JPH03152218A - Pitch conjugate carbon fiber and production thereof - Google Patents

Pitch conjugate carbon fiber and production thereof

Info

Publication number
JPH03152218A
JPH03152218A JP29345789A JP29345789A JPH03152218A JP H03152218 A JPH03152218 A JP H03152218A JP 29345789 A JP29345789 A JP 29345789A JP 29345789 A JP29345789 A JP 29345789A JP H03152218 A JPH03152218 A JP H03152218A
Authority
JP
Japan
Prior art keywords
pitch
carbon fiber
fiber
optically
spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29345789A
Other languages
Japanese (ja)
Inventor
Yasuhiro Yamada
泰弘 山田
Hidemasa Honda
本田 英昌
Haruki Yamazaki
春樹 山嵜
Susumu Shimizu
進 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Tanaka Kikinzoku Kogyo KK filed Critical Agency of Industrial Science and Technology
Priority to JP29345789A priority Critical patent/JPH03152218A/en
Priority to EP19900830386 priority patent/EP0421944A3/en
Priority to US07/575,955 priority patent/US5188894A/en
Publication of JPH03152218A publication Critical patent/JPH03152218A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)
  • Multicomponent Fibers (AREA)

Abstract

PURPOSE:To obtain the subject fiber complementing the defects of the optically isotropic property and optically anisotropic property of fiber components, respectively, and suitable for a composite raw-material by separately feeding a pitch producing an optically isotropic property and a pitch producing an optically anisotropic property into a spinning device, melt-spinning the pitches together, subjecting to an infusible treatment and subsequently baking the treated fibers. CONSTITUTION:A pitch producing optically isotropicity and a pitch producing optically anisotropicity (mesophase) are separately fed into a spinning device, melt-spun together from spinning nozzles, subjected to an infusible treatment and subsequently baked to obtain the objective fibers wherein one part of the cross-sectional surface of each fiber is composed of the optically isotropic carbon fiber and the residue of the cross-sectional surface is also composed of the optically anisotropic carbon fiber.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はピッチ系複合炭素繊維(以下単に複合炭素繊維
という)及びその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a pitch-based composite carbon fiber (hereinafter simply referred to as composite carbon fiber) and a method for producing the same.

(従来の技術) 炭素繊維は、PAN系とピッチ系に大別される。(Conventional technology) Carbon fibers are broadly classified into PAN type and pitch type.

現在、工業的にはアクリロニトリルを特定条件下で焼成
し製造されているPAN系炭素繊維が主に高強度材料(
HPタイプ)として利用されている。しかし、PAN系
繊維は炭素の含有量が低いため、焼成工程において分解
ガスの発生があり、また収率が50〜55%と低(、し
かも高温における黒鉛構造が発達しに(いために、高強
度界は作りやすいが、弾性率の大きなものを作るのが困
難である。
Currently, industrially, PAN-based carbon fibers, which are produced by firing acrylonitrile under specific conditions, are mainly used as high-strength materials (
HP type). However, since PAN fibers have a low carbon content, decomposition gas is generated during the firing process, and the yield is low at 50-55% (and the graphite structure does not develop at high temperatures). It is easy to create a strong field, but it is difficult to create one with a large elastic modulus.

一方、ピッチ系炭素繊維は、石炭、石油などのピッチを
原料としているため、紡糸した繊維中の炭素含有量が9
5%程度と高く、また収率も80〜85%と高く、しか
も物性面では大きな弾性率の発現に優れた特徴があるた
め、急速に開発が進められて来た。
On the other hand, pitch-based carbon fibers are made from coal, petroleum, etc. pitch, so the carbon content in the spun fibers is 9.
It has a high yield of about 5%, a high yield of 80 to 85%, and has an excellent property of exhibiting a large elastic modulus in terms of physical properties, so its development has progressed rapidly.

又ピッチ系炭素繊維でも、ピッチをそのまま溶融紡糸し
焼成すると、光学的等方性の炭素繊維が出来、いわゆる
汎用系タイプ(GP品)の炭素繊維として安価で一定強
度が得られるとして構造物の補強材などに利用されてい
る。光学的異方性(メソフェース)をもつ炭素繊維は、
全面結晶性のピッチを紡糸することによって、紡糸時の
剪断応力場で液晶配列が繊維軸方向の配列となり、これ
を炭化することによって巨大黒鉛結晶が生成され、高弾
性率をもつ(HMタイプ)炭素繊維となるものである。
In the case of pitch-based carbon fibers, if the pitch is melt-spun and fired as is, optically isotropic carbon fibers can be produced, and it is said that it is a general-purpose type (GP product) carbon fiber that is inexpensive and has a constant strength, and is used for structures. It is used as a reinforcing material. Carbon fiber with optical anisotropy (mesophase) is
By spinning entirely crystalline pitch, the liquid crystal alignment becomes aligned in the fiber axis direction in the shear stress field during spinning, and by carbonizing this, giant graphite crystals are generated and have a high elastic modulus (HM type) This is carbon fiber.

したがって、これらのそれぞれの特徴に適合した製品応
用が進められ、炭素繊維単体としてはフィルター、触媒
、電磁遮蔽材などに用いられ、複合体としては樹脂、金
属、炭素、セラミックスなどのマトリックスに対して補
強材料として用いられ、宇宙、航空用、レジャー、スポ
ーツ用、産業用などに広範に利用されている。
Therefore, the application of products that suit each of these characteristics is progressing, and carbon fiber alone is used in filters, catalysts, electromagnetic shielding materials, etc., and as a composite, it is used in matrices of resins, metals, carbon, ceramics, etc. It is used as a reinforcing material and is widely used in space, aviation, leisure, sports, and industrial applications.

最近ではエンジニアリングプラスチックと複合して、電
子部品、自動車部品や構造材料にするための研究が進め
られている。
Recently, research has been underway to combine it with engineering plastics to make electronic parts, automobile parts, and structural materials.

(発明が解決しようとする課題) しかし、これらのピッチ系炭素繊維は光学的等方性の炭
素繊維(GPタイプ)は引張強さ50kg/−〜100
kg/−と低いが伸び率が2.5%もある。
(Problem to be solved by the invention) However, these pitch-based carbon fibers are optically isotropic carbon fibers (GP type) that have a tensile strength of 50 kg/- to 100 kg/-.
Although it is low at kg/-, the elongation rate is 2.5%.

−力先学的異方性の炭素繊維は引張強さ250kg/−
以上で弾性率も50ton/1TIT!以上のものが得
られているが、伸び率は0.5前後であることから複合
材料として構造体として使用した場合、マトリックスの
変形等により応力集中が起こりクラックが生じた場合な
ど脆性材料としての挙動を示すので、−旦発生したクラ
ックはそのまま最終破壊まで進んで大きな事故につなが
りやすいという問題がある。
- Tensile strength of mechanically anisotropic carbon fiber is 250 kg/-
With the above, the elastic modulus is 50 tons/1TIT! However, since the elongation rate is around 0.5, when used as a composite material as a structure, stress concentration occurs due to matrix deformation, etc., and cracks occur. Because of this, there is a problem in that once a crack occurs, it tends to progress to final failure, which can easily lead to a major accident.

光学的異方性炭素繊維はその紡糸条件によって繊維組織
をラジアル組織、オニオン組織、ランダム組織又はこれ
らの複合した組織を作ることや焼成温度を変えることで
引張強度、弾性率、伸び率等を変化させることが出来る
がいずれの場合でも伸び率を1%以上向上させることが
困難な状況にある。
The tensile strength, elastic modulus, elongation rate, etc. of optically anisotropic carbon fibers can be changed by changing the spinning conditions to create a radial, onion, random, or composite fiber structure, or by changing the firing temperature. However, in any case, it is difficult to increase the elongation rate by 1% or more.

さらに、光学的異方性炭素繊維は圧縮強度が低いという
問題がある。これは幅の広い炭素層面が繊維軸に配列し
ている組織であり、炭素層面の85面の強度は高いが、
C面は低いことによるものである。したがって、この問
題を解決するにはPAN系炭素繊維のような幅の狭い炭
素層面を形成させるか、あるいは、光学的異方性炭素繊
維の組織を根本的に変える必要がある。幅の狭い炭素層
面を形成させる方法としては特公昭63−35195号
記戦の発明の方法が提案されている。
Furthermore, optically anisotropic carbon fibers have a problem of low compressive strength. This is a structure in which wide carbon layer planes are arranged along the fiber axis, and the strength of the 85 carbon layer planes is high, but
This is due to the fact that the C plane is low. Therefore, in order to solve this problem, it is necessary to form a narrow carbon layer surface such as a PAN-based carbon fiber, or to fundamentally change the structure of the optically anisotropic carbon fiber. As a method for forming a narrow carbon layer surface, a method disclosed in Japanese Patent Publication No. 35195/1983 has been proposed.

以上のような問題を解決するために、本発明は従来の光
学的異方性炭素繊維のもつ断面構造とは異なった構造を
有し、従来の炭素繊維では解決できない高弾性、高強度
をもち、かつ延伸性が大きく、構造材などの複合体とし
て極めて有用な複合炭素繊維及びその製造方法を提供し
ようとするものである。
In order to solve the above problems, the present invention has a cross-sectional structure different from that of conventional optically anisotropic carbon fibers, and has high elasticity and high strength that cannot be solved with conventional carbon fibers. The object of the present invention is to provide a composite carbon fiber that has high extensibility and is extremely useful as a composite material such as a structural material, and a method for producing the same.

(課題を解決するための手段) 上記課題を解決するための本発明の複合炭素繊維は、繊
維横断面において一部が光学的等方性の炭素繊維、残部
が光学的異方性の炭素繊維で構成されていることを特徴
とするものである。
(Means for Solving the Problems) A composite carbon fiber of the present invention for solving the above problems includes carbon fibers in which a part is optically isotropic in the cross section of the fiber, and carbon fibers in which the remainder is optically anisotropic. It is characterized by being composed of.

また上記複合炭素繊維を作る本発明の製造方法は、光学
的等方性のピッチと光学的異方性のピッチとを別々に紡
糸装置に供給して紡糸孔より一緒に溶融紡糸し、次に不
融化処理し、次いで焼成することを特徴とするものであ
る。
In addition, the manufacturing method of the present invention for producing the above-mentioned composite carbon fiber includes feeding an optically isotropic pitch and an optically anisotropic pitch to a spinning device separately, melt-spinning them together through a spinning hole, and then It is characterized by being subjected to infusibility treatment and then firing.

(作用) 上述の如く、本発明の複合ピッチ系炭素繊維は繊維断面
において、一部が光学的等方性の炭素繊維で、残部が光
学的異方性の炭素繊維で構成され、各炭素繊維の特徴に
よって、それぞれの欠点を補うことによってすぐれた特
性を生みだしたものである。
(Function) As described above, in the fiber cross section of the composite pitch-based carbon fiber of the present invention, a part is optically isotropic carbon fiber and the remainder is optically anisotropic carbon fiber. They have created excellent characteristics by compensating for their respective shortcomings.

すなわち、光学的等方性炭素繊維の特徴である延伸性を
保ち、強度の弱さを光学的異方性炭素繊維の引張強さ、
弾性率の高い特徴により、繊維全体として強度と弾性率
を保持した延伸性のあるピッチ系複合炭素繊維を得るも
のである。
In other words, it maintains the stretchability that is characteristic of optically isotropic carbon fibers, while reducing its weak strength to the tensile strength of optically anisotropic carbon fibers.
Due to its high elastic modulus, it is possible to obtain a stretchable pitch-based composite carbon fiber that maintains strength and elastic modulus as a whole fiber.

また前述の本発明の複合炭素繊維の製造方法によれば、
上記特徴を有する複合炭素繊維を容易に製造でき、しか
も繊維横断面における光学的等方性の炭素繊維と光学的
異方性の炭素繊維の比率や配置及び配向の異なる種々の
複合炭素繊維を製造することも容易である。
Further, according to the method for manufacturing composite carbon fiber of the present invention described above,
Composite carbon fibers having the above characteristics can be easily produced, and various composite carbon fibers can be produced in which the ratio, arrangement, and orientation of optically isotropic carbon fibers and optically anisotropic carbon fibers are different in the fiber cross section. It is also easy to do.

(実施例) 以下本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

本発明による複合炭素繊維は、その出発原料に重質歴青
物、一般には石炭タール、石油分解タールおよびスチー
ムクラッカータールなどが用いられる。これらの原料の
中から純度、軟化点で最適なものを選択するか、要求に
合わない場合は溶媒抽出や熱改質などの前処理を施す。
The composite carbon fiber according to the present invention uses heavy bituminous materials, generally coal tar, petroleum cracking tar, steam cracker tar, etc., as a starting material. From these raw materials, select the one with the best purity and softening point, or if it does not meet the requirements, perform pretreatment such as solvent extraction or thermal modification.

一般に原料重質油中にはフリーカーボン等の微細固形分
が含有しており、その除去が必要である。その1つとし
て、アントラセン油等の芳香族油やキノリン等の有機溶
剤に溶解し、ろ過する。他の方法として一次熱処理して
ピッチ中に含まれるフリーカーボン、鉱物質の微粒、微
小固形物が十分吸着されるだけのメソカーホン微小球体
を生成せしめたあと、これを抽出濾過する。この濾液を
濃縮して得られたピッチを、さらに二次熱処理にかけ重
縮合化させると同時に、軽質分を除いて、軟化点を調整
すると共に光学的に等方性のピッチを得る。
Generally, raw material heavy oil contains fine solids such as free carbon, which must be removed. One method is to dissolve it in an aromatic oil such as anthracene oil or an organic solvent such as quinoline and filter it. Another method is to perform a primary heat treatment to produce mesocarbon microspheres that can sufficiently adsorb free carbon, mineral particles, and microsolids contained in the pitch, and then extract and filter the resulting mesocarbon microspheres. The pitch obtained by concentrating this filtrate is further subjected to a secondary heat treatment to cause polycondensation, and at the same time, light components are removed to adjust the softening point and obtain optically isotropic pitch.

一方、光学的異方性ピッチは、ピッチを2〜3倍量にテ
トラヒドロキノリンで稀釈し、400〜450°Cの温
度で、10〜30kgf/cnfの自生圧下で溶媒水添
する。これを濾過して、フリーカーボンなどを十分除い
たあと、脱溶媒する。最後に450〜500℃の温度で
熱処理して光学的異方性(メソフェース)のピッチを得
る。
On the other hand, optically anisotropic pitch is obtained by diluting the pitch with tetrahydroquinoline to 2 to 3 times the amount, and subjecting the pitch to solvent hydrogenation at a temperature of 400 to 450°C under an autogenous pressure of 10 to 30 kgf/cnf. This is filtered to sufficiently remove free carbon and the like, and then the solvent is removed. Finally, heat treatment is performed at a temperature of 450 to 500°C to obtain an optically anisotropic (mesophase) pitch.

他の方法としては、石油の軽質油の流動接触分解法でガ
ソリンを製造する際、調製する重質タール(FF’Cデ
カントオイル)を熱処理してメソフェースを形成させる
と共に、軽質分を除去して軟化点を調整することによっ
てメソフェースピッチを得る。
Another method is to heat-treat the heavy tar (FF'C decant oil) prepared when producing gasoline by fluid catalytic cracking of petroleum light oil to form mesophase and remove light components. Obtain mesoface pitch by adjusting the softening point.

こうして得た光学的等方性ピッチと、光学的異方性ピッ
チでは炭素繊維化した場合の性質が異なっている。一般
に光学的等方性ピッチを紡糸し、炭素繊維化すると、炭
化後の繊維内の黒鉛結晶は非常に微細であり、それがラ
ンダムに配列しているため、繊維軸方向配列が悪くなる
ため、汎用タイプ(GP品)と呼ばれ、引張強さはlo
okg/−1弾性率5 ton/−前後が一般的である
。光学的異方性の場合、原料ピッチの調製はもちろんで
あるが、特に高強度高弾性炭素繊維を得るためには、分
子の配向制御が重要であり、紡糸時の温度、ノズル形状
、液晶ピッチ特有の分子配向制御が影響する。よってそ
の条件で機械的特性も幅があり、現在得られている炭素
繊維の引張強さは300〜500kg/ITII!、弾
性率30〜70ton/nnfである。
The optically isotropic pitch thus obtained and the optically anisotropic pitch have different properties when made into carbon fibers. Generally, when optically isotropic pitch is spun and made into carbon fibers, the graphite crystals in the fibers after carbonization are very fine and randomly arranged, resulting in poor alignment in the fiber axis direction. It is called a general-purpose type (GP product) and has a tensile strength of lo
Generally, the elastic modulus is around 5 ton/-1 kg/-1. In the case of optical anisotropy, it is important not only to prepare the raw material pitch, but also to control the orientation of molecules, especially in order to obtain high-strength, high-elastic carbon fibers. This is influenced by unique molecular orientation control. Therefore, there is a wide range of mechanical properties depending on the conditions, and the tensile strength of currently available carbon fibers is 300 to 500 kg/ITII! , the elastic modulus is 30 to 70 ton/nnf.

本発明は上述のように著しく異なる双方のピッチを組み
合わせることによって全く新しい構造と特性をもった複
合炭素繊維を作り出したものである。
The present invention creates a composite carbon fiber with a completely new structure and properties by combining both pitches, which are significantly different as described above.

以下、本発明の具体的な実施例について説明する。Hereinafter, specific examples of the present invention will be described.

炭素繊維の出発原料として、コールタールピッチを用い
、不活性ガス雰囲気下で400℃の温度で加熱し、フリ
ーカーボン、微小固形物を濾過して、この炉液をさらに
濃縮して得られたピッチを400℃で二次熱処理をして
重縮合化させると同時に、軽質分を除いて得た光学的等
方性ピッチ(軟化点232°C)と、この光学的等方性
ピッチを約3倍量にテトラヒドロキノリンで稀釈し、4
30℃の温度、20kgf/cnfの圧力下で水添し、
これを濾過してフリーカーボンなど除いたあと脱溶媒し
、さらに470℃の温度で熱処理して得られた光学的異
方性ピッチ(軟化点267°C)を、それぞれ別々に第
1図に示す紡糸装置に供給して、光学的等方性ピッチを
流路lの外周側の流路2に通しそれぞれの導入路3.4
を通じて吐出孔5.6に流入して溶融紡糸し、巻取速度
100m/minで紡糸ドラムに巻き取った。
Coal tar pitch is used as a starting material for carbon fibers, heated at a temperature of 400°C under an inert gas atmosphere, free carbon and fine solids are filtered, and this furnace liquid is further concentrated to obtain pitch. The optically isotropic pitch (softening point: 232°C) obtained by polycondensation through secondary heat treatment at 400°C and the removal of light components, and the optically isotropic pitch obtained by approximately three times diluted with tetrahydroquinoline to a volume of 4
Hydrogenated at a temperature of 30°C and a pressure of 20 kgf/cnf,
The optically anisotropic pitch (softening point: 267°C) obtained by filtering this to remove free carbon, removing the solvent, and further heat-treating it at a temperature of 470°C is shown in Figure 1 separately. The optically isotropic pitch is supplied to the spinning device and passed through the channel 2 on the outer peripheral side of the channel 1 to each introduction channel 3.4.
The mixture was melt-spun by flowing into the discharge hole 5.6, and wound onto a spinning drum at a winding speed of 100 m/min.

その後320℃X 10m1nで不融化処理を施した上
、焼成炉にて1000℃、及び2600℃にて焼成した
Thereafter, it was subjected to infusibility treatment at 320°C x 10ml, and then fired at 1000°C and 2600°C in a firing furnace.

この状態での横断面は第2図に示す如く光学的等方性の
炭素繊維7の周囲から全周をつつむように光学的異方性
の炭素繊維8が接合されて一本の複合炭素繊維9を構成
している。そしてこの時の直径10μmの複合炭素繊維
9は、伸び率0.9%、強度320kg/nwd、弾性
率36ton/−となり光学的等方性及び光学的異方性
のみでは得られない伸び率と強度、弾性率の繊維を得る
ことができた。
The cross section in this state is as shown in FIG. 2, where optically anisotropic carbon fibers 8 are joined to wrap around the optically isotropic carbon fiber 7 from the periphery to a single composite carbon fiber 9. It consists of At this time, the composite carbon fiber 9 with a diameter of 10 μm has an elongation rate of 0.9%, a strength of 320 kg/nwd, and an elastic modulus of 36 ton/-, which is an elongation rate that cannot be obtained only by optical isotropy and optical anisotropy. We were able to obtain fibers with high strength and elastic modulus.

尚、本発明の複合炭素繊維の製造方法に於いて、紡糸装
置の紡糸孔先端の紡糸口断面形状を種々変えたものを用
いてピッチ系炭素繊維を製造すれば、第3図a −iに
示す如(繊維横断面における光学的等方性の炭素繊維7
と光学的異方性の炭素繊維8の比率及び配向の異なる種
々の複合炭素繊維9が得られる。
In addition, in the method for producing composite carbon fibers of the present invention, if pitch-based carbon fibers are produced using various cross-sectional shapes of the spinning holes at the tips of the spinning holes of the spinning apparatus, the results shown in Fig. 3 a-i are obtained. As shown (optically isotropic carbon fiber 7 in the fiber cross section)
Various composite carbon fibers 9 having different ratios and orientations of optically anisotropic carbon fibers 8 are obtained.

また上記実施例では繊維外周が光学的異方性で内部が光
学的等方性のものについて述べたが、本発明はこれに限
るものではな(、この逆のもの即ち繊維外周が光学的等
方性で、内部が光学的異方性のものでも良いものである
Furthermore, in the above embodiments, the outer periphery of the fiber is optically anisotropic and the inner part is optically isotropic, but the present invention is not limited to this. It may be tropic and have optical anisotropy inside.

(発明の効果) 以上の説明で判るように本発明の複合炭素繊維は、繊維
横断面において一部が光学的等方性の炭素繊維、残部が
光学的異方性の炭素繊維で構成されていることにより、
光学的等方性の欠点である強度の弱さを光学的異方性の
長所である強度、弾性率の高さで補い、欠点である延伸
性を前者によって補い、それぞれの長所を取り入れ、欠
点を補充することが出来たことにより、今までにない、
強弾性、高強度でかつ延伸性のある炭素繊維を作ること
ができ、構造材料などの複合材として極めて有用な材料
となる。
(Effects of the Invention) As can be seen from the above explanation, the composite carbon fiber of the present invention is composed of a portion of optically isotropic carbon fiber and an optically anisotropic carbon fiber in the fiber cross section. By being
The disadvantage of optical isotropy, which is low strength, is compensated for by the advantages of optical anisotropy, which are high strength and elastic modulus, and the disadvantage of stretchability is compensated for by the former, and the advantages of each are incorporated. By being able to replenish the
Carbon fibers can be made that are highly elastic, strong, and stretchable, making them extremely useful materials for composite materials such as structural materials.

また本発明の複合炭素繊維の製造方法によれば、上記の
優れた効果を有する複合炭素繊維を容易に製造でき、し
かも紡糸装置の紡糸孔先端の紡糸口断面形状を種々変え
たものを用いて製造することにより、繊維横断面におけ
る光学的等方性の炭素繊維と光学的異方性の炭素繊維の
比率及び配向の異なる種々の複合炭素繊維を適宜製造で
きる。
Further, according to the method for producing composite carbon fibers of the present invention, composite carbon fibers having the above-mentioned excellent effects can be easily produced, and moreover, the composite carbon fibers can be easily produced by using various cross-sectional shapes of the spinning holes at the tips of the spinning apparatuses. By manufacturing, various composite carbon fibers having different ratios and orientations of optically isotropic carbon fibers and optically anisotropic carbon fibers in the fiber cross section can be appropriately manufactured.

尚、本実施例は長繊維の紡糸例を示したが、スピニング
法やガス圧による短繊維紡糸法によって紡糸することに
より多量に安く複合炭素繊維を製造することも出来る。
Although this example shows an example of spinning long fibers, composite carbon fibers can also be produced in large quantities at low cost by spinning or short fiber spinning using gas pressure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の複合炭素繊維を製造する際に用いられ
る紡糸装置を示す破断斜視図、第2図は本発明の複合炭
素繊維の一例の横断面図、第3図a−iは本発明の複合
炭素繊維の横断面形状の種々の例を示す図である。 第1区
FIG. 1 is a cutaway perspective view showing a spinning device used in producing the composite carbon fiber of the present invention, FIG. 2 is a cross-sectional view of an example of the composite carbon fiber of the present invention, and FIGS. It is a figure which shows various examples of the cross-sectional shape of the composite carbon fiber of this invention. Ward 1

Claims (1)

【特許請求の範囲】 1)繊維横断面において一部が光学的等方性の炭素繊維
、残部が光学的異方性の炭素繊維で構成されていること
を特徴とするピッチ系複合炭素繊維。 2)光学的等方性の生じるピッチと光学的異方性の生じ
るピッチとを別々に紡糸装置に供給して紡糸孔より一緒
に溶融紡糸し、次に不融化処理し、次いで焼成すること
を特徴とするピッチ系複合炭素繊維の製造方法。
[Scope of Claims] 1) A pitch-based composite carbon fiber characterized in that a part of the fiber cross section is composed of optically isotropic carbon fiber and the remaining part is composed of optically anisotropic carbon fiber. 2) The pitch that causes optical isotropy and the pitch that causes optical anisotropy are separately fed to a spinning device and melt-spun together through a spinning hole, then subjected to infusibility treatment, and then fired. A method for producing pitch-based composite carbon fiber.
JP29345789A 1989-08-31 1989-11-10 Pitch conjugate carbon fiber and production thereof Pending JPH03152218A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP29345789A JPH03152218A (en) 1989-11-10 1989-11-10 Pitch conjugate carbon fiber and production thereof
EP19900830386 EP0421944A3 (en) 1989-08-31 1990-08-30 Composite carbon fibre and process for preparing same
US07/575,955 US5188894A (en) 1989-08-31 1990-08-31 Composite carbon fiber and process for preparing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29345789A JPH03152218A (en) 1989-11-10 1989-11-10 Pitch conjugate carbon fiber and production thereof

Publications (1)

Publication Number Publication Date
JPH03152218A true JPH03152218A (en) 1991-06-28

Family

ID=17795000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29345789A Pending JPH03152218A (en) 1989-08-31 1989-11-10 Pitch conjugate carbon fiber and production thereof

Country Status (1)

Country Link
JP (1) JPH03152218A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01282312A (en) * 1988-05-10 1989-11-14 Toray Ind Inc Pitch fiber and production thereof
JPH02216221A (en) * 1989-02-13 1990-08-29 Unitika Ltd High-strength, high-modulus activated carbon fiber
JPH02259117A (en) * 1988-12-02 1990-10-19 Petoka:Kk Active carbon fiber and production thereof
JPH02264018A (en) * 1988-12-02 1990-10-26 Petoka:Kk Activated carbon fiber and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01282312A (en) * 1988-05-10 1989-11-14 Toray Ind Inc Pitch fiber and production thereof
JPH02259117A (en) * 1988-12-02 1990-10-19 Petoka:Kk Active carbon fiber and production thereof
JPH02264018A (en) * 1988-12-02 1990-10-26 Petoka:Kk Activated carbon fiber and its production
JPH02216221A (en) * 1989-02-13 1990-08-29 Unitika Ltd High-strength, high-modulus activated carbon fiber

Similar Documents

Publication Publication Date Title
US4016247A (en) Production of carbon shaped articles having high anisotropy
JPS61238885A (en) Method of refining raw material used for production of carbon product
JPS635433B2 (en)
JPS62270685A (en) Production of mesophase pitch
US4115527A (en) Production of carbon fibers having high anisotropy
JPH0133568B2 (en)
KR930006814B1 (en) Pitch for the production of carbon fibers
US5188894A (en) Composite carbon fiber and process for preparing same
US5968435A (en) Process for manufacturing pitch-type carbon fiber
JPH03152218A (en) Pitch conjugate carbon fiber and production thereof
JPS59196390A (en) Preparation of pitch for carbon fiber
JPS6065090A (en) Preparation of pitch for carbon fiber spinning
JP2557985B2 (en) Curl-shaped pitch-based carbon fiber and method for producing the same
JPH0718057B2 (en) Pitch-based fiber manufacturing method
JPH0434019A (en) Carbon short fiber and preparation thereof
JPS61186520A (en) Production of pitch carbon yarn
US4490239A (en) Pitch for carbon fibers
JPS61258024A (en) Production of pitch carbon yarn
JPS61215692A (en) Mesophase pitch suitable for high-performance carbon fiber and its production
JPS5936726A (en) Precursor pitch fiber for carbon fiber
JPH01207420A (en) Production of carbon fiber
JPH0541728B2 (en)
JPS616316A (en) Graphite fiber
JPH0518922B2 (en)
CA1234548A (en) Method for producing a precursor pitch for carbon fiber