JPH08133918A - Inorganic antimicrobial agent - Google Patents

Inorganic antimicrobial agent

Info

Publication number
JPH08133918A
JPH08133918A JP30323494A JP30323494A JPH08133918A JP H08133918 A JPH08133918 A JP H08133918A JP 30323494 A JP30323494 A JP 30323494A JP 30323494 A JP30323494 A JP 30323494A JP H08133918 A JPH08133918 A JP H08133918A
Authority
JP
Japan
Prior art keywords
silver
inorganic
zinc oxide
inorganic powder
sulfate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30323494A
Other languages
Japanese (ja)
Inventor
Koichiro Murasawa
浩一郎 村澤
Jun Kawamoto
順 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP30323494A priority Critical patent/JPH08133918A/en
Publication of JPH08133918A publication Critical patent/JPH08133918A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain an inorganic antimicrobial agent showing sufficient antimicrobial action on various materials such as synthetic resins, coating specific compounds and rubber. CONSTITUTION: This inorganic antimicrobial agent comprises inorganic powder supporting silver sulfate and zinc oxide, preferably zinc oxide of single crystal of tetrapot-like three-dimensional crystal structure. The inorganic powder has preferably <=10μm, especially <=5μm average primary particle diameter. Inorganic powder selected from calcium phosphate, silica gel, barium sulfate and titanium oxide is used as the inorganic powder. The amount of silver sulfate supported is >=0.04% and <5.0%, especially preferably >=0.3% and <1.8%. The ratio of zinc oxide to the inorganic powder supporting silver sulfate is selected from the range between 0.2:99.8 to 30:70.

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】本発明は、主に細菌の繁殖を抑制
させる無機系抗菌剤に関し、より詳しくは合成樹脂、塗
料、ゴム等の各種素材に添加する用途に用いる無機系抗
菌剤に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inorganic antibacterial agent which mainly suppresses the growth of bacteria, and more particularly to an inorganic antibacterial agent for use in various materials such as synthetic resins, paints and rubbers.

【従来の技術】従来これら無機系抗菌剤としては、例え
ば特開昭60−181002に示される様に、ゼオライ
トに代表される無機系粉(多くの場合担体もしくは担持
体と言われる)に銀、銅及び亜鉛をイオン交換させるこ
とにより担持させる構成を有していた。
Conventionally, as these inorganic antibacterial agents, for example, as shown in JP-A-60-181002, an inorganic powder represented by zeolite (often called a carrier or a carrier) and silver, It had a configuration in which copper and zinc were carried by ion exchange.

【発明が解決しようとする課題】しかしながらこれら従
来の無機系抗菌剤は、銀、銅及び亜鉛のうち最も多様な
細菌に抗菌力を示し、且つ抗菌力の最も強い銀の溶解度
(以下ここで言う溶解度とは、無機系抗菌剤から水中で
溶解する金属イオンの溶解度を表すものとする)が低い
ため、特に合成樹脂、塗料、ゴム等に混練、混合等の手
法により添加した際、これら合成樹脂、塗料、ゴム等の
表面に付着する細菌を抑制するに十分な銀イオンを供給
することができず、結果として抗菌力が不十分であると
いう課題があった。本発明はこれら従来の課題を解決す
るものであり、合成樹脂、塗料、ゴム等の各種素材に添
加しても十分な抗菌力を示す無機系抗菌剤を提供するこ
とを目的とする。
However, these conventional inorganic antibacterial agents show antibacterial activity against most diverse bacteria among silver, copper and zinc, and the solubility of silver having the strongest antibacterial activity (hereinafter referred to as "herein"). Solubility refers to the solubility of metal ions that are dissolved in water from an inorganic antibacterial agent), so when these synthetic resins are added to synthetic resins, paints, rubbers, etc. by a method such as kneading and mixing, However, there is a problem in that it is not possible to supply sufficient silver ions to suppress bacteria adhering to the surface of paint, rubber, etc., and as a result, the antibacterial activity is insufficient. The present invention solves these conventional problems, and an object of the present invention is to provide an inorganic antibacterial agent which exhibits sufficient antibacterial activity even when added to various materials such as synthetic resins, paints and rubbers.

【課題を解決するための手段】これら従来の課題を解決
するために本発明の無機系抗菌剤は、硫酸銀を担持させ
た無機系粉末と酸化亜鉛からなるものである。
In order to solve these conventional problems, the inorganic antibacterial agent of the present invention comprises an inorganic powder supporting silver sulfate and zinc oxide.

【作用】これらの構成によって、いかに本発明の目的が
達成されるかについて、以下順を追って説明する。本発
明で用いる硫酸銀は(化1)に示す。
How the objects of the present invention are achieved by these configurations will be described step by step below. The silver sulfate used in the present invention is shown in Chemical formula 1.

【化1】 この硫酸銀は、硝酸銀と硫酸塩(例えば硫酸ナトリウ
ム)との反応により水系で容易に合成できる。さらに硫
酸銀は水に対する飽和溶解度が20℃において、0.7
9重量%と高く、細菌の繁殖を抑制するに十分な銀イオ
ンを供給することができる。この硫酸銀を担持させる無
機系粉末としては、水に不要な無機系化合物であればよ
く、耐熱性、安定性の点から好ましくはリン酸カルシウ
ム、シリカゲル、硫酸バリウム、酸化チタンであり、よ
り好ましくはシリカゲル、硫酸バリウムである。さらに
これら無機系粉末の平均1次粒子径は、合成樹脂等の素
材に均一に分散させ、且つ広い表面積を得るために10
μm以下が好ましく、より好ましくは5μm以下であ
る。本発明で用いる酸化亜鉛とは通常亜鉛華と称され、
白色顔料、塗料、薬用として広く用いられる粒子状無機
物であり、抗菌剤助剤としても他の抗菌力を有する金
属、特に銀と併用することによって抗菌効果を著しく強
化せしめることが公知の事実である。ここで本発明の最
大の特徴は、酸化亜鉛として酸化亜鉛ウイスカを用いる
ことであり、他に類をみない独特のテトラポット形状の
単結晶体であるため通常の亜鉛華にくらべ抗菌活性が強
く、特に硫酸銀との併用により優れた抗菌力を発現させ
るものである。図1は本発明で用いる酸化亜鉛ウイスカ
の結晶構造を示す電子顕微鏡写真であり、その形状特異
性が容易に確認できる。本発明に用いる硫酸銀の無機系
粉末に対する担持量は0.04%以上5.0%未満が好
ましく、より好ましくは0.3%以上1.8%未満であ
る。硫酸銀の無機系粉末に対する担持量がこれより多い
とコスト的に著しく不利になるばかりか、銀特有の黒変
色を生じ好ましくなく、これより少ないと抗菌力が不十
分である。本発明に用いる酸化亜鉛もしくは酸化亜鉛ウ
イスカと硫酸銀を担持させた無機系粉末との比率は、
0.2対99.8から30対70の間で選択されること
が好ましく、より好ましくは3対97から10対90の
間である。酸化亜鉛もしくは酸化亜鉛ウイスカと硫酸銀
を担持させた無機系粉末との比率がこれ以外の場合、例
えば酸化亜鉛もしくは酸化亜鉛ウイスカが硫酸銀を担持
させた無機系粉末に比して多いとイオン化傾向の相違か
ら硫酸銀の溶解度を減少させ、逆に少ないと硫酸銀と酸
化亜鉛もしくは酸化亜鉛ウイスカとの併用効果が十分に
発揮されず、好ましくない。
Embedded image This silver sulfate can be easily synthesized in an aqueous system by a reaction between silver nitrate and a sulfate (for example, sodium sulfate). Further, silver sulfate has a saturated solubility in water of 20 ° C. of 0.7.
It is as high as 9% by weight, and it is possible to supply sufficient silver ions to suppress bacterial growth. The inorganic powder for supporting silver sulfate may be any inorganic compound that is unnecessary for water, and in view of heat resistance and stability, calcium phosphate, silica gel, barium sulfate, and titanium oxide are preferable, and silica gel is more preferable. , Barium sulfate. Furthermore, the average primary particle size of these inorganic powders is 10 in order to uniformly disperse them in materials such as synthetic resins and to obtain a large surface area.
It is preferably at most 5 μm, more preferably at most 5 μm. Zinc oxide used in the present invention is usually called zinc white,
It is a well-known fact that the antibacterial effect can be remarkably enhanced by using it in combination with other antibacterial metal, especially silver, which is a particulate inorganic substance widely used for white pigments, paints and medicinal purposes. . Here, the greatest feature of the present invention is that zinc oxide whiskers are used as zinc oxide, and since it is a unique tetrapot-shaped single crystal, it has stronger antibacterial activity than ordinary zinc white. , Particularly when used in combination with silver sulfate, it exhibits excellent antibacterial activity. FIG. 1 is an electron micrograph showing the crystal structure of zinc oxide whiskers used in the present invention, and its shape specificity can be easily confirmed. The amount of silver sulfate used in the present invention supported on the inorganic powder is preferably 0.04% or more and less than 5.0%, more preferably 0.3% or more and less than 1.8%. If the amount of silver sulfate supported on the inorganic powder is larger than this, not only the cost becomes significantly disadvantageous, but also black discoloration peculiar to silver occurs, which is not preferable, and if less than this, the antibacterial activity is insufficient. The ratio of zinc oxide or zinc oxide whiskers used in the present invention to the inorganic powder supporting silver sulfate is
It is preferably selected between 0.2: 99.8 and 30:70, more preferably between 3:97 and 10:90. When the ratio of zinc oxide or zinc oxide whiskers to the inorganic powder supporting silver sulfate is other than this, for example, when the proportion of zinc oxide or zinc oxide whiskers is higher than that of the inorganic powder supporting silver sulfate, the ionization tendency tends to occur. On the contrary, if the solubility of silver sulfate is decreased, and if it is too small, the combined effect of silver sulfate and zinc oxide or zinc oxide whiskers is not sufficiently exhibited, which is not preferable.

【実施例】以下本発明の実施例について説明するが本発
明はこれら実施例に限定されるものではない。 (実施例1)平均1次粒子径2.3μmのシリカゲル8
00gをイオン交換水3.1l中に加え攪拌した後、
0.3mol/lの硝酸銀水溶液1lと0.15mol
/lの硫酸ナトリウム水溶液1lを加え、さらに硝酸水
溶液を用いてPHを5.9に調整し緩速回転にて攪拌し
ながら12時間放置した。その後固形分を濾過し減圧下
において乾燥させた後、粉砕することにより硫酸銀を担
持したシリカゲル粉末(以下SI/Agとする)を得
た。得られたSI/Agの銀担持量を調べるため、硝酸
中で溶解させ原子吸光度法により測定した結果、銀換算
で1.2%であった。さらに得られたSI/AgのX線
回折パターンからは、硫酸銀の明確なピークとケイ酸銀
の弱いピークが確認された。得られたSI/Agを0.
4%イオン交換水中に分散させ24時間放置した後、遠
心分離により上澄液中の銀濃度を定量した結果122p
pmであった。又従来技術に相当する公知の方法(たと
えば特開昭60−181002)により得られたゼオラ
イトに銀を1.4%イオン交換法により担持させた試料
を用いて同様の試験を行なった結果銀濃度は23ppm
であり、本発明の無機系抗菌剤の銀溶解度が従来技術に
よる無機系抗菌剤に比して著しく高いことが分かる。次
に得られたSI/Ag0.9%と酸化亜鉛ウイスカ0.
1%を、アクリルニトリル−ブタジエン−スチレン樹脂
(以下ABSとする)、アクリル系エマルジョン塗料、
SBRゴムにそれぞれ添加し、ABS,SBRゴムの場
合は加圧成形により、アクリル系エマルジョン塗料の場
合は約10μmの塗膜をスレート板上に形成し試験片を
得た。さらに得られた各種試験片上に初期濃度105/c
cオーダーの大腸菌液、及び黄色ブドウ球菌液を1ccず
つ滴下し24時間後の生菌数を平板混釈培養法により求
めた。比較として公知の方法により得られたゼオライト
に銀を1.4%イオン交換法により担持させた試料を前
記各種素材に1%添加したもの、及び抗菌剤を添加しな
い前記各種素材の抗菌力も同様に評価した。結果はすべ
て(表1)に示す。
EXAMPLES Examples of the present invention will be described below, but the present invention is not limited to these examples. (Example 1) Silica gel 8 having an average primary particle diameter of 2.3 μm
After adding 00 g to 3.1 l of ion-exchanged water and stirring,
1 mol of 0.3 mol / l silver nitrate aqueous solution and 0.15 mol
1 l of an aqueous solution of sodium sulfate of 1 / l was added, and the pH was adjusted to 5.9 using an aqueous solution of nitric acid, and the mixture was allowed to stand for 12 hours while stirring at slow rotation. Then, the solid content was filtered, dried under reduced pressure, and then pulverized to obtain a silica gel powder supporting silver sulfate (hereinafter referred to as SI / Ag). In order to examine the amount of silver supported on the obtained SI / Ag, it was dissolved in nitric acid and measured by an atomic absorption method. As a result, it was 1.2% in terms of silver. Further, from the obtained SI / Ag X-ray diffraction pattern, a clear peak of silver sulfate and a weak peak of silver silicate were confirmed. The obtained SI / Ag was 0.
The dispersion was dispersed in 4% ion-exchanged water, left standing for 24 hours, and then the concentration of silver in the supernatant was quantified by centrifugation.
pm. Further, a similar test was conducted using a sample obtained by carrying out a 1.4% ion exchange method on a zeolite obtained by a known method corresponding to the prior art (for example, JP-A-60-181002). As a result, the silver concentration was determined. Is 23 ppm
It can be seen that the silver solubility of the inorganic antibacterial agent of the present invention is remarkably higher than that of the inorganic antibacterial agents of the prior art. Next, obtained SI / Ag 0.9% and zinc oxide whisker 0.
1% of acrylonitrile-butadiene-styrene resin (hereinafter referred to as ABS), acrylic emulsion paint,
SBR rubber was added to each, and in the case of ABS and SBR rubber, pressure molding was performed, and in the case of acrylic emulsion paint, a coating film of about 10 μm was formed on a slate plate to obtain a test piece. Furthermore, an initial concentration of 10 5 / c was applied on the various test pieces obtained.
C-order Escherichia coli solution and Staphylococcus aureus solution were added dropwise by 1 cc and the viable cell count after 24 hours was determined by the plate pour culture method. As a comparison, the antibacterial activity of the various materials obtained by adding 1% to the various materials prepared by loading the zeolite obtained by the known method with 1.4% silver by the ion exchange method and the antibacterial activity of the various materials without the addition of the antibacterial agent are also the same. evaluated. All results are shown in (Table 1).

【表1】 (表1)から明らかなように、本発明の無機系抗菌剤は
その銀溶解度が高いため、従来技術による無機系抗菌剤
に比して、抗菌力に優れていることがわかる。 (実施例2)実施例1で得られたSI/Ag0.9%と
酸化亜鉛として亜鉛華特号0.1%を、ABSに添加し
加圧成形により試験片を得た。さらに得られた各種試験
片上に初期濃度105/ccオーダーの大腸菌液、及び黄
色ブドウ球菌液を1ccずつ滴下し24時間後の生菌数を
平板混釈培養法により求めた。比較として公知の方法に
より得られたゼオライトに銀を1.4%イオン交換法に
より担持させた試料をABSに1%添加したもの、及び
抗菌剤を添加しないABSの抗菌力も同様に評価した。
結果はすべて(表2)に示す。
[Table 1] As is clear from (Table 1), the inorganic antibacterial agent of the present invention has a high silver solubility, and is therefore superior in antibacterial activity to the inorganic antibacterial agents of the prior art. (Example 2) SI / Ag 0.9% obtained in Example 1 and zinc white special feature 0.1% as zinc oxide were added to ABS to obtain a test piece by pressure molding. Further, 1 cc of the initial concentration of 10 5 / cc order Escherichia coli solution and 1 cc of Staphylococcus aureus solution were dropped on each of the various test pieces obtained, and the viable cell count after 24 hours was determined by the plate pour culture method. For comparison, the antibacterial activity of the zeolite obtained by a known method and having 1% of ABS loaded with a sample in which silver was loaded by 1.4% by the ion exchange method and ABS without the addition of the antibacterial agent were similarly evaluated.
All results are shown in (Table 2).

【表2】 (表2)から明らかなように、酸化亜鉛のみを亜鉛華特
号に変更することにより、実施例1と比較して抗菌力は
劣化方向にあるものの、依然として従来技術による無機
系抗菌剤に比し優れた抗菌力を有していることがわか
る。 (実施例3)平均1次粒子径3.4μmのリン酸カルシ
ウム800gをイオン交換水3.1l中に加え攪拌した
後、0.3mol/lの硝酸銀水溶液1lと0.15m
ol/lの硫酸ナトリウム水溶液1lを加え、さらに硝
酸水溶液を用いてPHを5.9に調整し緩速回転にて攪
拌しながら12時間放置した。その後固形分を濾過し減
圧下において乾燥させた後、粉砕することにより硫酸銀
を担持したリン酸カルシウム粉末(以下CAPO/Ag
とする)を得た。得られたCAPO/Agの銀担持量を
調べるため、硝酸中で溶解させ原子吸光度法により測定
した結果、銀換算で1.4%であった。さらに得られた
CAPO/AgのX線回折パターンからは、硫酸銀の明
確なピークとリン酸銀の弱いピークが確認された。得ら
れたCAPO/Agを0.4%イオン交換水中に分散さ
せ24時間放置した後、遠心分離により上澄液中の銀濃
度を定量した結果105ppmであった。又従来技術に
相当する公知の方法(たとえば特開昭60−18100
2)により得られたゼオライトに銀を1.4%イオン交
換法により担持させた試料を用いて同様の試験を行なっ
た結果銀濃度は22ppmであり、本発明の無機系抗菌
剤の銀溶解度が従来技術による無機系抗菌剤に比して、
著しく高いことが分かる。次に得られたCAPO/Ag
0.9%と酸化亜鉛ウイスカ0.1%を、ABSに添加
し加圧成形により試験片を得た。さらに得られた試験片
上に初期濃度105/ccオーダーの大腸菌液、及び黄色
ブドウ球菌液を1ccずつ滴下し24時間後の生菌数を平
板混釈培養法により求めた。比較として公知の方法によ
り得られたゼオライトに銀を1.4%イオン交換法によ
り担持させた試料を前記各種素材に1%添加したもの、
及び抗菌剤を添加しない前記各種素材の抗菌力も同様に
評価した。結果はすべて(表3)に示す。
[Table 2] As is clear from (Table 2), by changing only zinc oxide to Zinc Hua Special Feature, the antibacterial activity tends to deteriorate as compared with Example 1, but it is still higher than that of the inorganic antibacterial agent according to the prior art. It can be seen that it has excellent antibacterial activity. (Example 3) 800 g of calcium phosphate having an average primary particle diameter of 3.4 μm was added to 3.1 l of ion-exchanged water and stirred, and then 1 l of a 0.3 mol / l silver nitrate aqueous solution and 0.15 m
1 l of an aqueous solution of sodium sulfate of ol / l was added, the pH was adjusted to 5.9 with an aqueous solution of nitric acid, and the mixture was allowed to stand for 12 hours while stirring at a slow rotation. Then, the solid content is filtered, dried under reduced pressure, and then pulverized to carry out calcium sulfate-supported calcium phosphate powder (hereinafter referred to as CAPO / Ag).
I got). In order to examine the amount of CAPO / Ag thus obtained supported on silver, it was dissolved in nitric acid and measured by an atomic absorption method. As a result, it was 1.4% in terms of silver. Further, from the obtained CAPO / Ag X-ray diffraction pattern, a clear peak of silver sulfate and a weak peak of silver phosphate were confirmed. The obtained CAPO / Ag was dispersed in 0.4% ion-exchanged water, allowed to stand for 24 hours, and then the silver concentration in the supernatant was quantified by centrifugation, resulting in 105 ppm. In addition, a known method corresponding to the prior art (for example, JP-A-60-18100).
A similar test was conducted using a sample in which the zeolite obtained in 2) was loaded with silver by the 1.4% ion exchange method. As a result, the silver concentration was 22 ppm, and the silver solubility of the inorganic antibacterial agent of the present invention was Compared with inorganic antibacterial agents by conventional technology,
It turns out that it is extremely high. Next obtained CAPO / Ag
0.9% and zinc oxide whiskers 0.1% were added to ABS to obtain a test piece by pressure molding. Further, 1 cc of an initial concentration of 10 5 / cc order Escherichia coli solution and 1 cc of Staphylococcus aureus solution were dropped on each of the obtained test pieces, and the viable cell count after 24 hours was determined by the plate pour culture method. For comparison, a sample obtained by supporting silver by a 1.4% ion-exchange method on a zeolite obtained by a known method and adding 1% to the above-mentioned various materials,
Also, the antibacterial activity of the above-mentioned various materials to which no antibacterial agent was added was evaluated in the same manner. All results are shown in (Table 3).

【表3】 (表3)から明らかなように、本発明の無機系抗菌剤は
その銀溶解度が高いため、従来技術による無機系抗菌剤
に比して、抗菌力に優れていることがわかる。 (実施例4)平均1次粒子径3.4μmの硫酸バリウム
800gをイオン交換水3.1l中に加え攪拌した後、
0.3mol/lの硝酸銀水溶液1lと0.15mol
/lの硫酸ナトリウム水溶液1lを加え、さらに硝酸水
溶液を用いてPHを5.9に調整し緩速回転にて攪拌し
ながら12時間放置した。その後固形分を濾過し減圧下
において乾燥させた後、粉砕することにより硫酸銀を担
持した硫酸バリウム粉末(以下BAS/Agとする)を
得た。得られたBAS/Agの銀担持量を調べるため、
硝酸中で溶解させ原子吸光度法により測定した結果、銀
換算で1.2%であった。さらに得られたBAS/Ag
のX線回折パターンからは、硫酸銀の明確なピークのみ
が確認された。得られたBAS/Agを0.4%イオン
交換水中に分散させ24時間放置した後、遠心分離によ
り上澄液中の銀濃度を定量した結果139ppmであっ
た。又従来技術に相当する公知の方法(たとえば特開昭
60−181002)により得られたゼオライトに銀を
1.4%イオン交換法により担持させた試料を用いて同
様の試験を行なった結果銀濃度は22ppmであり、本
発明の無機系抗菌剤の銀溶解度が従来技術による無機系
抗菌剤に比して著しく高いことが分かる。次に得られた
BAS/Ag0.9%と酸化亜鉛ウイスカ0.1%を、
ABSに添加し加圧成形により試験片を得た。さらに得
られた試験片上に初期濃度105/ccオーダーの大腸菌
液、及び黄色ブドウ球菌液を1ccずつ滴下し24時間後
の生菌数を平板混釈培養法により求めた。比較として公
知の方法により得られたゼオライトに銀を1.4%イオ
ン交換法により担持させた試料を前記各種素材に1%添
加したもの、及び抗菌剤を添加しない前記各種素材の抗
菌力も同様に評価した。結果はすべて(表4)に示す。
[Table 3] As is clear from (Table 3), the inorganic antibacterial agent of the present invention has a high silver solubility, and thus is superior in antibacterial activity to the inorganic antibacterial agents of the prior art. Example 4 After adding 800 g of barium sulfate having an average primary particle size of 3.4 μm to 3.1 l of ion-exchanged water and stirring,
1 mol of 0.3 mol / l silver nitrate aqueous solution and 0.15 mol
1 l of an aqueous solution of sodium sulfate of 1 / l was added, and the pH was adjusted to 5.9 using an aqueous solution of nitric acid, and the mixture was allowed to stand for 12 hours while stirring at slow rotation. After that, the solid content was filtered, dried under reduced pressure, and then pulverized to obtain barium sulfate powder supporting silver sulfate (hereinafter referred to as BAS / Ag). In order to check the amount of silver supported on the obtained BAS / Ag,
As a result of dissolving in nitric acid and measuring by an atomic absorption method, it was 1.2% in terms of silver. Further obtained BAS / Ag
From the X-ray diffraction pattern of, only a clear peak of silver sulfate was confirmed. The obtained BAS / Ag was dispersed in 0.4% ion-exchanged water, allowed to stand for 24 hours, and then the silver concentration in the supernatant was quantified by centrifugation, resulting in 139 ppm. Further, a similar test was conducted using a sample obtained by carrying out a 1.4% ion exchange method on a zeolite obtained by a known method corresponding to the prior art (for example, JP-A-60-181002). As a result, the silver concentration was determined. Is 22 ppm, which indicates that the silver solubility of the inorganic antibacterial agent of the present invention is remarkably higher than that of the inorganic antibacterial agents of the prior art. Next, the obtained BAS / Ag 0.9% and zinc oxide whisker 0.1%,
A test piece was obtained by adding to ABS and pressure molding. Further, 1 cc of an initial concentration of 10 5 / cc order Escherichia coli solution and 1 cc of Staphylococcus aureus solution were dropped on each of the obtained test pieces, and the viable cell count after 24 hours was determined by the plate pour culture method. As a comparison, the antibacterial activity of the various materials obtained by adding 1% to the various materials prepared by loading the zeolite obtained by the known method with 1.4% silver by the ion exchange method and the antibacterial activity of the various materials without the addition of the antibacterial agent are also the same. evaluated. All results are shown in (Table 4).

【表4】 (表4)から明らかなように、本発明の無機系抗菌剤は
その銀溶解度が高い為、従来技術による無機系抗菌剤に
比して、抗菌力に優れていることがわかる。 (実施例5)平均1次粒子径1.8μmの酸化チタン8
00gをイオン交換水3.1l中に加え攪拌した後、
0.3mol/lの硝酸銀水溶液1lと0.15mol
/lの硫酸ナトリウム水溶液1lを加え、さらに硝酸水
溶液を用いてPHを5.9に調整し緩速回転にて攪拌し
ながら12時間放置した。その後固形分を濾過し減圧下
において乾燥させた後、粉砕することにより硫酸銀を担
持した酸化チタン粉末(以下TIO/Agとする)を得
た。得られたTIO/Agの銀担持量を調べるため、硝
酸中で溶解させ原子吸光度法により測定した結果、銀換
算で1.2%であった。さらに得られたTIO/Agの
X線回折パターンからは、硫酸銀の明確なピークのみが
確認された。得られたTIO/Agを0.4%イオン交
換水中に分散させ24時間放置した後、遠心分離により
上澄液中の銀濃度を定量した結果116ppmであっ
た。又従来技術に相当する公知の方法(たとえば特開昭
60−181002)により得られたゼオライトに銀を
1.4%イオン交換法により担持させた試料を用いて同
様の試験を行なった結果銀濃度は26ppmであり、本
発明の無機系抗菌剤の銀溶解度が従来技術による無機系
抗菌剤に比して著しく高いことが分かる。次に得られた
TIO/Ag0.9%と酸化亜鉛ウイスカ0.1%を、
ABSに添加し加圧成形により試験片を得た。さらに得
られた試験片上に初期濃度105/ccオーダーの大腸菌
液、及び黄色ブドウ球菌液を1ccずつ滴下し24時間後
の生菌数を平板混釈培養法により求めた。比較として公
知の方法により得られたゼオライトに銀を1.4%イオ
ン交換法により担持させた試料を前記各種素材に1%添
加したもの、及び抗菌剤を添加しない前記各種素材の抗
菌力も同様に評価した。結果はすべて(表5)に示す。
[Table 4] As is clear from Table 4, since the inorganic antibacterial agent of the present invention has a high silver solubility, it has a superior antibacterial activity as compared with the conventional inorganic antibacterial agents. (Example 5) Titanium oxide 8 having an average primary particle diameter of 1.8 μm
After adding 00 g to 3.1 l of ion-exchanged water and stirring,
1 mol of 0.3 mol / l silver nitrate aqueous solution and 0.15 mol
1 l of an aqueous solution of sodium sulfate of 1 / l was added, and the pH was adjusted to 5.9 using an aqueous solution of nitric acid, and the mixture was allowed to stand for 12 hours while stirring at slow rotation. Thereafter, the solid content was filtered, dried under reduced pressure, and then pulverized to obtain a titanium oxide powder supporting silver sulfate (hereinafter referred to as TIO / Ag). In order to investigate the amount of silver supported on the obtained TIO / Ag, it was dissolved in nitric acid and measured by an atomic absorption method. As a result, it was 1.2% in terms of silver. Further, from the obtained X-ray diffraction pattern of TIO / Ag, only a clear peak of silver sulfate was confirmed. The obtained TIO / Ag was dispersed in 0.4% ion-exchanged water, allowed to stand for 24 hours, and then the concentration of silver in the supernatant was quantified by centrifugation to find that it was 116 ppm. Further, a similar test was conducted using a sample obtained by carrying out a 1.4% ion exchange method on a zeolite obtained by a known method corresponding to the prior art (for example, JP-A-60-181002). As a result, the silver concentration was determined. Is 26 ppm, which indicates that the silver solubility of the inorganic antibacterial agent of the present invention is remarkably higher than that of the conventional inorganic antibacterial agents. Next, 0.9% of the obtained TIO / Ag and 0.1% of zinc oxide whiskers,
A test piece was obtained by adding to ABS and pressure molding. Further, 1 cc of an initial concentration of 10 5 / cc order Escherichia coli solution and 1 cc of Staphylococcus aureus solution were dropped on each of the obtained test pieces, and the viable cell count after 24 hours was determined by the plate pour culture method. As a comparison, the antibacterial activity of the various materials obtained by adding 1% to the various materials prepared by loading the zeolite obtained by the known method with 1.4% silver by the ion exchange method and the antibacterial activity of the various materials without the addition of the antibacterial agent are also the same. evaluated. All results are shown in (Table 5).

【表5】 (表5)から明らかなように、本発明の無機系抗菌剤は
その銀溶解度が高いため、従来技術による無機系抗菌剤
に比して、抗菌力に優れていることがわかる。なお本実
施例で示した硫酸銀の各種担体への添加量、及び本発明
の無機系抗菌剤の各種素材への添加量はこれに限定する
ものではなく、用途や抗菌力の寿命等に応じて本発明の
主目的を損なわない範囲で任意になしうることは言うま
でもない。又本発明の無機系抗菌剤の銀溶解度をさらに
高める目的で、銀と錯化合物を形成するチオ硫酸ナトリ
ウム、アンモニウム塩等との併用も本発明の目的を損な
わない範囲で任意になしうることは言うまでもない。
[Table 5] As is clear from (Table 5), the inorganic antibacterial agent of the present invention has a high silver solubility, and thus is superior in antibacterial activity to the inorganic antibacterial agents of the prior art. Note that the addition amount of silver sulfate to various carriers shown in this example, and the addition amount to various materials of the inorganic antibacterial agent of the present invention are not limited to this, depending on the application, the life of antibacterial activity, etc. It goes without saying that the present invention can be arbitrarily made within a range that does not impair the main purpose of the present invention. Further, for the purpose of further increasing the silver solubility of the inorganic antibacterial agent of the present invention, the combined use with sodium thiosulfate, an ammonium salt or the like which forms a complex compound with silver can be arbitrarily performed within the range not impairing the object of the present invention. Needless to say.

【発明の効果】以上のように本発明の無機系抗菌剤は、
酸化亜鉛と硫酸銀を担持させた無機系粉末からなるもの
で、合成樹脂、塗料、ゴム等の各種素材に添加した場合
でも優れた抗菌力を示す優れた効果を奏するものであ
る。
As described above, the inorganic antibacterial agent of the present invention is
It is composed of an inorganic powder supporting zinc oxide and silver sulfate, and exhibits excellent antibacterial activity even when added to various materials such as synthetic resins, paints and rubbers.

【図面の簡単な説明】[Brief description of drawings]

【図1】酸化亜鉛ウイスカの結晶構造を示す電子顕微鏡
写真
FIG. 1 is an electron micrograph showing the crystal structure of zinc oxide whiskers.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 硫酸銀を担持させた無機系粉末と酸化亜
鉛からなる無機系抗菌剤。
1. An inorganic antibacterial agent comprising an inorganic powder supporting silver sulfate and zinc oxide.
【請求項2】 酸化亜鉛がテトラポット状三次元結晶構
造の単結晶酸化亜鉛であることを特徴とする請求項1記
載の無機系抗菌剤。
2. The inorganic antibacterial agent according to claim 1, wherein the zinc oxide is a single crystal zinc oxide having a tetrapod-like three-dimensional crystal structure.
【請求項3】 無機系粉末は平均1次粒径が10μm以
下であり、且つリン酸カルシウム、シリカゲル、硫酸バ
リウム、酸化チタンのうちから選ばれたことを特徴とす
る請求項1記載の無機系抗菌剤。
3. The inorganic antibacterial agent according to claim 1, wherein the inorganic powder has an average primary particle size of 10 μm or less and is selected from calcium phosphate, silica gel, barium sulfate and titanium oxide. .
JP30323494A 1994-11-11 1994-11-11 Inorganic antimicrobial agent Pending JPH08133918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30323494A JPH08133918A (en) 1994-11-11 1994-11-11 Inorganic antimicrobial agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30323494A JPH08133918A (en) 1994-11-11 1994-11-11 Inorganic antimicrobial agent

Publications (1)

Publication Number Publication Date
JPH08133918A true JPH08133918A (en) 1996-05-28

Family

ID=17918498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30323494A Pending JPH08133918A (en) 1994-11-11 1994-11-11 Inorganic antimicrobial agent

Country Status (1)

Country Link
JP (1) JPH08133918A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006133857A1 (en) * 2005-06-16 2006-12-21 Imperial Chemical Industries Plc Anti-microbial paint films
EP1747723A1 (en) 2005-07-29 2007-01-31 Southwest Jiaotong University An inorganic antimicrobial agent comprising zinc oxides and silver ions loaded in crystal lattices of the said zinc oxides and preparing method thereof
US7261867B1 (en) 2006-04-07 2007-08-28 Eastman Kodak Company Production of silver sulfate grains using organo-sulfate or organo-sulfonate additives
WO2008089822A2 (en) * 2007-01-23 2008-07-31 Merck Patent Gmbh Antimicrobial composition comprising zinc oxide, barium sulphate and silver ions
JP2009526822A (en) * 2006-02-16 2009-07-23 ザッハトレーベン ヒェミー ゲゼルシヤフト ミット ベシュレンクテル ハフツング Biocidal composition
US7655212B2 (en) 2008-04-11 2010-02-02 Eastman Kodak Company Production of silver sulfate grains using a fluorinated additive
US8062615B2 (en) 2008-04-11 2011-11-22 Eastman Kodak Company Production of silver sulfate grains using carboxylic acid additives
CN102578148A (en) * 2012-01-03 2012-07-18 西南交通大学 Method for improving antibacterial property of tetrapod-like zinc oxide whisker
CN104047114A (en) * 2014-06-17 2014-09-17 李文博 Nano-silver antibacterial melt-blown non-woven fabric and production method thereof
JP2016522802A (en) * 2013-04-16 2016-08-04 ユニリーバー・ナームローゼ・ベンノートシヤープ Liquid soap with improved antibacterial activity
US10370622B2 (en) 2013-04-16 2019-08-06 Conopco, Inc. Soap bar having enhanced antibacterial activity
CN114854259A (en) * 2022-05-18 2022-08-05 来斯奥集成家居股份有限公司 Water-based art coating with antibacterial function and preparation method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006133857A1 (en) * 2005-06-16 2006-12-21 Imperial Chemical Industries Plc Anti-microbial paint films
EP1747723A1 (en) 2005-07-29 2007-01-31 Southwest Jiaotong University An inorganic antimicrobial agent comprising zinc oxides and silver ions loaded in crystal lattices of the said zinc oxides and preparing method thereof
JP2009526822A (en) * 2006-02-16 2009-07-23 ザッハトレーベン ヒェミー ゲゼルシヤフト ミット ベシュレンクテル ハフツング Biocidal composition
US7261867B1 (en) 2006-04-07 2007-08-28 Eastman Kodak Company Production of silver sulfate grains using organo-sulfate or organo-sulfonate additives
WO2008089822A2 (en) * 2007-01-23 2008-07-31 Merck Patent Gmbh Antimicrobial composition comprising zinc oxide, barium sulphate and silver ions
WO2008089822A3 (en) * 2007-01-23 2009-04-09 Merck Patent Gmbh Antimicrobial composition comprising zinc oxide, barium sulphate and silver ions
US7655212B2 (en) 2008-04-11 2010-02-02 Eastman Kodak Company Production of silver sulfate grains using a fluorinated additive
US8062615B2 (en) 2008-04-11 2011-11-22 Eastman Kodak Company Production of silver sulfate grains using carboxylic acid additives
CN102578148A (en) * 2012-01-03 2012-07-18 西南交通大学 Method for improving antibacterial property of tetrapod-like zinc oxide whisker
JP2016522802A (en) * 2013-04-16 2016-08-04 ユニリーバー・ナームローゼ・ベンノートシヤープ Liquid soap with improved antibacterial activity
US10370622B2 (en) 2013-04-16 2019-08-06 Conopco, Inc. Soap bar having enhanced antibacterial activity
CN104047114A (en) * 2014-06-17 2014-09-17 李文博 Nano-silver antibacterial melt-blown non-woven fabric and production method thereof
CN114854259A (en) * 2022-05-18 2022-08-05 来斯奥集成家居股份有限公司 Water-based art coating with antibacterial function and preparation method thereof

Similar Documents

Publication Publication Date Title
AU2006296012B2 (en) Antimicrobial zeolite and antimicrobial resin composition
JPH08133918A (en) Inorganic antimicrobial agent
CN110934153B (en) Zirconium phosphate carrier, zirconium phosphate copper-carrying antibacterial agent, zirconium phosphate antibacterial agent, preparation method and application thereof
JPH062570B2 (en) Antibacterial agent
JPH07304616A (en) Antimicrobial and antifungal combined fine particle dispersion, its production and transparent coating solution
JP3335689B2 (en) Zeolite-based antibacterial agent, its production method and antibacterial polymer composition
JP3292726B2 (en) Aluminosilicate antibacterial agent
JP4993449B2 (en) Antibacterial agent
JPH0586983B2 (en)
JP3063019B2 (en) Aqueous suspension of silver-based inorganic antibacterial agent fine particles and method for producing the same
JPH05229911A (en) Antimicrobial aluminum phosphate
JPH06239713A (en) Antimicrobial zeolite and its production
JPH0381209A (en) Antimicrobial agent and film
JPH0413605A (en) Inorganic antimicrobial agent and production thereof
JP6667866B2 (en) Aqueous composition and powder composition
JP2998061B2 (en) Porous calcium carbonate supporting antimicrobial metal fine particles
JP2007131551A (en) Antibacterial agent
JP2000256102A (en) Antimicrobial agent and its production
JPH0742101B2 (en) Submicron type A zeolite and method for producing the same
JP3177039B2 (en) Phosphate antibacterial agent and method for producing the same
JP2559125B2 (en) Method for producing antibacterial zeolite
JPH0559308A (en) Antibacterial coating composition
JPH08113729A (en) Antimicrobial composition and production thereof
WO2018139617A1 (en) Antibacterial deodorant composition
JP3174642B2 (en) Zinc silicate antibacterial agent