JPH02264018A - Activated carbon fiber and its production - Google Patents

Activated carbon fiber and its production

Info

Publication number
JPH02264018A
JPH02264018A JP1041882A JP4188289A JPH02264018A JP H02264018 A JPH02264018 A JP H02264018A JP 1041882 A JP1041882 A JP 1041882A JP 4188289 A JP4188289 A JP 4188289A JP H02264018 A JPH02264018 A JP H02264018A
Authority
JP
Japan
Prior art keywords
pitch
core
activated carbon
fiber
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1041882A
Other languages
Japanese (ja)
Other versions
JP2565770B2 (en
Inventor
Yoshikazu Nagata
永田 芳和
Kasuke Nishimura
嘉介 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PETOKA KK
Petoca Ltd
Original Assignee
PETOKA KK
Petoca Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PETOKA KK, Petoca Ltd filed Critical PETOKA KK
Priority to JP1041882A priority Critical patent/JP2565770B2/en
Publication of JPH02264018A publication Critical patent/JPH02264018A/en
Application granted granted Critical
Publication of JP2565770B2 publication Critical patent/JP2565770B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title fibers which are used as an adsorbent, a catalyst carrier, or a condenser, because of its high strength, durability and excellent adsorption and desorption properties by subjecting an optically anisotropic pitch as a core component and an isotropic pitch as a sheath component to conjugate spinning, preoxidizing and activating the fibers. CONSTITUTION:An optically anisotropic pitch or a pitch which can be converted into optically active form with slight heat-treatment is used as a core component, while an isotropic pitch is used as a sheath component to effect conjugated spinning to give a conjugated fiber. The fibers are preoxidized under such conditions that the sheath component is made infusible and activated to give the subject fiber which is composed of the core which has substantially no pores and the sheath having pores activated to absorb gases.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は強度および耐久性に優れ、吸脱着特性の優れた
活性炭素繊維およびその製造方法に間する0本発明の活
性炭素*&1は高弾性率、高強度の芯を有しているため
、繊維単体として強いばかりでなく、布等の集合体とし
て引っ張り、引き裂き、衝撃、磨耗、折り曲げ等に強く
、圧縮や振動等に対する形態安定性に優れている。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention provides activated carbon fibers with excellent strength, durability, and adsorption/desorption properties, and a method for producing the same. Because it has a core with high elastic modulus and high strength, it is not only strong as a single fiber, but also resistant to pulling, tearing, impact, abrasion, bending, etc. as an aggregate of cloth, etc., and has morphological stability against compression, vibration, etc. Excellent.

本発明の活性炭素繊維は織物、不織布等の布構造の形態
で、一般の吸着剤として使用することが出来る。吸着す
る物質としては種々の気体、液中に溶解する種々の溶質
等である。活性炭素繊維の使用される形態としては、種
々の工業用吸着剤、ガスマスク、浄水器、冷蔵庫や靴等
の脱臭剤、空rA設備用の脱臭フィルター等である。
The activated carbon fiber of the present invention can be used as a general adsorbent in the form of a cloth structure such as a woven fabric or a nonwoven fabric. The substances to be adsorbed include various gases and various solutes dissolved in the liquid. Activated carbon fibers are used in various industrial adsorbents, gas masks, water purifiers, deodorizers for refrigerators, shoes, etc., and deodorizing filters for air-conditioning equipment.

本発明の活性炭素繊維はそのほかに、触媒担体、炭素分
子に対するイオンのインターカレーション電位を利用す
る蓄電池、キャパシター コンデンサー等に用いられる
In addition, the activated carbon fibers of the present invention can be used as catalyst carriers, storage batteries that utilize the intercalation potential of ions with respect to carbon molecules, capacitors, and the like.

(ロ)従来の技術 活性炭素繊維は、PAN、セルロース、フェノール樹脂
、PVA、ピッチ等の繊維から作られた炭素繊維を水蒸
気、二酸化炭素を含有する雰囲気中、あるいは酸化性の
雰囲気中で賦活することにより製造される。
(b) Conventional technology Activated carbon fiber is produced by activating carbon fiber made from fibers such as PAN, cellulose, phenolic resin, PVA, pitch, etc. in an atmosphere containing water vapor and carbon dioxide, or in an oxidizing atmosphere. Manufactured by

セルロース系の活性炭素繊維について特公昭羽−123
76号等に開示されている方法は、250〜500°F
(121〜260℃)の不活性気体中で8分以上熱処理
して再生セルロース繊維を軽度に炭化させた後、高温の
水蒸気中で賦活するものである。この方法は賦活に高温
、長時間を要するので、特公昭53−30810号に開
示されているように、リン化合物をあらかじめ付着させ
ておく方法が広く行なわれる。
About cellulose-based activated carbon fiber
The method disclosed in No. 76 et al.
After the regenerated cellulose fibers are slightly carbonized by heat treatment in an inert gas (121 to 260°C) for 8 minutes or more, they are activated in high-temperature steam. Since this method requires high temperature and long time for activation, a method in which a phosphorus compound is preliminarily deposited is widely used, as disclosed in Japanese Patent Publication No. 30810/1983.

PAN系の活性炭素繊維の場合には、PANの融着を防
ぐため、まず不融化処理が必要である。
In the case of PAN-based activated carbon fibers, infusibility treatment is first required to prevent PAN from fusing.

不融化、炭化処理の閏の寸法変化や製品品質に対して、
処理時の張力の影響が大きいため、通常ある程度の緊張
下で処理される。この条件については特公昭58−36
095号等に開示されている。
Regarding dimensional changes and product quality during infusibility and carbonization treatments,
Since tension during processing has a large effect, it is usually processed under a certain degree of tension. Regarding this condition,
No. 095, etc.

ピッチ類からの活性炭素繊維の場合にも、PANK系と
同様に、不融化処理が必要である。ピッチ繊維の不融化
、炭化処理時に緊張を与えることは困難であるため、通
常の場合には無緊張処理される。この場合にはピッチ類
の品質に問題があり、良好な製品品質を与える原料ピッ
チの品質、製法が特公昭62−15644号、特開昭6
0−167929号等に開示されている。
In the case of activated carbon fibers made from pitches, infusibility treatment is also required as in the case of PANK systems. Since it is difficult to apply tension to pitch fibers during infusibility and carbonization processing, tensionless processing is normally performed. In this case, there is a problem with the quality of the pitches, and the quality of the raw material pitch and the manufacturing method that give good product quality are
0-167929 and the like.

このような活性炭素繊維は賦活処理により、極度に多孔
質になるため強度が低下し、特に非常に脆くなる傾向が
ある。また圧縮により形態が変化し易くなり、摩耗にも
弱くなる傾向がある。また、摩耗、振動、衝撃の繰り返
しにより粉化する傾向があり、粉末が繊維集合体から離
れて移動し、種々のトラブルを起こす、また繊維重量の
減少を生じ、活性炭素繊維の能力低下を起こす。
Due to the activation treatment, such activated carbon fibers become extremely porous and therefore tend to have reduced strength and, in particular, to become extremely brittle. In addition, the shape tends to change easily due to compression, and it tends to be susceptible to wear. In addition, there is a tendency to powder due to repeated abrasion, vibration, and impact, and the powder moves away from the fiber aggregate, causing various troubles, and also causes a decrease in fiber weight, causing a decline in the performance of activated carbon fibers. .

このため強度の大きい繊維を混合して布を作り、活性炭
素繊維の低強度をカバーする事が行われているが、補強
用に用いた繊維の吸着している成分が活性炭素繊維に移
行し、吸着能力を減殺することが多く、また多くの補強
用繊維が活性炭素繊維より耐熱性が低いため、特に活性
炭素1維の再生条件に関して制約を与えることが多い。
For this reason, fabrics are made by mixing fibers with high strength to compensate for the low strength of activated carbon fibers, but the adsorbed components of the fibers used for reinforcement transfer to the activated carbon fibers. , often reduces the adsorption capacity, and many reinforcing fibers have lower heat resistance than activated carbon fibers, so they often impose restrictions on the conditions for regenerating activated carbon fibers in particular.

この問題を解決するために、特開昭60−231843
号には活性化特性の異なる炭素繊維2種の混合物からな
る布を作り、賦活の容易な方の炭素繊維のみを活性化す
る技術が開示されている。
In order to solve this problem, Japanese Patent Application Laid-Open No. 60-231843
The publication discloses a technique in which a fabric is made from a mixture of two types of carbon fibers with different activation characteristics, and only the carbon fiber that is easier to activate is activated.

この方法は炭素繊維の混合物を作る際に、最も混合が容
易な段階を選択出来るため、他種の補強用繊維を混合す
るよりも繊維の損傷が少ない利点があるが、例示されて
いる補強用繊維は元来強度の小さいタイプの炭素繊維で
あり、賦活処理により更に多くの欠陥部を生じるため繊
維が脆く、補強効果が不十分である。
This method has the advantage of causing less damage to the fibers than mixing other types of reinforcing fibers because it allows you to select the stage where mixing is easiest when making a carbon fiber mixture. The fibers are originally a type of carbon fiber with low strength, and the activation treatment causes more defects, making the fibers brittle and having insufficient reinforcing effect.

(ハ)発明が解決しようとするff、11本発明は従来
の活性炭素繊維が、極度に多孔質であるため強度が低く
、特に非常に脆い傾向がある欠点を改善することを目的
とする。従来の活性炭素繊維は圧縮により形態が変化し
易く、摩耗にも弱い傾向を持つ、また摩耗、振動、衝撃
の繰り返しにより粉化する傾向があり、粉末が繊維集合
体から離れて移動し、種々のトラブルを起こす。
(c) ff, which the invention aims to solve, 11 The present invention aims to improve the drawbacks of conventional activated carbon fibers, which tend to be extremely porous, have low strength, and in particular are very brittle. Conventional activated carbon fibers tend to change their shape easily when compressed and are susceptible to abrasion. They also tend to turn into powder due to repeated abrasion, vibration, and impact, and the powder moves away from the fiber aggregate, resulting in various cause trouble.

また粉化により繊維重量の減少を生じ、活性炭素繊維の
能力低下を起こす。
Powdering also causes a decrease in fiber weight, causing a decline in the performance of activated carbon fibers.

本発明はまた、活性炭素繊維の持つ非常に脆い欠点を改
善するために、補強用繊維を混合する方法の問題点であ
る、補強用繊維が吸着している成分が活性炭素繊維に移
行し、吸着能力を減殺する欠点、ならびに多くの補強用
繊維が活性炭素m !1より耐熱性が低いため、特に活
性炭素繊維の再生条件に間して制約を与える欠点を改善
することを目的とする。
In order to improve the extremely brittle disadvantage of activated carbon fibers, the present invention also addresses the problem of the method of mixing reinforcing fibers, in which the components adsorbed by the reinforcing fibers migrate to the activated carbon fibers. The drawback is that it reduces adsorption capacity, and many reinforcing fibers are activated carbon m! The purpose of this invention is to improve the drawback that the heat resistance is lower than that of No. 1, which places restrictions on the regeneration conditions of activated carbon fibers.

(ニ)!!題を解決する手段 本発明は実質的に気体を吸着する気孔を有しない芯部と
、多孔質で気体等を吸着するように賦活された鞘部とを
有することを特徴とする活性炭素繊維である。
(d)! ! Means for Solving the Problems The present invention is an activated carbon fiber characterized by having a core having substantially no pores for adsorbing gas, and a porous sheath activated to adsorb gas, etc. be.

本発明の活性炭素繊維の、好ましい実施態様は第1図に
示すような、気孔を有しない芯部が繊維断面積の10〜
90%を占める単一の芯であるものである、鞘lと芯2
との位置間係は、第1図に示すように同心円状であって
も良く、芯2が鞘1に対して偏心していても良い。
A preferred embodiment of the activated carbon fiber of the present invention is as shown in FIG.
Sheath l and core 2, which are 90% single core
The positional relationship between the core 2 and the sheath 1 may be concentric as shown in FIG. 1, or the core 2 may be eccentric with respect to the sheath 1.

芯部の断面積が繊維断面積に対して大きい割合を占める
場合、活性炭素繊維としての有効な体積が少なくなるの
で好ましくない、また小さい割合を占める場合、芯部の
存在による強度の改善効果が小さくなるので好ましくな
い。
If the cross-sectional area of the core occupies a large proportion of the cross-sectional area of the fiber, the effective volume of the activated carbon fiber will decrease, which is undesirable. This is not desirable because it becomes smaller.

本発明においてa IIの断面形状は、通常実質的に円
形であることが望ましいが、円形に限定するものではな
い、また繊維内に存在する芯部の形状は円形であっても
、多葉形あるいはその他の異形であっても良い。また第
2図に示すように、気孔を有しない芯部が多数に分れて
* I!断面内に存在するものであっても良い、芯部の
断面積は好ましくは総合計で繊維断面積の10〜90%
を占めるものである。芯2は第2図に示すように3個に
分かれていても良いが、2個あるいは4個以上であって
も良い、芯2の鞘1に対する位置間係は、第2図に示す
ように点対称の間係にあっても良く、また不規則に存在
していても良い、また芯2の大きさは均一であっても良
いが、種々の大きさのものが混在していても良い。
In the present invention, it is generally desirable that the cross-sectional shape of a II is substantially circular, but it is not limited to a circular shape. Or it may be some other variant. Also, as shown in Figure 2, the core without pores is divided into many parts *I! The cross-sectional area of the core, which may be present within the cross-section, is preferably 10 to 90% of the fiber cross-sectional area in total.
occupies the majority of The core 2 may be divided into three parts as shown in FIG. 2, but it may also be divided into two or four or more parts.The positional relationship of the core 2 with respect to the sheath 1 is as shown in FIG. The cores 2 may be arranged in a point-symmetrical arrangement or irregularly, and the size of the cores 2 may be uniform, but cores 2 of various sizes may be mixed. .

芯部の形状が多葉形である場合には、特に繊維側面から
の圧縮や衝撃に強く、耐久性にも富んでいる0本発明に
好適に用いられる繊維およびその芯部の断面形状を、第
1図ないし第8図に例示する。
When the shape of the core is multilobal, it is particularly resistant to compression and impact from the side of the fiber, and is highly durable. Examples are shown in FIGS. 1 to 8.

芯部の総合計の断面積が繊維断面積に対して大きい割合
を占める場合、活性炭素繊維としての有効な体積が小さ
くなるので好ましくない、また小さい割合を占める場合
、芯部の存在による強度の改善効果が小さくなるので好
ましくない。
If the total cross-sectional area of the core portion occupies a large proportion of the cross-sectional area of the fiber, the effective volume of the activated carbon fiber becomes small, which is undesirable. This is not preferable because the improvement effect becomes small.

本発明の活性炭素繊維は、光学異方性ピッチもしくは軽
度の熱処理により容易に光学異方性に転化するピッチを
芯成分とし、等方性ピッチを鞘成分として複合紡糸し、
少なくともその鞘成分が不融化する条件で不融化処理し
、賦活処理することにより製造する。不融化処理の後好
ましくは炭化処理を実槌する。炭化処理の温度はあまり
高温である場合、コストが上昇するうえ、賦活処理が進
み難くなり、あまり低温である場合や省略した場合、コ
スト的には有利であるが、繊維強度が低く賦活処理時に
損傷を受は易い、炭化処理の温度は600〜1200℃
であることが好ましい。
The activated carbon fiber of the present invention is produced by composite spinning, using an optically anisotropic pitch or a pitch that is easily converted to optically anisotropic by mild heat treatment as a core component, and an isotropic pitch as a sheath component,
It is manufactured by performing an infusible treatment under conditions that at least the sheath component is infusible and then an activation treatment. After the infusibility treatment, carbonization treatment is preferably performed. If the temperature of the carbonization treatment is too high, the cost will increase and the activation treatment will be difficult to proceed.If the temperature is too low or if it is omitted, it is advantageous in terms of cost, but the fiber strength is low and it becomes difficult to proceed with the activation treatment. Easy to damage, carbonization temperature is 600-1200℃
It is preferable that

芯成分の、光学異方性ピッチもしくは軽度の熱処理によ
り容易に光学異方性に転化するピッチは、繊維化した後
、不融化および炭化処理を行、うことにより、易黒鉛化
炭素繊維を生成するものである。
The core component, optically anisotropic pitch or pitch that is easily converted to optically anisotropic by mild heat treatment, is made into fibers and then subjected to infusibility and carbonization treatment to produce easily graphitizable carbon fiber. It is something to do.

このようなピッチとしては通常の流れ模様を持つ光学異
方性ピッチのほか、重質油やピッチ類から溶剤抽出によ
り、容易に光学異方性に転化する成分を集めたもの、あ
るいは光学異方性ピッチを還元して、容易に光学異方性
に転化する等方性ピッチとしたもの等である。この光学
異方性ピッチもしくは軽度の熱処理により容易に光学異
方性に転化するピッチは石油系のものであっても、石炭
系のものであっても良い。
In addition to optically anisotropic pitch with a normal flow pattern, such pitches include a collection of components that can be easily converted to optically anisotropic by solvent extraction from heavy oil or pitches, or optically anisotropic pitch. These include isotropic pitch that is easily converted into optical anisotropy by reducing the polar pitch to isotropic pitch. The optically anisotropic pitch or the pitch that is easily converted to optically anisotropic by mild heat treatment may be petroleum-based or coal-based.

このようなピッチから作られた炭素繊維は賦活を行なう
際に反応速度が小さく、なかなか活性化が達成されない
が、反面、強度や伸度や弾性率の低下が少ない傾向があ
る。
Carbon fibers made from such pitches have a slow reaction rate and are difficult to activate, but on the other hand, their strength, elongation, and elastic modulus tend to decrease less.

鞘成分の等方性ピッチは、好ましくは軟化点が120℃
以上の高軟化点ピッチである。
The isotropic pitch of the sheath component preferably has a softening point of 120°C.
This is a high softening point pitch.

通常の高分子物の場合には1.一方の成分が固化したと
きに、固化した成分が液状を保っている他方の成分を空
中に支えることができる。ところがピッチの場合は固化
したときの強度が極めて小さいため、液状を保っている
成分を空中に支えることが難しい、そのため本発明の複
合紡糸を行う際には、芯成分と鞘成分のピッチは軟化点
が近いことが好ましい。
In the case of ordinary polymers, 1. When one component solidifies, the solidified component can support the other component, which remains liquid, in the air. However, pitch has extremely low strength when solidified, so it is difficult to support the component that remains liquid in the air. Therefore, when performing the composite spinning of the present invention, the pitch of the core component and sheath component is softened. It is preferable that the points are close.

鞘成分のピッチとしては、石油系、石炭系のいずれもが
用い得るが、高軟化点の等方性ピッチは概して、一般的
に石炭系の方が作り易い、その理由は恐らく次のようで
ある。
As the pitch for the sheath component, both petroleum-based and coal-based pitches can be used, but isotropic pitch with a high softening point is generally easier to produce with coal-based pitches.The reason is probably as follows. be.

石油系の重質油は熱処理により軟化点を上げて行くと、
ある程度上昇した段階で、光学異方性化の開始と同時に
急速に軟化点が高くなる現象が認められ、軟化点が高い
等方性ピッチを製造する条件はかなり厳しく限定される
。一方石炭系の重質油は光学異方性化の速度が遅く、軟
化点の高い等方性ピッチを製造する条件は比較的幅広く
選択出来る。
When the softening point of petroleum-based heavy oil is raised through heat treatment,
At the stage where the softening point has increased to a certain extent, a phenomenon in which the softening point rapidly increases simultaneously with the start of optical anisotropy is observed, and the conditions for producing an isotropic pitch with a high softening point are quite severely limited. On the other hand, coal-based heavy oil has a slow rate of optical anisotropy, and the conditions for producing isotropic pitch with a high softening point can be selected from a relatively wide range.

(ホ)作用 本発明は強度および耐久性に優れ、吸脱着特性の優れた
活性炭素繊維およびその製造方法に間する0本発明の活
性炭素繊維は高弾性率、高強度の芯を有しているため、
繊維単体として強いばかりでなく、布等の集合体として
引っ張り、引き裂き、衝撃、摩耗、折り曲げ等に強く、
圧縮や振動等に対する形態安定性に優れている。
(E) Function The present invention provides an activated carbon fiber with excellent strength, durability, and adsorption/desorption properties, and a method for producing the same.The activated carbon fiber of the present invention has a core with a high modulus of elasticity and high strength. Because there are
Not only is it strong as a single fiber, but as a collection of cloth etc., it is resistant to pulling, tearing, impact, abrasion, bending, etc.
Excellent form stability against compression, vibration, etc.

本発明の活性炭素繊維は二成分から成る単一の複合繊維
であるため、補強用繊維の混合などの余分な加工工程を
必要とせず、均一性が高い利点を有する。
Since the activated carbon fiber of the present invention is a single composite fiber consisting of two components, it does not require any extra processing steps such as mixing reinforcing fibers, and has the advantage of high uniformity.

(へ)実施例 次に本発明を、実施例により具体的かつ詳細に説明する
(f) Examples Next, the present invention will be explained specifically and in detail using examples.

実施例 l 芯成分として軟化点285℃、光学異方性分率100%
の石油系ピッチ、鞘成分として軟化点245℃の石炭系
の等方性ピッチを用い、第1図に示すような同心円状の
形態に複合紡糸した。紡糸口金の直径は0.2−1紡糸
温度は305℃、複合比率は50:50であった。
Example 1 Softening point as core component: 285°C, optical anisotropy fraction: 100%
Using petroleum-based pitch and coal-based isotropic pitch with a softening point of 245° C. as the sheath component, the composite was spun into a concentric form as shown in FIG. The diameter of the spinneret was 0.2-1, the spinning temperature was 305°C, and the composite ratio was 50:50.

得られたピッチ繊維を昇温速度0.3℃/分で300℃
まで昇温させつつ不融化処理した。得られた繊維をさら
に不活性気体としてのN2ガス中で昇温速度5℃/分で
900℃まで昇温させつつ熱処理し、炭化を行なった。
The obtained pitch fiber was heated to 300°C at a heating rate of 0.3°C/min.
Infusibility treatment was carried out while raising the temperature to . The obtained fibers were further heat-treated in N2 gas as an inert gas while raising the temperature to 900° C. at a rate of 5° C./min to effect carbonization.

得られた直径17μ鰯の炭素繊維3000本からなるフ
ィラメントを、折込み本数12本/1nchで平織りに
製織した。
The obtained filaments consisting of 3,000 carbon fibers each having a diameter of 17 μm were woven into a plain weave with a folding number of 12 fibers/1 nch.

この炭素縁11 Ml物を850℃の水蒸気中で1時間
処理し、賦活を行なった。得られた活性炭素繊維の断面
より計測した芯鞘比率は55:45、鞘成分の比表面積
1630ぜ/8、JIS  K  1470によるメチ
レンブルー脱色試験では鞘成分換算で225IIg/ 
gであった*  (55vo1%の芯成分は比表面積に
も吸着にも関与しないとして計算した)実施例 2 芯成分として軟化点283℃、光学異方性分率93%の
石油系ピッチ、鞘成分として軟化点238℃の石炭系の
等方性ピッチを用い、芯鞘型の複合紡糸口金で、管状ノ
ズルの周辺から加熱空気を噴出させる紡糸孔を有する口
金により、紡糸を行った。
This carbon-rimmed 11 Ml product was treated in steam at 850° C. for 1 hour to activate it. The core-sheath ratio measured from the cross section of the obtained activated carbon fiber was 55:45, the specific surface area of the sheath component was 1630 g/8, and the methylene blue decolorization test according to JIS K 1470 was 225 II g/ in terms of the sheath component.
* (Calculated assuming that the 55vo1% core component does not contribute to the specific surface area or adsorption) Example 2 The core components were petroleum pitch with a softening point of 283°C and an optical anisotropy fraction of 93%, and a sheath. Using a coal-based isotropic pitch with a softening point of 238° C. as a component, spinning was performed using a core-sheath type composite spinneret having a spinning hole that blows out heated air from around a tubular nozzle.

管状ノズルの内径は0.25m5、紡糸温度は340℃
、複合比率は芯:鞘= 35 : 65であった。
The inner diameter of the tubular nozzle is 0.25m5, and the spinning temperature is 340℃.
, the composite ratio was core:sheath=35:65.

紡出したピッチ繊維を直ちにネットコンベヤーの上に採
取し、不融化および賦活を行った。得られた活性炭素繊
維ウェブをパンチ密度25回/CWrのニードルパンチ
を行なった。
The spun pitch fibers were immediately collected on a net conveyor, where they were made infusible and activated. The obtained activated carbon fiber web was needle punched at a punch density of 25 times/CWr.

得られた活性炭素繊維不織布は優れた吸着性能および耐
久性を有していた。
The obtained activated carbon fiber nonwoven fabric had excellent adsorption performance and durability.

実施例 3 芯成分として軟化点287℃、光学異方性分率96%の
石油系ピッチ、鞘成分として軟化点243℃の石炭系の
等方性ピッチを用い第2図に示すような多芯芯鞘型の複
合紡糸を行なフた。紡糸温度は加0℃、複合比率は芯:
鞘=30ニア0であった。
Example 3 The core component was a petroleum-based pitch with a softening point of 287°C and the optical anisotropy fraction of 96%, and the sheath component was a coal-based isotropic pitch with a softening point of 243°C. Core-sheath type composite spinning was performed. The spinning temperature is 0℃, and the composite ratio is:
The scabbard was 30 nia 0.

得られたピッチ繊維を、昇温速度0.5℃/分で300
℃まで昇温させつつ不融化処理した。得られた繊維を、
さらに不活性気体としてのN2ガス中で昇温速度10℃
/sinで950℃まで昇温させつつ熱処理し、炭化を
行なった。
The obtained pitch fiber was heated to 300°C at a heating rate of 0.5°C/min.
Infusibility treatment was performed while raising the temperature to ℃. The obtained fiber,
Furthermore, the heating rate was 10℃ in N2 gas as an inert gas.
Carbonization was performed by heat treatment while raising the temperature to 950° C./sin.

得られた直径14■の炭素繊維3000本からがるフィ
ラメントを、折込み本数10.5本/1nchで平織り
に製織した。
The resulting filaments consisting of 3,000 carbon fibers each having a diameter of 14 cm were woven into a plain weave at a folding rate of 10.5 fibers/1 nch.

この炭素縁&を織物を800℃の水蒸気中で1時間処理
し、賦活を行なった。得られた活性炭素繊維織物は優れ
た吸着性能および耐久性を有してい゛た。
The carbon edge was activated by treating the fabric in steam at 800° C. for 1 hour. The obtained activated carbon fiber fabric had excellent adsorption performance and durability.

実施例 4 芯成分として軟化点296℃、光学異方性分率100%
の石炭系ピッチ、鞘成分として軟化点245℃の石炭系
の等方性ピッチを用い、第5図に示すような三葉形の芯
を、円形の外形横断面と同一の対称中心を有する形態に
複合紡糸した。紡糸口金は直径0.4−の紡糸孔の中に
7字形の中空断面を冑する中空針を圧入したものを用い
、中空針の中から芯成分を押し出した。紡糸温度は31
2℃、複合比率は芯:鞘= 80 : 40であった。
Example 4 Softening point as core component: 296°C, optical anisotropy fraction: 100%
Coal-based pitch, coal-based isotropic pitch with a softening point of 245°C is used as the sheath component, and a trilobal core as shown in Fig. 5 has a shape with the same center of symmetry as the circular external cross section. Composite spinning was carried out. The spinneret used was one in which a hollow needle having a 7-shaped hollow cross section was press-fitted into a spinning hole with a diameter of 0.4 mm, and the core component was extruded from the hollow needle. The spinning temperature is 31
At 2°C, the composite ratio was core:sheath = 80:40.

得られたピッチ繊維を、昇温速度0.3℃/分で300
℃まで昇温させつつ不融化処理した。得られた繊維をさ
−らに不活性気体としてのN2ガス中で昇温速度5℃/
分で950℃まで昇温させつつ熱処理し、炭化を行なっ
た。
The obtained pitch fiber was heated at a heating rate of 0.3°C/min to 300°C.
Infusibility treatment was performed while raising the temperature to ℃. The obtained fibers were further heated at a heating rate of 5℃/in N2 gas as an inert gas.
Carbonization was carried out by heat treatment while raising the temperature to 950° C. in minutes.

得られた直径17μmの炭素繊維3000本からなるフ
ィラメントを、折込み本数12本/1nchで平織りに
製織した。
The obtained filaments consisting of 3000 carbon fibers each having a diameter of 17 μm were woven into a plain weave with a folding number of 12 fibers/1 nch.

この炭素繊維織物を850℃の水蒸気中で1時間処理し
、賦活を行った。得られた活性炭素繊維の断面より計測
した芯鞘比率は65 : 35、鞘成分の比表面積16
3(1//g、JIS  K  1470によるメチレ
ンブルー脱色試験では鞘成分換算で225゜7gであっ
た*  (85vo1%の芯細分は比表面積にも吸着に
も関与しないとして計算した) 実施例 5 芯成分として軟化点283℃、光学異方性分率93%の
石油系ピッチ、鞘成分として軟化点238℃の石油系の
等方性ピッチを用い、第、6図に示すような万葉形の芯
を、円形の外形横断面と同一の対称中心を有する形態に
複合紡糸した。使用した芯鞘型の複合紡糸口金は、二重
の管状ノズルから芯鞘型に2種のピッチを吐出させ、該
管状ノズルの周辺から加熱空気を噴出させる紡糸孔を有
する口金により、紡糸を行なった。二重の管状ノズルの
外管の内径は0.5鴎、内径は0.2−の等しい長さの
スリットを72°間隔で、回転対称を有するように放射
状に配置した、異形の中空針であフた。紡糸温度は34
0℃、複合比率は芯:鞘=35:65であった。
This carbon fiber fabric was activated in steam at 850° C. for 1 hour. The core-sheath ratio measured from the cross section of the obtained activated carbon fiber was 65:35, and the specific surface area of the sheath component was 16.
3 (1//g, in the methylene blue decolorization test according to JIS K 1470, it was 225°7g in terms of sheath component * (Calculated assuming that 85vo1% core subdivision does not contribute to specific surface area or adsorption) Example 5 Core A petroleum-based pitch with a softening point of 283°C and an optical anisotropy fraction of 93% was used as the component, and a petroleum-based isotropic pitch with a softening point of 238°C was used as the sheath component, and a many-leaf-shaped core as shown in Figure 6 was prepared. was spun into a composite material having a circular external cross section and the same center of symmetry.The core-sheath type composite spinneret used discharges two types of pitch into a core-sheath type from a double tubular nozzle. Spinning was carried out using a spinneret with spinning holes that ejected heated air from the periphery of the tubular nozzle.The outer tube of the double tubular nozzle had an inner diameter of 0.5mm, and a slit of equal length with an inner diameter of 0.2mm. The spinning needles were radially arranged at 72° intervals with rotational symmetry.The spinning temperature was 34°.
At 0°C, the composite ratio was core:sheath=35:65.

紡出したピッチ繊維を直ちにネットコンベヤーの上に採
取し、実施例1と同様にして不融化および炭化を行った
。得られた炭素繊維ウェアをパンチ密度25回/CV/
のニードルパンチを行った後、実施例1と同様にして賦
活を行なった。
The spun pitch fibers were immediately collected on a net conveyor and infusible and carbonized in the same manner as in Example 1. The obtained carbon fiber wear was punched at a density of 25 times/CV/
After performing needle punching, activation was performed in the same manner as in Example 1.

得られた活性炭素繊維不織布は優れた吸着性能および耐
久性を有していた。
The obtained activated carbon fiber nonwoven fabric had excellent adsorption performance and durability.

(ト)発明の効果 本発明の活性炭素繊維は織物、不織布等の布構造の形態
で、一般の吸着剤として使用することが出来る。吸着す
る物質としては種々の気体、液中に溶解する種々の溶質
等である。活性炭素繊維の使用される形態としては、種
々の工業用吸着剤、ガスマスク、浄水器、冷蔵庫や靴等
の脱臭剤、空IW設備用の脱臭フィルター等である。
(G) Effects of the Invention The activated carbon fiber of the present invention can be used as a general adsorbent in the form of a cloth structure such as a woven fabric or a nonwoven fabric. The substances to be adsorbed include various gases and various solutes dissolved in the liquid. Activated carbon fibers are used in various industrial adsorbents, gas masks, water purifiers, deodorizing agents for refrigerators, shoes, etc., and deodorizing filters for air IW equipment.

本発明の活性炭素繊維はそのほかに、触媒担体、炭素分
子に対するイオンのインターカレーション電位を利用す
る蓄電池、キャパシター コンデンサー等に用いられる
In addition, the activated carbon fibers of the present invention can be used as catalyst carriers, storage batteries that utilize the intercalation potential of ions with respect to carbon molecules, capacitors, and the like.

【図面の簡単な説明】 第1図は本発明の活性炭素繊維の横断面を示す略図であ
る。第2図は本発明の別の実施態様である多数の芯を有
する活性炭素繊維の横断面を示す略図である。第3図な
いし第8図は本発明の更に別の実施態様である非円形断
面の芯を有する活性炭素繊維の横断面を示す略図である
。 1:鞘 2:芯 図面の浄書 7X1図 礒目を虜断面図(そのl) 慕2+1  繊tlIの横断面図(その2)第3図 1a維検断面区(その3) 第4図 繊維横断面図(その4) 第7図 繊維横断面図(その7) 第8図 繊維横断面図(その8) 第5図 繊維横断面図(その5) 第6図 繊維横断面図(その6) 手 続 補 正 書(方式゛) 事件の表示 平成01年特許順第041882号 補正をする者 事件との関係 、特許出願人 住 所 東京都千代田区紀尾井町三番六号 氏名(名称) 株式会社ベトカ 代 理 人 住 所 東京都新宿区新宿2丁目8番1号新宿セブンビル303
号補正により増加する発明の数 増加せず 補正の対象 図面 補正の内容 別紙の通り
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional view of the activated carbon fiber of the present invention. FIG. 2 is a schematic diagram showing a cross-section of a multicore activated carbon fiber according to another embodiment of the present invention. FIGS. 3-8 are schematic diagrams showing cross-sections of activated carbon fibers having cores with non-circular cross-sections, which are further embodiments of the present invention. 1: Sheath 2: Engraved 7X1 diagram of the core drawing Cross-sectional view of Isome (part 1) Mu2+1 Cross-sectional view of fiber tlI (part 2) Fig. 3 1a fiber inspection section (part 3) Fig. 4 Fiber cross-section Cross-sectional view (part 4) Figure 7 Fiber cross-sectional view (part 7) Figure 8 Fiber cross-sectional view (part 8) Figure 5 Fiber cross-sectional view (part 5) Figure 6 Fiber cross-sectional view (part 6) Procedural amendment (method) Indication of the case 1999 Patent Order No. 041882 Person making the amendment Relationship to the case Patent applicant Address 3-6 Kioi-cho, Chiyoda-ku, Tokyo Name (Name) Betka Co., Ltd. Agent Address: 303 Shinjuku Seven Building, 2-8-1 Shinjuku, Shinjuku-ku, Tokyo
The number of inventions that will increase due to the amendment to the number of inventions will not increase, but the content of the amendment to the drawings that will be amended is as per the attached sheet.

Claims (4)

【特許請求の範囲】[Claims] (1) 実質的に気体を吸着する気孔を有しない芯部と
、多孔質で気体等を吸着するように賦活された鞘部とを
有することを特徴とする、活性炭素繊維。
(1) An activated carbon fiber characterized by having a core having no pores that substantially adsorbs gas, and a porous sheath activated to adsorb gas, etc.
(2) 請求項1において気孔を有しない芯部が繊維断
面積の10〜90%を占める単一の芯であることを特徴
とする請求項1に記載の活性炭素繊維。
(2) The activated carbon fiber according to claim 1, wherein the core having no pores is a single core occupying 10 to 90% of the fiber cross-sectional area.
(3) 請求項1において気孔を有しない芯部が多数に
分れて繊維断面内に存在することを特徴とする請求項1
に記載の活性炭素繊維。
(3) Claim 1 characterized in that the core portion having no pores is divided into many parts and exists within the cross section of the fiber.
The activated carbon fiber described in .
(4) 光学異方性ピッチもしくは軽度の熱処理により
容易に光学異方性に転化するピッチを芯成分とし、等方
性ピッチを鞘成分として複合紡糸し、少なくともその鞘
成分が不融化する条件で不融化処理し、賦活処理するこ
とを特徴とする活性炭素繊維の製造方法。
(4) Composite spinning is performed using optically anisotropic pitch or pitch that is easily converted to optically anisotropic by mild heat treatment as a core component and isotropic pitch as a sheath component, under conditions that at least the sheath component becomes infusible. A method for producing activated carbon fiber, which comprises performing an infusible treatment and an activation treatment.
JP1041882A 1988-12-02 1989-02-23 Activated carbon fiber and method for producing the same Expired - Lifetime JP2565770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1041882A JP2565770B2 (en) 1988-12-02 1989-02-23 Activated carbon fiber and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-304063 1988-12-02
JP30406388 1988-12-02
JP1041882A JP2565770B2 (en) 1988-12-02 1989-02-23 Activated carbon fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JPH02264018A true JPH02264018A (en) 1990-10-26
JP2565770B2 JP2565770B2 (en) 1996-12-18

Family

ID=17928587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1041882A Expired - Lifetime JP2565770B2 (en) 1988-12-02 1989-02-23 Activated carbon fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP2565770B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02216221A (en) * 1989-02-13 1990-08-29 Unitika Ltd High-strength, high-modulus activated carbon fiber
JPH03152218A (en) * 1989-11-10 1991-06-28 Agency Of Ind Science & Technol Pitch conjugate carbon fiber and production thereof
JPH03199426A (en) * 1989-12-27 1991-08-30 Kawasaki Steel Corp Activated carbon having form of spherical fiber lump and production thereof
WO1997037071A1 (en) * 1994-09-28 1997-10-09 Toray Industries, Inc. Nonwoven fabric for pleated filter and process for preparing the same
KR100420046B1 (en) * 1996-12-30 2004-05-31 삼성에스디아이 주식회사 Composite carbon fibers for lithium battery and preparation thereof
EP1939902A1 (en) * 2005-09-22 2008-07-02 HONDA MOTOR CO., Ltd. Polarizable electrode and electrical double layer capacitor
CN112522810A (en) * 2020-12-07 2021-03-19 湖南东映碳材料科技有限公司 Asphalt-based carbon fiber and preparation method thereof
CN115948821A (en) * 2023-02-21 2023-04-11 江南大学 Hollow, porous and multi-layer polyacrylonitrile-based carbon fiber and preparation method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02216221A (en) * 1989-02-13 1990-08-29 Unitika Ltd High-strength, high-modulus activated carbon fiber
JPH03152218A (en) * 1989-11-10 1991-06-28 Agency Of Ind Science & Technol Pitch conjugate carbon fiber and production thereof
JPH03199426A (en) * 1989-12-27 1991-08-30 Kawasaki Steel Corp Activated carbon having form of spherical fiber lump and production thereof
WO1997037071A1 (en) * 1994-09-28 1997-10-09 Toray Industries, Inc. Nonwoven fabric for pleated filter and process for preparing the same
US6485811B1 (en) * 1994-09-28 2002-11-26 Toray Industries, Inc. Nonwoven fabric for pleated filters, and a production process therefor
KR100420046B1 (en) * 1996-12-30 2004-05-31 삼성에스디아이 주식회사 Composite carbon fibers for lithium battery and preparation thereof
EP1939902A1 (en) * 2005-09-22 2008-07-02 HONDA MOTOR CO., Ltd. Polarizable electrode and electrical double layer capacitor
EP1939902A4 (en) * 2005-09-22 2008-10-22 Honda Motor Co Ltd Polarizable electrode and electrical double layer capacitor
US8194394B2 (en) 2005-09-22 2012-06-05 Honda Motor Co., Ltd. Polarized electrode and electric double-layer capacitor
CN112522810A (en) * 2020-12-07 2021-03-19 湖南东映碳材料科技有限公司 Asphalt-based carbon fiber and preparation method thereof
CN115948821A (en) * 2023-02-21 2023-04-11 江南大学 Hollow, porous and multi-layer polyacrylonitrile-based carbon fiber and preparation method thereof
CN115948821B (en) * 2023-02-21 2023-09-22 江南大学 Hollow, porous and multi-layer polyacrylonitrile-based carbon fiber and preparation method thereof

Also Published As

Publication number Publication date
JP2565770B2 (en) 1996-12-18

Similar Documents

Publication Publication Date Title
US5230960A (en) Activated carbon fiber structure and process for producing the same
CA1159810A (en) Process for the production of fibrous activated carbon
GB1579630A (en) Filter fabrics
EP0519483B1 (en) A pitch-based activated carbon fiber
JPS5836095B2 (en) Activated carbon fiber manufacturing method
JPH02264018A (en) Activated carbon fiber and its production
US4714649A (en) Carbonizable fabrics of activated, carbonized fibers and differently activated or unactivated fibers
JP2008169541A (en) Activated biregional fibers and method for manufacture of them
EP0565720A1 (en) Porous fiber and method of making thereof
JP2565769B2 (en) Activated carbon fiber and manufacturing method thereof
JP2591676B2 (en) Activated carbon fiber nonwoven fabric and method for producing the same
JP2888635B2 (en) Adsorption activated carbonized polyarylamide
KR101659728B1 (en) A method for manufacturing non-woven fabric of composite activated carbon fiber
JPH09241930A (en) Production of active carbon fiber formed material and the same material
JP7204026B1 (en) NONWOVEN FABRIC AND METHOD FOR MANUFACTURING SAME, METHOD FOR COLLECTING ORGANIC SOLVENT USING SAME, AND ORGANIC SOLVENT COLLECTION APPARATUS
JP2834779B2 (en) Manufacturing method of pitch fiber
JP2564645B2 (en) Different fineness mixed fiber activated carbon fiber aggregate and its manufacturing method
KR102519383B1 (en) Process for manufacturing high yield polyimide based activated carbon fiber and polyimide based activated carbon fiber using the same
JPH02216221A (en) High-strength, high-modulus activated carbon fiber
KR100324705B1 (en) A pitch type carbon fiber, and a process of preparing for the same
JP3182183B2 (en) Polypropylene-based porous fiber and method for producing the same
JP3879901B2 (en) Low pressure loss nonwoven activated carbon fiber and method for producing the same
JPH05209322A (en) Pitch-based active carbon yarn
JPH03199426A (en) Activated carbon having form of spherical fiber lump and production thereof
JP2004183115A (en) Method for producing nonwoven fabric-like active carbon and nonwoven fabric-like active carbon