JPH02273974A - Superconducting three-terminal element - Google Patents

Superconducting three-terminal element

Info

Publication number
JPH02273974A
JPH02273974A JP1095113A JP9511389A JPH02273974A JP H02273974 A JPH02273974 A JP H02273974A JP 1095113 A JP1095113 A JP 1095113A JP 9511389 A JP9511389 A JP 9511389A JP H02273974 A JPH02273974 A JP H02273974A
Authority
JP
Japan
Prior art keywords
oxide
superconducting
film
thin film
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1095113A
Other languages
Japanese (ja)
Other versions
JPH07105533B2 (en
Inventor
Yoshinobu Taruya
良信 樽谷
Yukio Honda
幸雄 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1095113A priority Critical patent/JPH07105533B2/en
Publication of JPH02273974A publication Critical patent/JPH02273974A/en
Publication of JPH07105533B2 publication Critical patent/JPH07105533B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To obtain an element structure applicable to a superconducting transistor using oxide-based high critical temperature superconducting material by constituting a structure wherein a source electrode, semiconductor, and a drain electrode are formed in thin films and stacked in a lamination type. CONSTITUTION:Oxide superconducting thin film 2 such as Y-Ba-Cu oxide or Bi-Sr-Cu oxide is made either a source electrode or a drain electrode; thereon a semiconductor thin film 3 is formed; thereon the other one of the source electrode or the drain electrode is formed, which is composed of an oxide superconducting thin wire type thin film 4 such as Y-Ba-Cu oxide or Bi-St-Ca-Cu oxide; thereon a gate insulating film 5 is arranged. The following structure is constituted; a part or the whole part of the gate electrode film 6 comes into contact, via the gate insulating film 5, with a semiconductor thin film 3 viewed from the gaps of drain or source thin wires on the semiconductor thin film 3. Thereby an element structure applicable to a field effect superconducting transistor using oxide-based high critical temperature superconducting material can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高速、低消費電力でスイッチング動作を行う超
電導スイッチング装置等の超電導エレクトロニクスの分
野に係り、とくに液体窒素温度で動作可能な超電導三端
子素子に関するもめである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to the field of superconducting electronics such as superconducting switching devices that perform switching operations at high speed and with low power consumption, and in particular to superconducting three-terminal devices that can operate at liquid nitrogen temperatures. This is a dispute regarding the element.

〔従来の技術〕[Conventional technology]

Y−Ba−Cu酸化物あるいはBi−Sr−Ca−Cu
酸化物等の酸化物系超電導材料は臨界温度が90に以上
であり、液体窒素温度において完全な超電導性を示すも
のである。これらY−Ba−Cu酸化物等の超電導材料
をエレクトロニクス、とくにスイッチングデバイスの分
野に応用するためには基本的な超電導能動素子である超
電導トランジスタを得る必要がある。
Y-Ba-Cu oxide or Bi-Sr-Ca-Cu
Oxide-based superconducting materials such as oxides have a critical temperature of 90 or higher and exhibit perfect superconductivity at liquid nitrogen temperatures. In order to apply these superconducting materials such as Y--Ba--Cu oxides to the field of electronics, particularly switching devices, it is necessary to obtain superconducting transistors, which are basic superconducting active elements.

Y−Ba−Cu酸化物あるいはBi−Sr−Ca−Cu
酸化物を用いた超電導トランジスタあるいは超電導三端
子素子としては、Y−Ba−Cu酸化物薄膜から成る超
電導弱結合に対してAQ薄膜から成る電流注入電極を備
えた。いわゆる電流注入スイッチング素子が作製されて
いる。この例は第49回応用物理学会術講演会予稿集第
1分冊第151頁(1988年)に記載されている。
Y-Ba-Cu oxide or Bi-Sr-Ca-Cu
A superconducting transistor or a superconducting three-terminal element using an oxide was provided with a current injection electrode made of an AQ thin film for a superconducting weak bond made of a Y--Ba--Cu oxide thin film. So-called current injection switching elements have been fabricated. This example is described in the Proceedings of the 49th Japan Society of Applied Physics Technical Conference, Volume 1, page 151 (1988).

一方電界効果を用いた超電導トランジスタとして、液体
He温度動作の必要なNb系の超電導材料を用いたもの
であるが、超電導電子のしみ出し効果と、GaAsある
いはSiの電界効果を用いた三端子素子が得られている
。この例はフィジカルレピューレターズ第54巻第24
49頁、1985年(Physical Review
Letters、 Vol、54. pp、2449.
1985)に記載されている。
On the other hand, a superconducting transistor using a field effect uses a Nb-based superconducting material that requires liquid He temperature operation, but a three-terminal device using the seepage effect of superconducting electrons and the field effect of GaAs or Si is obtained. This example is from Physical Review Letters, Volume 54, No. 24.
49 pages, 1985 (Physical Review
Letters, Vol. 54. pp, 2449.
1985).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記第1の従来技術は電流注入型のスイッチング素子に
関して、第三電極を付加することによる超電導電流を制
御するものである。スイッチング信号は電流である。ス
イッチング信号積を電流とする場合、入力信号電流と出
力信号電流を分離することが必要である。入出力信号を
分離しない場合、素子がスイッチングしない場合でも、
入力信号電流が出力線にそのまま流れるという問題が生
じる。これはスイッチング回路における誤動作の原因と
なる。
The first conventional technique is to control a superconducting current by adding a third electrode to a current injection type switching element. The switching signal is a current. When the switching signal product is a current, it is necessary to separate the input signal current and the output signal current. If the input and output signals are not separated, even if the element does not switch,
A problem arises in that the input signal current flows directly to the output line. This causes malfunction in the switching circuit.

スイッチング素子の機能としては、スイッチング信号電
流を注入することによってスイッチング動作を行わせる
とともに、素子の入出力電流分離作用が働くことが必要
である。このような機能を電流注入型のスイッチング素
子に賦与することは非常に困難であり、またこのような
機能を有せしめたとしても素子の構造がきわめて複雑と
なる。したがってスイッチング素子において入出力信号
の分離を容易に達成するためには、入力信号を電流以外
のものに求める必要がある。最も素子としての取扱いが
簡単な方法は半導体トランジスタのごとく、電圧信号を
用いる方法である。
As for the function of the switching element, it is necessary to perform a switching operation by injecting a switching signal current, and also to separate the input and output currents of the element. It is very difficult to provide such a function to a current injection type switching element, and even if such a function were provided, the structure of the element would be extremely complicated. Therefore, in order to easily achieve separation of input and output signals in a switching element, it is necessary to obtain an input signal other than a current. The method that is easiest to handle as an element is a method that uses a voltage signal, like a semiconductor transistor.

電圧信号によってスイッチング動作を行わせる素子の一
種であり、電界効果型超電導トランジスタとして従来得
られている素子構造は、SiやGaAs等の半導体基板
の片側に一定の間隙を保ってソースとドレインを配する
。超電導電流はソースから半導体基板を通ってドレイン
に流れ込むようになっている。この超電導電流を制御す
るために、ソースとドレイン間隙の半導体上に直接ある
いは絶縁膜を介してゲート電極が配される。
It is a type of device that performs switching operations based on voltage signals, and the device structure conventionally obtained as a field-effect superconducting transistor has a source and drain arranged with a constant gap on one side of a semiconductor substrate such as Si or GaAs. do. Superconducting current flows from the source through the semiconductor substrate to the drain. In order to control this superconducting current, a gate electrode is placed directly or via an insulating film on the semiconductor between the source and drain.

ところでY−Ba−Cu酸化物やBi−5r−Ca−C
u酸化物等の超電導コヒーレンス長さは約innと非常
に短い値である。これに対応してソースとドレイン間の
間隙は高々数十nmの微小な寸法に保つ必要がある。こ
のような微小な寸法Φ加工を酸化物系の高臨界温度超電
導材料に対して施すのはきわめて困難である。
By the way, Y-Ba-Cu oxide and Bi-5r-Ca-C
The superconducting coherence length of U oxide and the like is approximately inn, which is a very short value. Correspondingly, the gap between the source and drain needs to be maintained at a very small dimension of several tens of nanometers at most. It is extremely difficult to perform such minute Φ processing on oxide-based high critical temperature superconducting materials.

さらにこの微小な間隙上にゲート電極を配する必要があ
る。このような理由により、金属系超電導材料を用いた
電界効果型トランジスタの構1屯−ルM工宜随匠泪廖紹
蕾道肘斜に適用して超電導トランジスタを得るのは加工
技術的にきわめて困難なことである。
Furthermore, it is necessary to arrange a gate electrode over this minute gap. For these reasons, it is extremely difficult to obtain a superconducting transistor by applying it to the structure of a field-effect transistor using metallic superconducting materials. That's true.

そこで本発明の目的は、酸化物系の高臨界温度超電導材
料を用いた電界効果超電導トランジスタに対して適用し
得る素子1造を提供することにある。
Therefore, an object of the present invention is to provide an element structure that can be applied to a field effect superconducting transistor using an oxide-based high critical temperature superconducting material.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために本発明においては、Y−Ba
−Cu酸化物あるいはBi−Sr=Ca−Cu酸化物等
をはじめとする酸化物系超電導材料をソースおよびドレ
イン電極とする電界効果型超電導トランジスタをつぎの
ように構成する。
In order to achieve the above object, in the present invention, Y-Ba
A field-effect superconducting transistor having source and drain electrodes made of an oxide-based superconducting material such as -Cu oxide or Bi-Sr=Ca-Cu oxide is constructed as follows.

YBa−Cu酸化物あるいはBi−3r−Ca−Cu酸
化物をはじめとする酸化物超電導薄膜をソースおよびド
レイン電極の一方とし、この上に半導体薄膜層を形成し
、さらにこの半導体薄膜層上にY−Ba−Cu酸化物あ
るいはBi−3t−Ca−Cu酸化物をはじめとする酸
化物超電導細線状薄膜から成るソースおよびドレイン電
極の他方を形成し、この上にゲート絶縁膜を配し、かつ
ゲート絶縁膜上にゲート電極膜を配した構造とする。ゲ
ート電極膜の一部あるいは全部が、半導体薄膜上のドレ
インあるいはソース細線の間隙から見込まれる半導体薄
膜上に、ゲート絶縁膜を介して接した構造とする。ゲー
ト電極膜の一部がゲート絶縁膜を介してソースあるいは
ドレイン電極膜上に乗り上げる構造とすることも可能で
ある。
An oxide superconducting thin film such as YBa-Cu oxide or Bi-3r-Ca-Cu oxide is used as one of the source and drain electrodes, a semiconductor thin film layer is formed on this, and Y - The other of the source and drain electrodes is formed of an oxide superconducting thin linear thin film such as Ba-Cu oxide or Bi-3t-Ca-Cu oxide, and a gate insulating film is disposed thereon; The structure has a gate electrode film placed on an insulating film. The structure is such that a part or all of the gate electrode film is in contact with the semiconductor thin film, which can be seen from the gap between the thin drain or source wires on the semiconductor thin film, via the gate insulating film. It is also possible to adopt a structure in which a part of the gate electrode film rides on the source or drain electrode film via the gate insulating film.

〔作用〕[Effect]

以上述べた手段は以下の理由により上記目的、すなわち
高臨界温度の酸化物超電導材料を用いた電界効果による
超電導トランジスタの動作を可能にするものである。
The above-mentioned means enable the above-mentioned purpose, that is, the operation of a superconducting transistor using a field effect using an oxide superconducting material having a high critical temperature, for the following reasons.

酸化物超電導材料を用いて電界効果トランジスタを製作
する場合、酸化物超電導材料のコヒーレンス長さが短い
ために、超電導電極間距離の長い超電導弱結合素子を得
るのは困難である。
When manufacturing a field effect transistor using an oxide superconducting material, it is difficult to obtain a superconducting weakly coupled device with a long distance between superconducting electrodes because the coherence length of the oxide superconducting material is short.

すなわちソース電極とドレイン電極間の距離はある。こ
のような条件が満足されなければ、しみ出し効果によっ
てソースとドレイン間に超電導電流を流すことはできな
い。
That is, there is a distance between the source electrode and the drain electrode. If these conditions are not met, superconducting current cannot flow between the source and drain due to the seepage effect.

本発明にかかる超電導三端子素子においてはソース電極
、半導体およびドレイン電極を薄膜形状にして積層状に
積重ねた構造であるので。
The superconducting three-terminal device according to the present invention has a structure in which the source electrode, the semiconductor, and the drain electrode are made into thin film shapes and stacked in a layered manner.

ソース電極とドレイン電極間の距離を半導体膜厚に対応
して任意の値に保つことができる。
The distance between the source electrode and the drain electrode can be maintained at an arbitrary value corresponding to the semiconductor film thickness.

さらにゲート電極膜パタンの位置合せが不要であり、従
来の超電導トランジスタのようなセルファライン法等の
高度なゲート電極膜形成技術を必要としない。
Furthermore, there is no need to align the gate electrode film pattern, and there is no need for advanced gate electrode film formation techniques such as the self-line method used in conventional superconducting transistors.

以上のごとき本発明にかかる超電導三端子素子の構造は
、電界効果型超電導トランジスタに特有の微小なソース
とドレイン間の距離、およびゲート電極膜の0.1μm
前後の位置合せ等の特有の技術的困難性を克服して、ゲ
ート電極によって信号電圧を印加し、スイッチング動作
を行わせるという電界効果型超電導トランジスタの機能
を可能ならしめるものである。
The structure of the superconducting three-terminal device according to the present invention as described above is characterized by the minute distance between the source and drain, which is unique to field-effect superconducting transistors, and the 0.1 μm distance between the gate electrode film.
By overcoming the technical difficulties inherent in front-to-back alignment, etc., it is possible to perform the function of a field-effect superconducting transistor in which a signal voltage is applied through a gate electrode to perform a switching operation.

〔実施例〕〔Example〕

本発明を以下に述べる実施例にもとづいて説明する。 The present invention will be explained based on the following examples.

第1図および第2図に示すごとく。As shown in FIGS. 1 and 2.

5rTiO,の(110)面方位単結晶1を基板として
、Y−Ba−Cu酸化物薄膜2の形成を高周波マグネト
ロンスパッタリング法によって行う。
Using a (110)-oriented single crystal 1 of 5rTiO as a substrate, a Y--Ba--Cu oxide thin film 2 is formed by high-frequency magnetron sputtering.

Y−Ba−Cu酸化物の円板状焼結体で、かつ組成比が
1:2:4のターゲットを用い、100Wの高周波電力
を印加することによりスパッタリングを行う。放電とし
ては0.濃度50%のAr+○、混合ガスを用い、ガス
圧力としては5mTorrとする。膜形成時の基板温度
は700℃とする0以上のごとき方法により化学量論組
成のソースあるいはドレインとなるYBa−Cu酸化物
薄膜2を得る* Y  B a−Cu酸化物薄膜2はペ
ロブスカイト型結晶のC軸が基板面と平行な配向性を示
す、膜厚は0.1μmとする。さらに超電導臨界温度は
80Kから85にの範囲にある。
Sputtering is performed by applying a high frequency power of 100 W using a target that is a disc-shaped sintered body of Y-Ba-Cu oxide and has a composition ratio of 1:2:4. The discharge is 0. A mixed gas of Ar+○ with a concentration of 50% is used, and the gas pressure is set to 5 mTorr. The YBa-Cu oxide thin film 2, which becomes a source or drain with a stoichiometric composition, is obtained by a method such as 0 or higher in which the substrate temperature during film formation is 700°C.* The YBa-Cu oxide thin film 2 is a perovskite crystal. The film thickness is 0.1 μm and exhibits an orientation in which the C axis of the film is parallel to the substrate surface. Furthermore, the superconducting critical temperature is in the range of 80K to 85K.

つぎにY−Ba−Cu酸化物のCuの一部をAMによっ
て置換したY−Ba−Cu (AQ)酸化物薄膜3を膜
厚5〜1100nの範囲で形成する。このY−Ba  
Cu (AQ)酸化物薄膜3は半導体的な性質を示す、
Y−Ba−Cu酸化物薄膜2上にエピタキシ成長させる
ために、Y−Ba−Cu (AIR)酸化物薄膜3の形
成温度を700℃とし、Y−Ba−Cu  (An)酸
化物焼結体ターゲットを用いて高周波マグネトロンスパ
ッタリング法によって堆積を行う。以上の方法により半
導体層の形成を行う、Y−Ba−Cu酸化物2とY−B
a−Cu (AQ)酸化物3二層膜に対して、下層ソー
ス(あるいはドレイン)電極としてのパタンを化学的な
エツチング法により形成する。さらにY−Ba−Cu酸
化物薄膜の電極バタン形成後、フッ素処理を行うことに
より端面を絶縁化する。
Next, a Y-Ba-Cu (AQ) oxide thin film 3 in which a portion of Cu in the Y-Ba-Cu oxide is replaced with AM is formed to a thickness in the range of 5 to 1100 nm. This Y-Ba
The Cu (AQ) oxide thin film 3 exhibits semiconducting properties,
In order to epitaxially grow the Y-Ba-Cu (AIR) oxide thin film 2 on the Y-Ba-Cu oxide thin film 2, the formation temperature of the Y-Ba-Cu (AIR) oxide thin film 3 was set to 700°C, and the Y-Ba-Cu (An) oxide sintered body was Deposition is performed by high-frequency magnetron sputtering using a target. Y-Ba-Cu oxide 2 and Y-B to form a semiconductor layer by the above method.
A pattern as a lower source (or drain) electrode is formed on the a-Cu (AQ) oxide 3 two-layer film by chemical etching. Further, after forming the electrode batten of the Y--Ba--Cu oxide thin film, the end face is insulated by performing fluorine treatment.

さらにこの上にドレイン(あるいはソース)となるY−
Ba−Cu酸化物薄膜4の形成を行う、膜形成方法およ
び条件は下層Y−Ba−Cu酸化物薄膜2と同様である
。膜厚は0.1μmとする。つぎに幅0.1μmの細線
列を有するレジストパタンを上層Y−Ba−Cu酸化物
薄膜4上に形成し、CQ□を用いた反応性イオンビーム
エツチング法によりY−Ba−Cu酸化物薄膜4の加工
を行う。加工はレジスト膜に覆われていないY−Ba−
Cu酸化物薄膜4部分を完全に除去するまで行う。
Furthermore, on top of this is Y-, which becomes the drain (or source).
The film forming method and conditions for forming the Ba--Cu oxide thin film 4 are the same as those for the lower layer Y--Ba--Cu oxide thin film 2. The film thickness is 0.1 μm. Next, a resist pattern having a thin line array with a width of 0.1 μm is formed on the upper Y-Ba-Cu oxide thin film 4, and the Y-Ba-Cu oxide thin film 4 is etched by reactive ion beam etching using CQ□. processing. Processing is done on Y-Ba- which is not covered with resist film.
This process is continued until the 4 portions of the Cu oxide thin film are completely removed.

つぎにゲート絶縁膜となるMgO薄膜5を高周波マグネ
トロンスパッタリング法により形成する。さらにこの上
にゲート電極膜となるAu膜6を蒸着法により形成する
。さらにArイオンビームによってエツチングを行うこ
とによりゲート電極膜としてのパタンを得る。
Next, an MgO thin film 5 which will become a gate insulating film is formed by high frequency magnetron sputtering. Furthermore, an Au film 6 which will become a gate electrode film is formed on this by vapor deposition. Further, etching is performed using an Ar ion beam to obtain a pattern as a gate electrode film.

以上のごとき工程により、ソース、ドレインおよびゲー
ト電極膜、半導体層およびゲート絶縁膜からなる高臨界
温度酸化物超電導三端子素子を得る。この酸化物超電導
三端子素子は電圧信号によってスイッチング動作を行う
、いわゆる電界効果型トランジスタとして用いることが
できる。すなわち本酸化物超電導トランジスタ装置は第
3図に示されるごとく、ゲートに電圧信号を印加しない
状態7においては零電圧状態において熱電導電流が流れ
ないが、ゲートに負電圧を印加した場合8においては、
超電導電流が流れ、スイッチング動作が行われる。その
理由は次のとおりである。ゲートに負電圧を印加するこ
とにより、ゲート近傍の半導体層のエネルギーバンドが
上に曲げられ、ホール濃度が高くなる。ソースおよびド
レイン電極から半導体層にしみ出す超電導電子の広がる
距離はホール濃度すなわち超電導電子の濃度に依存して
長くなり、各電極からしみ出した超電導電子波が互いに
重なり合うからである。
Through the above steps, a high critical temperature oxide superconducting three-terminal device consisting of source, drain and gate electrode films, a semiconductor layer and a gate insulating film is obtained. This oxide superconducting three-terminal element can be used as a so-called field effect transistor that performs a switching operation based on a voltage signal. That is, in the present oxide superconducting transistor device, as shown in FIG. 3, in state 7 in which no voltage signal is applied to the gate, no thermoconductive current flows in the zero voltage state, but in state 8 when a negative voltage is applied to the gate, no thermoconductive current flows. ,
Superconducting current flows and switching operations occur. The reason is as follows. By applying a negative voltage to the gate, the energy band of the semiconductor layer near the gate is bent upward, increasing the hole concentration. This is because the distance over which superconducting electrons seep into the semiconductor layer from the source and drain electrodes increases depending on the hole concentration, that is, the concentration of superconducting electrons, and the superconducting electron waves seeping out from each electrode overlap with each other.

なお超電導電極材としてB i −S r −Ca −
Cu酸化物等他の酸化物超電導材料を用いた場合に関し
ても同様の構造および製造方法を採用して、電界効果型
の超電導三端子素子を作製し、同様の超電導スイッチン
グ特性を得ることができる。さらに超電導三端子素子の
半導体層として前記半導体特性を有する材料以外に、G
 a A sやSi等の半導体、正方晶のペロブスカイ
ト系超電導材料である低酸素濃度のY−Ba−Cu酸化
物等半導体特性を有する材料を用いても電界効果型超電
導三端子素子としての特性を得ることができる。
Note that B i -S r -Ca - is used as a superconducting electrode material.
When using other oxide superconducting materials such as Cu oxide, similar structures and manufacturing methods can be adopted to produce field-effect superconducting three-terminal devices, and similar superconducting switching characteristics can be obtained. Furthermore, in addition to the materials having the above-mentioned semiconductor properties, G
Even if materials with semiconductor properties are used, such as semiconductors such as A S and Si, and Y-Ba-Cu oxide with a low oxygen concentration, which is a tetragonal perovskite superconducting material, the characteristics as a field-effect superconducting three-terminal device can be maintained. Obtainable.

このような特性を有する超電導三端子素子は論理回路や
記憶回路等のディジタル回路に、さらにはアナログ−デ
ィジタル変換器等のアナログ回路等広い分野に応用可能
である。
A superconducting three-terminal element having such characteristics can be applied to a wide range of fields such as digital circuits such as logic circuits and memory circuits, and analog circuits such as analog-digital converters.

〔発明の効果〕〔Effect of the invention〕

以上述べたごとく、本発明においては酸化物超電導材料
を用いた電界効果型の超電導三端子素子に関して一以下
の効果を有する。
As described above, the present invention has one or less effects regarding a field effect type superconducting three-terminal element using an oxide superconducting material.

(1)ソース電極、半導体層およびドレイン電極が積層
状に配されるため、ソース電極とドレイン電極間の距離
をlnmの精度で、かつ1100n以下の範囲で可変で
きる。このことは超電導三端子素子の作製をきわめて容
易にするとともに、素子特性の再現性を向上せしめる。
(1) Since the source electrode, the semiconductor layer, and the drain electrode are arranged in a laminated manner, the distance between the source electrode and the drain electrode can be varied with an accuracy of 1 nm and within a range of 1100 nm or less. This greatly facilitates the production of superconducting three-terminal devices and improves the reproducibility of device characteristics.

(2)ゲート電極膜を形成するにあたって、セルファラ
インミント等の高度の技術を必要とせず、また0、1μ
m程度の微小な合せも不要である。光学的な露光法によ
って0.1μmの合せ精度を得ることはきわめて困難で
ある。したがってゲート電極膜の形成、とくにパタンの
形成が容易となる。この結果として超電4三端素子の作
製歩留りが著しく向上する。
(2) In forming the gate electrode film, advanced technology such as self-alignment is not required, and 0, 1μ
A minute alignment of about m is also unnecessary. It is extremely difficult to obtain alignment accuracy of 0.1 μm using an optical exposure method. Therefore, the formation of the gate electrode film, especially the formation of the pattern, becomes easy. As a result, the manufacturing yield of the superconductor 4-terminal element is significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例である超電導三端子素子の上
面図、第2@は第1図のI−Im断面図、第3図は本発
明の超電導三端子素子の電圧−電流特性図である。 符号の説明 1−5rTiO,基板、2− Y −B a −Cu酸
化物超電導電極膜、3・・・Y−Ba−Cu(AΩ)酸
化物半導体層、4・・・Y−Ba−Cu酸化物対向電極
膜、5・・・ゲート絶縁膜、6・・・ゲート電極膜、7
・・・ゲート信号電圧零時の電圧−電流特性、8・・ゲ
ート信号電圧印加時の電圧−電流特性。 竿1図 $2(I
Fig. 1 is a top view of a superconducting three-terminal element according to an embodiment of the present invention, Fig. 2 is a cross-sectional view taken along I-Im in Fig. 1, and Fig. 3 is a voltage-current characteristic of a superconducting three-terminal element of the present invention. It is a diagram. Description of symbols 1-5 rTiO, substrate, 2- Y-Ba-Cu oxide superconducting electrode film, 3... Y-Ba-Cu (AΩ) oxide semiconductor layer, 4... Y-Ba-Cu oxide object counter electrode film, 5... gate insulating film, 6... gate electrode film, 7
... Voltage-current characteristics when gate signal voltage is zero, 8... Voltage-current characteristics when gate signal voltage is applied. Rod 1 figure $2 (I

Claims (1)

【特許請求の範囲】 1、酸化物系超電導材料をソースおよびドレインに用い
る電界効果型超電導三端子素子において、ソースおよび
ドレインの一方の電極膜上に半導体層が配され、さらに
半導体上に細線列形状のソースおよびドレインの他方の
電極膜が配され、さらにこの上にゲート絶縁膜が配され
、かつゲート絶縁膜上にゲート電極が配されてなること
を特徴とする超電導三端子素子。 2、上記酸化物超電導材料が、Y−Ba−Cu酸化物あ
るいはBi−Sr−Ca−Cu酸化物であることを特徴
とする請求項1記載の超電導三端子素子。 3、上記ゲート絶縁膜の少なくとも一部がソースあるい
はドレイン電極膜上に重なることなく、直接半導体上に
配されることを特徴とする請求項1または2記載の超電
導三端子素子。
[Claims] 1. In a field-effect superconducting three-terminal device using an oxide-based superconducting material for the source and drain, a semiconductor layer is disposed on one electrode film of the source and drain, and a thin line array is further disposed on the semiconductor. 1. A superconducting three-terminal element comprising: a shaped source electrode film and a drain electrode film; a gate insulating film disposed thereon; and a gate electrode disposed on the gate insulating film. 2. The superconducting three-terminal device according to claim 1, wherein the oxide superconducting material is a Y-Ba-Cu oxide or a Bi-Sr-Ca-Cu oxide. 3. The superconducting three-terminal device according to claim 1 or 2, wherein at least a part of the gate insulating film is disposed directly on the semiconductor without overlapping the source or drain electrode film.
JP1095113A 1989-04-17 1989-04-17 Superconducting 3-terminal element Expired - Fee Related JPH07105533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1095113A JPH07105533B2 (en) 1989-04-17 1989-04-17 Superconducting 3-terminal element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1095113A JPH07105533B2 (en) 1989-04-17 1989-04-17 Superconducting 3-terminal element

Publications (2)

Publication Number Publication Date
JPH02273974A true JPH02273974A (en) 1990-11-08
JPH07105533B2 JPH07105533B2 (en) 1995-11-13

Family

ID=14128793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1095113A Expired - Fee Related JPH07105533B2 (en) 1989-04-17 1989-04-17 Superconducting 3-terminal element

Country Status (1)

Country Link
JP (1) JPH07105533B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63270317A (en) * 1987-04-28 1988-11-08 Toshiba Corp Oxide superconductor
JPS6464380A (en) * 1987-09-04 1989-03-10 Tdk Corp Superconducting transistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63270317A (en) * 1987-04-28 1988-11-08 Toshiba Corp Oxide superconductor
JPS6464380A (en) * 1987-09-04 1989-03-10 Tdk Corp Superconducting transistor

Also Published As

Publication number Publication date
JPH07105533B2 (en) 1995-11-13

Similar Documents

Publication Publication Date Title
JPH03228384A (en) Superconducting element
JPH04118977A (en) Oxide superconducting three-terminal element
JPH02273974A (en) Superconducting three-terminal element
JPS6047478A (en) Josephson junction element
JPH02273975A (en) Superconducting switching element
JP2867956B2 (en) Superconducting transistor
JP2614939B2 (en) Superconducting element and fabrication method
JP2647251B2 (en) Superconducting element and fabrication method
JP2691065B2 (en) Superconducting element and fabrication method
JP2599500B2 (en) Superconducting element and fabrication method
JPH0379092A (en) Oxide superconducting three-terminal element
JP2597747B2 (en) Superconducting element and fabrication method
JP2599498B2 (en) Superconducting element and fabrication method
JP2641976B2 (en) Superconducting element and fabrication method
JPH03150879A (en) Superconducting switching device
JP2614940B2 (en) Superconducting element and fabrication method
JPH0636440B2 (en) Superconducting switching element
JP2641966B2 (en) Superconducting element and fabrication method
JPH02277276A (en) Oxide superconducting transistor device
JPH0249481A (en) Oxide josephson junction device
JP2597745B2 (en) Superconducting element and fabrication method
JP2597743B2 (en) Superconducting element fabrication method
JPH04206785A (en) Superconductive three-terminal element and its manufacture
JPH0555649A (en) Manufacture of superconducting electric field effect element
JPH06132575A (en) Superconducting device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees