JPS58214631A - Fuel metering device in fuel injection pump - Google Patents

Fuel metering device in fuel injection pump

Info

Publication number
JPS58214631A
JPS58214631A JP9837382A JP9837382A JPS58214631A JP S58214631 A JPS58214631 A JP S58214631A JP 9837382 A JP9837382 A JP 9837382A JP 9837382 A JP9837382 A JP 9837382A JP S58214631 A JPS58214631 A JP S58214631A
Authority
JP
Japan
Prior art keywords
engine
cylinder
fuel
rotational speed
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9837382A
Other languages
Japanese (ja)
Other versions
JPH023023B2 (en
Inventor
Hitoshi Tomijima
冨島 均
Akira Masuda
明 益田
Toshimi Matsumura
敏美 松村
Masahiko Miyaki
宮木 正彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP9837382A priority Critical patent/JPS58214631A/en
Priority to US06/482,884 priority patent/US4495920A/en
Priority to DE19833312697 priority patent/DE3312697A1/en
Publication of JPS58214631A publication Critical patent/JPS58214631A/en
Publication of JPH023023B2 publication Critical patent/JPH023023B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0085Balancing of cylinder outputs, e.g. speed, torque or air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To make it possible to carry out fuel injection uniformly to all engine cylinders, by providing, in a fuel spill passage, a solenoid valve for compensating the amount of fuel injection for each cylinder. CONSTITUTION:ECU9 provides a deviation between an average rotational speed and a rotational speed of each cylinder, and gives a compensating value for the amount of fuel injection for each engine cylinder. The fuel injection amount for each engine cylinder is controlled by the opening time of a solenoid valve 8. That is, the timing of termination of fuel injection which means that high pressure fuel flows to the low pressure side through a fuel spill passage 7, is controlled. Thereby, fuel injection is carried out uniformly to all engine cylinders.

Description

【発明の詳細な説明】 本発明はエンジンにお(Jる燃オ′」噴射ポンプの燃わ
1調帛装置に関し、特に、多シリンダーFンジンのシリ
ンダ相互間にお(Jる燃料噴射吊のバラン1−を、燃料
11r4 !:ijポンプの燃料溢流通路に設置された
流量制御弁を各シリンダに対応して聞弁制01l−!I
Iることにより修止Jるようにした燃料iiI!1吊菰
買に関づるものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel injection regulating device for a fuel injection pump in an engine, and particularly to a fuel injection regulating device for a fuel injection pump in a multi-cylinder engine. The balun 1- is connected to the fuel 11r4!:ij pump, and the flow rate control valve installed in the fuel overflow passage is controlled corresponding to each cylinder 01l-!I
The fuel that was fixed by I! 1. This is related to the purchase price.

従来、エンジンに使用される燃)13+ 111’4 
!JJポンプは、1292回転数どスロワ1〜ルの踏み
込み閉に応じて動くガバナレバーにJ、り燃料噴用吊を
全気筒共通に−111に制御していた。
Conventionally, the fuel used in engines) 13 + 111'4
! The JJ pump had a governor lever that moved in response to the throttle being depressed and closed at 1292 rpm, and the fuel injection valve was controlled at -111 in common for all cylinders.

しかし、!II!I造公差あるいは経時変化などにより
気筒相方間で燃料噴射弁の間口面積にバラツキを41−
するなとして気筒別の燃料噴用量にバラツキを生じ、そ
の結果安定した燃焼が得られず、排ガス中の有害成分が
増大したり特にアイドル回転時にa3 L−Jるドライ
バビリティを損うというような問題が生じ易かった。
but,! II! Variations in the frontage area of the fuel injector between cylinder partners due to I construction tolerances or changes over time, etc. 41-
This will cause variations in the amount of fuel injected between cylinders, resulting in unstable combustion, increasing harmful components in the exhaust gas, and impairing the drivability of the A3 L-J, especially at idle speed. Problems were likely to occur.

−2− 本発明は上記の点を解?ノコすることを目的どじ、各気
筒毎に適正な燃斜噴q1串が117られ上記の如きエミ
ッションを良好にすることがCぎしかbドライバビリテ
ィの向上を図るものである。
-2- Does the present invention solve the above points? Regardless of the purpose of this, it is possible to improve the drivability by providing an appropriate fuel skew injection q1 for each cylinder to improve the emissions as described above.

このlこめ本発明は多シリンタ]−ンジンの各シリンダ
に対応づるエンジン回転速度に応じて燃料phi帽吊を
調節する燃料噴射ポンプの燃斜調吊装置Rであって、該
エンジンの回転速度を検出づる同転速度センサと、該エ
ンジンの負荷吊を示J信号を出力するエンジン負荷セン
サと、上記エンジンの回転速度にもとづくTンジン平均
回転速度と負荷吊と/)目ろ基本制御量を演瞳すると共
に、上記エンジンの平均回転速度と各シリンダに対応す
る回転速度との偏差に応じてシリンダ角の学習値を算出
し、上配基本制油1吊をシリンダ角の学習値により補正
することによりシリンダ毎の制御用を算出する制御回路
と、1174則ポンプの燃1.!l溢流通路に設置され
、かつ、1−記制御回路による制御量のデータにもとづ
く制す11信号を受(プ各シリング間の燃料噴Q・1m
の不均印を補正するにうに開弁動作する電磁弁とを− 
 3  − 備えたことをR徴とでる。以下図面を参照1)つつ本発
明を説明Jる。
In summary, the present invention is a fuel angle adjustment device R for a fuel injection pump that adjusts the fuel level adjustment according to the engine rotational speed corresponding to each cylinder of a multi-cylinder engine. An engine load sensor that outputs a J signal indicating load lifting of the engine, and a T engine average rotational speed and load lifting based on the rotational speed of the engine and/or a basic control amount. At the same time, a learned value of the cylinder angle is calculated according to the deviation between the average rotational speed of the engine and the rotational speed corresponding to each cylinder, and the upper basic oil control is corrected by the learned value of the cylinder angle. A control circuit that calculates the control amount for each cylinder based on the 1174 law pump fuel 1. ! It is installed in the overflow passage and receives the control signal 11 based on the data of the control amount by the control circuit described in 1-1.
A solenoid valve that opens to correct the imbalance of -
3 - Being prepared is an R sign. The present invention will be explained below with reference to the drawings.

第1図は本発明の一実施例の全体構成図を示η。FIG. 1 shows an overall configuration diagram of an embodiment of the present invention.

第1図にa3いて、分配型(・あってフェイスカム式の
燃$jl噴射ポンプの本体1には、燃料の吸入、圧縮及
び分配を行うプランジャ2が嵌入される。
At a3 in FIG. 1, a plunger 2 for suctioning, compressing and distributing fuel is fitted into the main body 1 of a distribution type (and face cam type) fuel injection pump.

る該7ランジト2の先端はポンプ本体1と」(に圧力室
5を形成する。他端はフェイスカム3が取りつ(プられ
るど共にエンジンのドライブシャ71〜と連結される。
The tip of the seven lunges 2 forms a pressure chamber 5 between the pump body 1 and the other end, where the face cam 3 is attached and connected to the drive shaft 71 of the engine.

該フェイスカム3Iま[]−ラ保持器14に固定された
ローラピン32で支承された[:I −ラ31ど当接し
ている。従って、前記プランジャ2は回転しながら、図
示矢印a、b方向に往復動づるJ:うにイ象される。又
、前記プランジャ2には燃料吸入、分配及び溢流用の各
ボー1〜が設(プられ、回転に伴ってポンプ本体1に設
けられた吸入通路10、分配通路6及び溢流通路7とそ
れぞれタイミング良く合致するようにイrされている。
The face cam 3I is in contact with the [:I-ra 31] supported by a roller pin 32 fixed to the holder 14. Therefore, the plunger 2 rotates and reciprocates in the directions of the arrows a and b in the figure. Further, the plunger 2 is provided with respective bows 1 for fuel suction, distribution, and overflow, and as the plunger rotates, it connects with the suction passage 10, distribution passage 6, and overflow passage 7 provided in the pump body 1, respectively. It is designed to match in a timely manner.

分配通路6の末端は吸い戻しブ↑4を介して噴射ノズル
へ連結され、溢流通路7の間は渦流制御用の電磁弁−4
− 8を介し−C燃わ1吸入側へ連結されている。
The end of the distribution passage 6 is connected to the injection nozzle via a suction valve ↑4, and between the overflow passages 7 there is a solenoid valve 4 for controlling the vortex flow.
- Connected to the -C combustion 1 suction side via 8.

−力、E CIJ即ち制御回路9には、エンジンのクラ
ンク軸に取りイ91けられたリングキアと電磁ピックア
ップとからなる回転速度センサ11、Φ両のアクレルペ
ダルの踏み込み具合を検出りるボラーンシ」メータ等か
らなる]ニンジン負荷センサ12、又、必要に応じてア
クはルが踏み込まれない状態を検出するアイドルスイッ
ヂ13、更に例えばエンジンの冷却水湿度、吸入空気潤
度、大気圧、吸気圧等を検出する各種センサ15及び気
筒判別セン1ノ16が接続される。[c[J9はこれら
の入力信号に基づいて所定の演拝処理を行い電磁弁8の
開弁時+111を決定し対応する指令信号を出力Jる。
- Power, E CIJ, that is, the control circuit 9 includes a rotational speed sensor 11 consisting of a ring gear mounted on the engine crankshaft and an electromagnetic pickup, a voluncier meter that detects the degree of depression of both Φ accelerator pedals, etc. a carrot load sensor 12, and an idle switch 13 that detects a state in which the accelerator is not depressed as necessary; Various sensors 15 for detection and cylinder discrimination sensors 1 and 16 are connected. [c[J9 performs predetermined worship processing based on these input signals, determines the opening time of the electromagnetic valve 8 +111, and outputs a corresponding command signal.

次に、本実施例の作用を説明づる。Next, the operation of this embodiment will be explained.

プランジt2と)」ニイスヵム3はエンジンの回転に同
期して回転しつつ、1回転に気筒数分だり往復動し、該
1往復動を1サイクルとし、各サイクル毎に先ずプラン
ジャ2の五降時(図示矢印a方向の動作)に吸入通路1
oがら圧力室5内へ燃料を吸入し、続いてフェイスカム
3が[]−ラ31−   5   − に乗りI−げてプランシト2を押し上げて上昇に稈(図
示矢印1)方向の動作)lこ入ると、プランジX・2の
回転につれて吸入通路10ば塞がれ、吸入された燃料は
圧力室5内で圧縮され、引ぎ続いて分配通路6が開口し
て、高圧燃料は吸い戻し弁4の閉弁圧力に打つ克ってノ
ズルから噴射され、更に所定時間経過後電磁弁8を通電
するど、高圧燃料は渦流通路7を通って低圧側へ溢流し
て圧力が低下し−Cノズルからの噴射は終了する。
The plunger t2 and)' Niscum 3 rotates in synchronization with the rotation of the engine, reciprocating for several cylinders per revolution, and each reciprocating movement is considered to be one cycle. (movement in the direction of arrow a)
Then, the face cam 3 rides on the []-ra 31-5-, pushes up the plansite 2, and moves upward (movement in the direction of the arrow 1 in the figure)). As the plunger X.2 rotates, the suction passage 10 is blocked, the suctioned fuel is compressed in the pressure chamber 5, and the distribution passage 6 is subsequently opened, and the high-pressure fuel is passed through the suction valve. When the solenoid valve 8 is energized after a predetermined period of time, the high-pressure fuel overflows to the low-pressure side through the vortex passage 7, and the pressure decreases to the -C nozzle. The injection from

前記@磁弁8の量弁時期はE CU 9がらエンジンの
運転状況に応じて各シリンダ毎の最適値にυi算指令さ
れるものである。
The valve timing of the @magnetic valve 8 is commanded by the ECU 9 to calculate the optimum value υi for each cylinder according to the operating condition of the engine.

第2図は制御回路9のブロック図を示し、100は気筒
毎の制御量を演II ?Iるマイクロプロセッサ< c
 P U )である。101は入力カウンタであり、回
転速度センサ11からの信号よりエンジン回転速度をカ
ラン1〜する。またこの入力力ウンタ101はJンジン
回転に同期して割り込み制御部102に割り込み指令信
号を送る。割り込み制御部102はこの信号を受(プる
と、コモンバス15− 6 − Oを通じてマイクロブ[II?ツ→j−100に割り込
み信号を出力づる。又入力カウンタ101には基準のシ
リンダを示Jパルス信弓を発生するシリンダ判別センサ
16が接続され、そのシリンダを示すデジタル2進信号
をマイクロプロセッサ100に伝達する。103は△−
D変換器から成るアナログの入カポ−1〜であって、エ
ンジン負仙セン4)12からの信号を△−D変換してマ
イクロプロセッサ100に読み込ませる機能を持つ。こ
れら各ユニッi〜101.102.103の出力情報は
]モンバス150を通してマイク[」プ[1セツリ−1
00に伝達される。105(よ電源回路で後述づるRA
M106に電力を供給Jる。17はバラ−アリ、18は
キースイッチであるが電源回路105はキースイッチ1
8を通さず直接、バッテリ17に接続されている。よっ
て後述するRAM106はキースイッチ18のオン・A
〕に関係無く常時電源が印加されている。104も電源
回路であるがキースイッチ18を通してバッテリ17に
接続されている3、電源回路1044;j;後述するR
AM106以−7− 外の部分に電源を供給でる。106はプログラノ、動作
中一時使用される一時記憶ユニツ1〜(RAM)である
が^11述の様にキースイッチ18のオン・Aフに関係
なく常時電源が印加されキースイッチ18をAノにして
機関の運転を停車しても記憶内容が消失しない構成とな
っていて不揮発性メモリをな1o107は通常の一時記
憶メtす、108はプログラムや各種の定数等を記憶し
ておく読み出し専用メモリ(ROM)で゛ある。、 1
10は、電磁弁8に制御信号を送る出力回路であり、ラ
ッチ、ダウンカウンタ、増幅回路等を含み、CPU10
0で演粋された制御量を示1データに基づいて電磁弁8
を開弁ざUる。電磁弁8は出力回路110からの駆動信
号を受【Jで量弁動作を行い、燃料を燃料渦流通路7を
経て渦流さける。111はタイマーであって、クロック
パルス信号を発生して経過時間を測定し、CPjJlo
oにり日ツク信号を出力したり、割り込み制御部102
に時間割り込み信号を出力する。入力カウンタ101は
回転速度センサ11の出力によりエンジン半回転に1回
、=  8  = エンジン回転速度を測定し、その測定の終了時に割り込
み制御部102に割り込み指令信号を供給する。割り込
み制御部102はその信号から削り込み信号を発生し、
マイクロプロはツサ100に制御1MIの演算を行なう
割り込み処理ルーチンを実行さける。
FIG. 2 shows a block diagram of the control circuit 9, and 100 represents the control amount for each cylinder. Microprocessor <c
P U ). Reference numeral 101 denotes an input counter, which calculates the engine rotation speed from 1 to 1 based on a signal from the rotation speed sensor 11. The input force counter 101 also sends an interrupt command signal to the interrupt control section 102 in synchronization with the engine rotation. When the interrupt control section 102 receives this signal, it outputs an interrupt signal to the microb [II? A cylinder discrimination sensor 16 that generates a signal is connected and transmits a digital binary signal indicating the cylinder to the microprocessor 100. 103 is △-
These are analog input ports 1 to 1 consisting of D converters, and have the function of Δ-D converting the signal from the engine negative sensor 4) 12 and reading it into the microprocessor 100. The output information of each of these units i to 101.102.103 is transmitted through the microphone bus
00. 105 (RA described later in the power supply circuit)
Supply power to M106. Reference numeral 17 indicates a separate unit, and reference numeral 18 indicates a key switch, and the power supply circuit 105 is a key switch 1.
It is directly connected to the battery 17 without passing through the battery 8. Therefore, the RAM 106, which will be described later, is
] Power is always applied regardless of the 104 is also a power supply circuit, but it is connected to the battery 17 through the key switch 18. 3, power supply circuit 1044; j; R to be described later
AM106 and above-7- Power can be supplied to the outside parts. Reference numeral 106 designates temporary memory units 1 to (RAM) that are temporarily used during program operation, but as mentioned in 11, power is always applied regardless of whether the key switch 18 is on or off, and the key switch 18 is set to A mode. 107 is a normal temporary memory, and 108 is a read-only memory that stores programs and various constants. (ROM). , 1
10 is an output circuit that sends a control signal to the solenoid valve 8, and includes a latch, a down counter, an amplifier circuit, etc.
0 indicates the control amount derived from the solenoid valve 8 based on the 1 data.
I will open the valve. The electromagnetic valve 8 receives a drive signal from the output circuit 110 and performs a quantity valve operation at [J] to swirl the fuel through the fuel swirl passage 7. 111 is a timer that generates a clock pulse signal to measure the elapsed time, and
The interrupt control unit 102 outputs a daily signal and
Outputs a time interrupt signal. The input counter 101 measures the engine rotation speed once every half rotation of the engine based on the output of the rotation speed sensor 11, and supplies an interrupt command signal to the interrupt control unit 102 at the end of the measurement. The interrupt control unit 102 generates a cutting signal from the signal,
The microprocessor causes the handler 100 to execute an interrupt processing routine that performs control 1MI calculations.

尚、回転速度センサ11は、エンジンのクランク軸の回
転速度を検出し、回転速度に応じた周波数のパルス信号
を出力する。
Note that the rotational speed sensor 11 detects the rotational speed of the crankshaft of the engine and outputs a pulse signal with a frequency corresponding to the rotational speed.

シリンダ判別センサ16は各シリンダの燃焼順序に応じ
て燃わ1を供給する各シリンダを特定Jるため111準
どなる第1シリンダの咄剣時にパルス信号を出力する。
The cylinder discrimination sensor 16 outputs a pulse signal when the first cylinder 111 is fired in order to specify each cylinder that supplies combustion 1 according to the combustion order of each cylinder.

エンジン負荷センサ゛12は、]−ンジンの負荷に応じ
たアナログ電圧信号を入カポ−h 103に出力する。
The engine load sensor 12 outputs an analog voltage signal corresponding to the engine load to the input capacitor 103.

第3図はマイクロプロセッサ100の概略フローチャー
トを示す。以上、このフローチャートにもとづきマイク
ロプロセッサ100の機能を説明すると共に構成全体の
作動をも説明する。
FIG. 3 shows a schematic flowchart of microprocessor 100. Above, the functions of the microprocessor 100 will be explained based on this flowchart, and the operation of the entire configuration will also be explained.

−9− キースイッチ18がオンづると同時に、R(’) M2
O3内に予め用意されたプログラムがスターIへし、j
ず後続の処理に先立って初期化の処理を実行づる。
-9- At the same time as the key switch 18 is turned on, R(') M2
A program prepared in advance in O3 is sent to Star I, and j
First, initialization processing is performed prior to subsequent processing.

ステップ200では回転速度レン’J−11による同転
速度Nからエンジン平均回転速劇画を締出づると技に、
]−ンジン負荷レセン12からTンジン負?I?iαを
取り込み、これらのデータ良、αから基本制御I量To
を算出する。
In step 200, the engine average rotational speed is determined from the same rotational speed N by rotational speed Ren'J-11.
]- Engine load Resen 12 to T engine negative? I? iα is taken in, and from these data, the basic control I quantity To
Calculate.

ステップ201ではシリンダに対応した学習値を補正す
る為、シリンダ(i)の判定をシリンダ判別ゼン’j−
16からの0信弓入力後の回転速j哀センサ11からの
N信号の入力回数により行う。
In step 201, in order to correct the learning value corresponding to the cylinder, the cylinder (i) is determined by cylinder discrimination Zen'j-
This is performed based on the number of inputs of the N signal from the rotational speed sensor 11 after the 0 signal is input from 16.

ステップ202では不揮発刊メモリ106内にある上記
判定されたシリンダ(i)に対応覆る学習値Kiを取り
出し、ステップ203では学習値Kiにより基本側ti
ll m Toを補正して制tlllffiTiをTo
X(1+Ki)とし、ステップ204で出力づる。
In step 202, a learning value Ki corresponding to the determined cylinder (i) in the non-volatile memory 106 is retrieved, and in step 203, the basic side ti is
Correct ll m To and control tllllffi To
X(1+Ki) and output in step 204.

ステップ205−206の間では、エンジン負−10− 葡およびエンジン回転速度の安定状態を判別し、安定状
態の時のみステップ207へ進む。非安定状態の時(よ
ステップ222へ進み、メ七り106内の後述JるTン
ジン回転速1宴積紳値ΣNiをクリ)l l、て偏った
エンジン回転数データで学習ifiの補正をしく、rい
様にしている。
Between steps 205 and 206, it is determined whether the engine rotational speed is stable or not, and the process proceeds to step 207 only when the engine speed is stable. When in an unstable state (proceed to step 222 and click the engine rotation speed 1 engine speed value ΣNi described later in menu 106), correct the learning ifi using the biased engine rotation speed data. I'm trying to be nice and cute.

上述の安定状態の判別は次の様に実施している。The above-mentioned stable state determination is performed as follows.

即ち、ステップ205では]−ンジン回転速度変化吊お
よびエンジン負荷変化■(ΔN・=Ni−1−Nlおよ
び△α・・α1−1−α1)がそれぞれ各所定値以下か
どうかを判別し、当該変化量が所定値以下の場合は更に
スラップ206に進み、確実な学習のために、負荷変化
か無くな・)でからエンジン状態が安定になるまでのデ
ィレィ判定を行な−う。
That is, in step 205, it is determined whether engine rotational speed change and engine load change (ΔN = Ni-1-Nl and Δα...α1-1-α1) are each less than a predetermined value, and If the amount of change is less than a predetermined value, the process further proceeds to slap 206, and for reliable learning, a delay is determined from when there is no load change until the engine condition becomes stable.

了して所定ディレィ後はステップ207に進む。After a predetermined delay, the process proceeds to step 207.

ステツノ゛207から212間では字消のための気筒別
のエンジン回転)*度N1を取り込み後述づるステップ
213における比較2g準を算出Jる。
Between steps 207 and 212, the engine rotation for each cylinder for letter cancellation) * degree N1 is taken in to calculate the comparison 2g standard in step 213, which will be described later.

即らステップ207では燃料噴1)J後の燃わ1がJ−
レジン1〜ルクとして反映されるまでのディレィを考−
11−− 慮し、所定ディレィ中はこのルーチンから1にりCステ
ップ222へ進むが、所定ディレィ後はステップ208
にMLむ。
That is, in step 207, the fuel 1 after the fuel injection 1) J is J-
Consider the delay from resin 1 to reflected as lux.
11-- Considering this, during a predetermined delay, this routine returns to step 1 and proceeds to C step 222, but after the predetermined delay, it proceeds to step 208.
ML to.

ステップ208Cは燃オ;1がエンジン出力としC反映
された時の気筒別の]−ンジン回転速度N1を取り込み
、ステップ209に進/Vで、メ王り1゜6内にある1
−ンジン回転速度槓紳値ΣN1に加えて新たなΣN1と
Jる。
Step 208C takes in the combustion engine rotation speed N1 for each cylinder when 1 is the engine output and C is reflected, and proceeds to step 209.
- In addition to the engine rotational speed value ΣN1, a new ΣN1 is added.

ステップ210では+iffステップ20って算出した
一rンジン回転速度槓紳(「IΣN1をメモリ106に
格納りる。
In step 210, +if step 20 calculates the calculated engine rotational speed (IΣN1) and stores it in the memory 106.

ステップ211ではエンジン回転速度N1の取り込み回
数が所定回数(気筒数の整数倍例えば4回)と一致しノ
こかどうかを判定し、所定回数にψ1だイ1い場合は本
ルーヂンから抜()てステップ2゜OにジトンゾJるが
、所定回数になった場合にはステップ212に進む。
In step 211, it is determined whether the number of times the engine rotation speed N1 is taken in matches a predetermined number of times (an integral multiple of the number of cylinders, for example, four times), and if ψ1 is less than the predetermined number of times, it is removed from the main routine (). Then, the process goes to step 20, but if the predetermined number of times has been reached, the process goes to step 212.

ステップ212では所定回数取り込んだ後の」ニンジン
回転速度積算値ΣN1の平均値Mを算出して、ステップ
213では該平均値&と気筒別のニー  12 − ンジン回転速度Niとの差(△N=Ni−N)が1Fか
、負かあるいは等しいかの判別を行ない、エンジン回転
速度N1が平均値&にり人きい場合は当該気筒の燃料l
^劃側が多いど判定しステップ216(こ進むが、エン
ジン回転速度N1が平均値艮より小さい場合は当該気筒
の燃料噴射吊が少ないと判定してステップ214に進み
、Tンジン回転速度N1が平均値酊と等しい1月合はス
テップ215に進む。
In step 212, the average value M of the carrot rotational speed integrated value ΣN1 after being captured a predetermined number of times is calculated, and in step 213, the difference between the average value & and the engine rotational speed Ni for each cylinder (△N= Ni-N) is 1F, negative or equal, and if the engine rotational speed N1 is the average value & is equal to the average value, the fuel l of the cylinder is
ᄒIt is determined that the engine rotation speed N1 is higher than the average value, and the process proceeds to step 216. However, if the engine rotation speed N1 is smaller than the average value, it is determined that there is less fuel injection in the relevant cylinder, and the process proceeds to step 214, in which the engine rotation speed N1 is determined to be the average value. If the January match is equal to the drunkenness, proceed to step 215.

ステップ216ではステップ203での制御吊下1から
中位?Ili正吊△T1を減じ、ステップ214では制
ill m T iに111位補正量△T1を加え、ス
テップ215では制御量1”iをそのままどじ、それぞ
れ補正制tan吊Ti  −とJる。
In step 216, is the control suspension 1 to medium in step 203? Ili, normal suspension ΔT1 is subtracted, and in step 214, the 111th position correction amount ΔT1 is added to the control ill m Ti, and in step 215, the control amount 1"i is left as is, and the correction control tan suspension Ti - is obtained.

ステップ217では補正制御量T1−ど基本制御fiT
oどの差をとり、Lli位補正邑槓算t11i (ΣΔ
T)iを求める。
In step 217, the correction control amount T1 - basic control fiT
o Take the difference and calculate the Lli position correction value t11i (ΣΔ
T) Find i.

ステップ218で゛はステップ217で゛求めた単、 
 位補正吊積wllf1〈Σ△T)iが所定値以トであ
るかどうかを判別し、所定値以上の場合は何らかの−1
3− 異常があるとしてステップ219へ進み、学習萌1(i
をクリアする。一方、所定値未満の場合は正常どしてス
テップ220で単位補rl!a積綽値(L△T)1どス
テップ200で求めた基本制御量T。
In step 218, ``is'' the unit obtained in step 217,
It is determined whether the position correction hanging product wllf1〈Σ△T)i is equal to or greater than a predetermined value, and if it is equal to or greater than the predetermined value, some -1
3- Assuming that there is an abnormality, proceed to step 219 and perform learning moe 1 (i
Clear. On the other hand, if it is less than the predetermined value, it is determined to be normal and the unit correction rl! is returned to step 220. a product value (L△T) 1 is the basic control amount T obtained in step 200;

との比を駈1こな学習偵に1として求める。Find the ratio of 1 to 1 for the canter student.

ステップ221では学PJ m K iを不揮発性メモ
リ106に記憶して、次回の制御量T1算出に利用する
In step 221, the science PJ m K i is stored in the nonvolatile memory 106 and used for the next calculation of the control amount T1.

マイクロプロセツサの機能は以上の通りである。The functions of the microprocessor are as described above.

以上の様にして気筒別の字消値Kiを補正し各シリンダ
相互間の燃わII@躬吊差をなくJように電磁弁8のシ
リンダ毎の開弁時期を決定づる。
As described above, the cylinder-specific offset value Ki is corrected, and the opening timing of the solenoid valve 8 for each cylinder is determined so as to eliminate the combustion difference between the cylinders.

第4a図および第111〕図は上述した如き実施例を従
来例と比較1ノで具体的に説明するlこめのタイムチt
 −t−を示しており、第4a図が従来例に対応づ゛る
もの、第4b図が本実施例に対応づるものとして表わし
ている。
Figures 4a and 111 are detailed time charts for specifically explaining the above-mentioned embodiment by comparing it with the conventional example.
4a corresponds to the conventional example, and FIG. 4b corresponds to the present embodiment.

従来の方法においては、第4a図に図示する如<、−丁
ンジン回転速度Nが気筒間での供給燃料量のバラツキに
より(a >に示す如く気筒間でバラ−i/I  − ツキを生じていて5.J1本本制111 II Toを
一定に設定し、かつ学習値1〈が<’にいため制御吊下
は(1))に示J如く一定と41す、このため供給燃料
1fiqは(C)に示す如く依然として気筒間でバラツ
キをもち、この結果エンジン回転速度Nは修正されず気
筒間でバラツキを生じたままの状態とされる。
In the conventional method, as shown in FIG. 4a, the engine rotational speed N varies between the cylinders as shown in (a) due to the variation in the amount of fuel supplied between the cylinders. 5. J1 main system 111 II To is set constant, and the learned value 1 <<', so the control suspension is constant as shown in (1)), so the supplied fuel 1fiq is ( As shown in C), there are still variations among the cylinders, and as a result, the engine rotational speed N is not corrected and remains in a state where variations occur between the cylinders.

これに対し、本実施例においては、第4 a図の(a)
に示す如く]]ンジン回転速度Nにバラツキが介と1−
リ−ると、第3図で」二)ホした如く、学習値Kを気筒
別に補正するため、第4b図に14示する如く制御I 
fU Tは(b)に示す如く気筒別に補正され、この結
果供給燃料量qは(C)に示す如(気筒間でのバラツキ
が解消されて金気筒について略同−の値をもつにうにな
る。従ってTンジン回転速度N(よ(a)に示す如く気
筒間でのバラツキが解消し金気筒について略同−の値と
なり回転ムラのない運転状態となる。
On the other hand, in this embodiment, (a) in Fig. 4a
As shown in ]] There are variations in the engine rotational speed N.
Then, in order to correct the learning value K for each cylinder as shown in ``2)'' in Figure 3, the control I
fU T is corrected for each cylinder as shown in (b), and as a result, the supplied fuel amount q becomes as shown in (C) (variations between cylinders are eliminated and the values for the gold cylinders are approximately the same). Therefore, the T engine rotational speed N (as shown in (a)) eliminates the dispersion among the cylinders, and the two cylinders have approximately the same - value, resulting in an operating state with no uneven rotation.

以上説明した如く、本発明は多シリンダ」ンジンの各シ
リンダに対応づるエンジン回転速度に応じて燃わ1噴射
量を調節する燃lit lj躬水ポンプ燃わ1− 15
 − 調量装置であって、該エンジンの回転速1良を検出づる
回転速曵センリど、該エンジンのf″ll荷吊り信号を
出力JるJンジン負荷センリど、上記−1−ンシンの回
転速度にムどづくTンジン平均回転速度と負荷吊とから
1(水制911量を演紳づると共に、ト記丁ンジンの平
均回転速度と各シリンダに対応する回転速度との8差に
応じてシリンダ毎の学習値をい出し、上記基本制御量を
シリンダ毎の学習値により補正Jることににリシリンタ
毎の制O1l flを算出する制御回路と、噴躬ポンプ
の燃料溢流通路に設置され、かつ、上記制御回路による
制御量のデータにもとづく制御信号を受は各シリンダ間
の燃料噴QJ iの不均石を補正するように量弁動作す
る゛電磁弁とを備えてなる。
As explained above, the present invention provides a fuel injection pump that adjusts the fuel injection amount according to the engine rotational speed corresponding to each cylinder of a multi-cylinder engine.
- A metering device, such as a rotation speed sensor that detects the rotation speed of the engine, a load sensor that outputs a load lifting signal of the engine, and a load sensor that detects the rotation speed of the engine. Based on the average rotational speed of the engine and the load load, which affect the speed, the amount of water control 911 is determined, and the difference between the average rotational speed of the engine and the rotational speed corresponding to each cylinder is determined. A control circuit is installed in the fuel overflow passage of the injection pump and a control circuit that calculates the control O1l fl for each cylinder and corrects the basic control amount by calculating the learned value for each cylinder. and an electromagnetic valve which receives a control signal based on the data of the control amount from the control circuit and operates to correct the asymmetry of the fuel injection QJ i between the cylinders.

このため本発明によれば気筒間で燃第31噴則吊にバラ
ツキを生ずるようになっても適切な修正を11なうため
金気筒について均一な燃わ1噴則量に補正でき、このた
めエミッションの改善、ドライバビリティの向十仕充分
に達成することが可能になる。
Therefore, according to the present invention, even if the fuel injection quantity varies between cylinders, an appropriate correction can be made, so that it can be corrected to a uniform fuel injection quantity for all cylinders. It becomes possible to fully achieve improvements in emissions and drivability.

更にアイドル運転の安定性向上により燃費の改善−16
− を図ることもできる。
Furthermore, fuel efficiency is improved by improving the stability of idling operation-16
− It is also possible to aim for

1J)ホした実施例では基本制御量Toの大小に無関係
に学習Iff K iを定め補正を行なっているが、基
本制御eJ l−oの値に応じて字消値に1を定め法定
められた学習値Kiにより補正を行なうようにしてもよ
い。
1J) In the embodiment described above, the learning If K i is set and corrected regardless of the magnitude of the basic control amount To, but the erasure value is set to 1 according to the value of the basic control eJ lo and is not required by law. The correction may be made using the learned value Ki.

また本発明の構成要素である電磁弁は1個に限定される
ものではなく、複数個例えば気筒ど同数個でそれぞれ対
応する気筒の噴射mを制す11するものであつ−(もよ
い。
Furthermore, the number of electromagnetic valves that are a component of the present invention is not limited to one, but may be a plurality, for example, the same number of cylinders, each controlling the injection m of the corresponding cylinder.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例全体構成、第2図はその電気
ブロック構成、第3図は本実施例の処理の一例を表わす
一ノローヂャー1〜、第4a図は従来例の説明図、第7
Ib図は本発明の説明図をそれぞれ示づ。 1・・・燃お1噴射ポンプ本体 7・・・燃料溢流通路 8・・・電磁弁 9・・・制御回路 −17− 11・・・回転速庶センザ 12・・・エンジン負?Rrセンザ 16・・・気筒判別センサ 代理人 弁理士 定立 勉 −18− 第40図 kをaJrt間とtノ 第4b図 り118時間(1)
FIG. 1 is an overall configuration of an embodiment of the present invention, FIG. 2 is an electrical block configuration thereof, FIG. 3 is an illustration of a controller 1 to 1 representing an example of the processing of this embodiment, and FIG. 4a is an explanatory diagram of a conventional example. 7th
Figure Ib shows an explanatory diagram of the present invention, respectively. 1... Fuel 1 injection pump body 7... Fuel overflow passage 8... Solenoid valve 9... Control circuit -17- 11... Rotation speed reduction sensor 12... Engine negative? Rr sensor 16... Cylinder discrimination sensor representative Patent attorney Tsutomu Sadatsu - 18 - Fig. 40 K between aJrt and t/4b 118 hours (1)

Claims (1)

【特許請求の範囲】 多シリンダ]ニンジンの各シリンダに対応Jるエンジン
回転速度に応じて燃料哨剣串を調節づる燃料噴射ポンプ
の燃わ1調m装置であって、該エンジンの回転速度を検
出する回転速度センサど、該エンジンの負荷量を示す信
号を出力する一rンジン角荷セセンと、上記エンジンの
回転速度にもとづくエンジン平均回転速度と負荷量とか
ら基本制御ll量を演紳づると共に、上記エンジンの平
均回転速度と各シリンダに対応する回転速度との偏差に
応じてシリンダ毎の学冒値を痺出し、上記基本制御量を
シリンダ毎の学召伯により補正Jることによりシリンダ
毎の制御量を膨出りる制御回路と、噴部]ポンプの燃料
溢流通路に設置され、かつ、上記制御回路による制御量
のデータにもとづ(制御信号を受は各シリンダ間の燃わ
1噴躬量の不均吊を補正するように開弁動作する電磁弁
どを備えたことを−1− 特徴どJる燃131噴躬ポンプの燃料調量装置。
[Scope of Claims] Multi-cylinder] A fuel injection pump fuel adjustment device that adjusts a fuel control skewer according to the engine rotational speed corresponding to each cylinder of the carrot, the device comprising: A basic control amount is calculated from the rotational speed sensor that detects, the engine angle load sensor that outputs a signal indicating the load amount of the engine, and the engine average rotational speed based on the engine rotational speed and the load amount. At the same time, the engine speed value for each cylinder is determined according to the deviation between the average rotational speed of the engine and the rotational speed corresponding to each cylinder, and the basic control amount is corrected by the engine speed value for each cylinder. A control circuit that inflates the control amount for each cylinder, and a control circuit that expands the control amount for each cylinder, is installed in the fuel overflow passage of the pump, and is based on the data of the control amount by the control circuit (receiving the control signal is -1- Features: A fuel metering device for a fuel 131 injection pump, including a solenoid valve that opens to correct unevenness in fuel injection amount.
JP9837382A 1982-04-09 1982-06-08 Fuel metering device in fuel injection pump Granted JPS58214631A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP9837382A JPS58214631A (en) 1982-06-08 1982-06-08 Fuel metering device in fuel injection pump
US06/482,884 US4495920A (en) 1982-04-09 1983-04-07 Engine control system and method for minimizing cylinder-to-cylinder speed variations
DE19833312697 DE3312697A1 (en) 1982-04-09 1983-04-08 METHOD AND DEVICE FOR INJECTING FUEL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9837382A JPS58214631A (en) 1982-06-08 1982-06-08 Fuel metering device in fuel injection pump

Publications (2)

Publication Number Publication Date
JPS58214631A true JPS58214631A (en) 1983-12-13
JPH023023B2 JPH023023B2 (en) 1990-01-22

Family

ID=14218072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9837382A Granted JPS58214631A (en) 1982-04-09 1982-06-08 Fuel metering device in fuel injection pump

Country Status (1)

Country Link
JP (1) JPS58214631A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59141729A (en) * 1983-01-31 1984-08-14 Nippon Denso Co Ltd Method of controlling fuel injection quantity of internal-combustion engine
JPS60162031A (en) * 1984-01-31 1985-08-23 Toyota Motor Corp Cylinder-basis fuel injection quantity control method of electronically controlled diesel engine
JPS60175745A (en) * 1984-02-22 1985-09-09 Toyota Motor Corp Learning control method for fuel injection amount for each cylinder in electronic control diesel engine
JPS60175746A (en) * 1984-02-22 1985-09-09 Toyota Motor Corp Fuel injection amount control method for each cylinder in electronic control diesel engine
JPS60182331A (en) * 1984-02-28 1985-09-17 Toyota Motor Corp Fuel injection quantity controlling method of each cylinder for electronically controlled diesel engine
JPS60184944A (en) * 1984-03-02 1985-09-20 Toyota Motor Corp Fuel injection control method of respective cylinder of electronically-controlled diesel engine
DE3533900A1 (en) 1984-09-22 1986-04-03 Diesel Kiki Co. Ltd., Tokio/Tokyo DEVICE FOR CONTROLLING THE IDLE OPERATION OF AN INTERNAL COMBUSTION ENGINE
US4590907A (en) * 1984-03-02 1986-05-27 Toyota Jidosha Kabushiki Kaisha Method of adaptively controlling individual cylinder fuel injection quantities in electronically controlled diesel engine and device therefor
JPS6223552A (en) * 1985-07-24 1987-01-31 Nippon Denso Co Ltd Control method for injection quantity of fuel for internal-combustion engine
JPS62113837A (en) * 1985-11-14 1987-05-25 Diesel Kiki Co Ltd Idle operation control device for internal-combustion engine
US4667634A (en) * 1984-08-10 1987-05-26 Nippondenso Co., Ltd. Method and apparatus for controlling amount of fuel injected into engine cylinders
JPS62240451A (en) * 1986-04-10 1987-10-21 Diesel Kiki Co Ltd Operation controller for internal combustion engine

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0154538B2 (en) * 1983-01-31 1989-11-20 Nippon Denso Co
JPS59141729A (en) * 1983-01-31 1984-08-14 Nippon Denso Co Ltd Method of controlling fuel injection quantity of internal-combustion engine
JPS60162031A (en) * 1984-01-31 1985-08-23 Toyota Motor Corp Cylinder-basis fuel injection quantity control method of electronically controlled diesel engine
JPH024774B2 (en) * 1984-01-31 1990-01-30 Toyota Motor Co Ltd
JPS60175745A (en) * 1984-02-22 1985-09-09 Toyota Motor Corp Learning control method for fuel injection amount for each cylinder in electronic control diesel engine
JPS60175746A (en) * 1984-02-22 1985-09-09 Toyota Motor Corp Fuel injection amount control method for each cylinder in electronic control diesel engine
JPH024775B2 (en) * 1984-02-22 1990-01-30 Toyota Motor Co Ltd
JPH022460B2 (en) * 1984-02-22 1990-01-18 Toyota Motor Co Ltd
JPS60182331A (en) * 1984-02-28 1985-09-17 Toyota Motor Corp Fuel injection quantity controlling method of each cylinder for electronically controlled diesel engine
JPH022461B2 (en) * 1984-02-28 1990-01-18 Toyota Motor Co Ltd
US4590907A (en) * 1984-03-02 1986-05-27 Toyota Jidosha Kabushiki Kaisha Method of adaptively controlling individual cylinder fuel injection quantities in electronically controlled diesel engine and device therefor
JPH022462B2 (en) * 1984-03-02 1990-01-18 Toyota Motor Co Ltd
JPS60184944A (en) * 1984-03-02 1985-09-20 Toyota Motor Corp Fuel injection control method of respective cylinder of electronically-controlled diesel engine
US4667634A (en) * 1984-08-10 1987-05-26 Nippondenso Co., Ltd. Method and apparatus for controlling amount of fuel injected into engine cylinders
DE3533900A1 (en) 1984-09-22 1986-04-03 Diesel Kiki Co. Ltd., Tokio/Tokyo DEVICE FOR CONTROLLING THE IDLE OPERATION OF AN INTERNAL COMBUSTION ENGINE
JPS6223552A (en) * 1985-07-24 1987-01-31 Nippon Denso Co Ltd Control method for injection quantity of fuel for internal-combustion engine
JPS62113837A (en) * 1985-11-14 1987-05-25 Diesel Kiki Co Ltd Idle operation control device for internal-combustion engine
JPS62240451A (en) * 1986-04-10 1987-10-21 Diesel Kiki Co Ltd Operation controller for internal combustion engine

Also Published As

Publication number Publication date
JPH023023B2 (en) 1990-01-22

Similar Documents

Publication Publication Date Title
JP3817991B2 (en) Control device for internal combustion engine
US4642773A (en) Method and apparatus for controlling an engine
US8347863B2 (en) Method for controlling a fuel delivery device on an internal combustion engine
JPS58214631A (en) Fuel metering device in fuel injection pump
JPS58214627A (en) Fuel regulator for fuel injection pump
JP2000136749A (en) Torque deciding method and device of gasoline direct injection type internal combustion engine
JPH0842383A (en) Method and equipment for determining intrinsic parameter of fuel injector for internal combustion engine
US7765983B2 (en) Method and device for controlling an internal combustion engine
JP2003527527A (en) Operating method of multi-cylinder internal combustion engine
EP0296464A2 (en) Air/fuel ratio control system for internal combustion engine with correction coefficient learning feature
KR920005851B1 (en) Electric fuel control device
JP2812240B2 (en) Fuel injection control device for electronically controlled diesel engine
CN107923329B (en) Method for obtaining the evaporation rate of a fuel quantity precipitated by injection by means of a suction pipe
JP2910411B2 (en) Control device for internal combustion engine
JPH0533714A (en) Fuel injection quantity control device for diesel engine
JP4211732B2 (en) Fuel supply device for internal combustion engine
JP3052593B2 (en) Fuel injection amount control device for internal combustion engine
JPH05288110A (en) Control apparatus for internal combustion engine
JP3139280B2 (en) Fuel injection control system for diesel engine
JPS60198356A (en) Fuel injection quantity controller
JP3195479B2 (en) Fuel injection control system for diesel engine
JPH06336938A (en) Fuel injection quantity controller for internal combustion engine
JPS6336038A (en) Fuel feeding quantity control device for internal combustion engine
JP2743591B2 (en) Fuel injection control system for diesel engine
CN112292518A (en) Method for determining and/or identifying soot deposits in the air intake section of a combustion chamber of an internal combustion engine