磁弁とを備えたこと
を特徴とする燃料噴射ポンプの燃料調量装置。
1 A fuel metering device for a fuel injection pump that adjusts the fuel injection amount according to the engine rotational speed corresponding to each cylinder of each cylinder engine, which comprises a rotational speed sensor that detects the rotational speed of the engine, and a rotational speed sensor that detects the rotational speed of the engine. An engine load sensor outputs a signal indicating the amount of load, and a basic control amount is calculated from the engine average rotational speed based on the engine rotational speed and the load amount, and the basic control amount is calculated from the engine average rotational speed and the rotation corresponding to each cylinder. A control circuit that calculates a control amount for each cylinder by calculating a learned value for each cylinder according to the deviation from the speed, and correcting the above basic control amount using the learned value for each cylinder, and a fuel overflow passage for the injection pump. and a solenoid valve that is installed in the control circuit and opens in response to a control signal based on data of the control amount from the control circuit to correct the uneven amount of fuel injection between the cylinders. Fuel metering device for fuel injection pumps.
JP9837382A 1982-04-09 1982-06-08 Fuel metering device in fuel injection pump Granted JPS58214631A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP9837382A JPS58214631A (en) 1982-06-08 1982-06-08 Fuel metering device in fuel injection pump
US06/482,884 US4495920A (en) 1982-04-09 1983-04-07 Engine control system and method for minimizing cylinder-to-cylinder speed variations
DE19833312697 DE3312697A1 (en) 1982-04-09 1983-04-08 METHOD AND DEVICE FOR INJECTING FUEL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9837382A JPS58214631A (en) 1982-06-08 1982-06-08 Fuel metering device in fuel injection pump

Publications (2)

Publication Number Publication Date
JPS58214631A JPS58214631A (en) 1983-12-13
JPH023023B2 true JPH023023B2 (en) 1990-01-22

Family

ID=14218072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9837382A Granted JPS58214631A (en) 1982-04-09 1982-06-08 Fuel metering device in fuel injection pump

Country Status (1)

Country Link
JP (1) JPS58214631A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59141729A (en) * 1983-01-31 1984-08-14 Nippon Denso Co Ltd Method of controlling fuel injection quantity of internal-combustion engine
JPS60162031A (en) * 1984-01-31 1985-08-23 Toyota Motor Corp Cylinder-basis fuel injection quantity control method of electronically controlled diesel engine
JPS60175745A (en) * 1984-02-22 1985-09-09 Toyota Motor Corp Learning control method for fuel injection amount for each cylinder in electronic control diesel engine
JPS60175746A (en) * 1984-02-22 1985-09-09 Toyota Motor Corp Fuel injection amount control method for each cylinder in electronic control diesel engine
JPS60182331A (en) * 1984-02-28 1985-09-17 Toyota Motor Corp Fuel injection quantity controlling method of each cylinder for electronically controlled diesel engine
JPS60184944A (en) * 1984-03-02 1985-09-20 Toyota Motor Corp Fuel injection control method of respective cylinder of electronically-controlled diesel engine
JPS60184948A (en) * 1984-03-02 1985-09-20 Toyota Motor Corp Fuel injection learning control method for respective cylinder of electronically controlled diesel engine
JPH0650077B2 (en) * 1984-08-10 1994-06-29 日本電装株式会社 Fuel injection amount control method for internal combustion engine
GB2165065B (en) 1984-09-22 1988-02-10 Diesel Kiki Co Idling control of ic engines
JPH0759911B2 (en) * 1985-07-24 1995-06-28 日本電装株式会社 Fuel injection amount control method for internal combustion engine
JP2556964B2 (en) * 1985-11-14 1996-11-27 株式会社ゼクセル Idle operation control device for internal combustion engine
JPS62240451A (en) * 1986-04-10 1987-10-21 Diesel Kiki Co Ltd Operation controller for internal combustion engine

Also Published As

Publication number Publication date
JPS58214631A (en) 1983-12-13

Similar Documents

Publication Publication Date Title
US4553518A (en) Air-fuel ratio control for an exhaust gas recirculation engine
JPS58214627A (en) Fuel regulator for fuel injection pump
JPH023023B2 (en)
US4475507A (en) Fuel injection amount control
US4739741A (en) Fuel supply control method for internal combustion engines at starting
JPH0229858B2 (en)
US4751909A (en) Fuel supply control method for internal combustion engines at operation in a low speed region
US4508085A (en) Fuel injection control method for multi cylinder internal combustion engines of sequential injection type at acceleration
US4466411A (en) Air/fuel ratio feedback control method for internal combustion engines
US4508086A (en) Method of electronically controlling fuel injection for internal combustion engine
US5595162A (en) Start up fuel control device for an engine
US4502448A (en) Method for controlling control systems for internal combustion engines immediately after termination of fuel cut
US20010010212A1 (en) Fuel supply control system for internal combustion engine
US4512321A (en) Fuel supply control method for multi cylinder internal combustion engines after termination of fuel cut
JP2611350B2 (en) Fuel injection rate control device for compression ignition engines
JP3598724B2 (en) Control device for internal combustion engine
US4694805A (en) Air-fuel ratio control method for internal combustion engines
JP2000356161A (en) Crank angle detection method for engine
JPH02104941A (en) Device for controlling fuel injection of diesel engine
JP2579908B2 (en) Engine throttle valve control device
US4892077A (en) Fuel injection control method for internal combustion engines
JP2569587B2 (en) Exhaust gas recirculation control system for diesel engine
JPH0610733A (en) Fuel injection device
JPH04330349A (en) Fuel injecting device
JPS59105943A (en) Timer position controlling apparatus for fuel injection pump