JP2004183115A - Method for producing nonwoven fabric-like active carbon and nonwoven fabric-like active carbon - Google Patents

Method for producing nonwoven fabric-like active carbon and nonwoven fabric-like active carbon Download PDF

Info

Publication number
JP2004183115A
JP2004183115A JP2002348102A JP2002348102A JP2004183115A JP 2004183115 A JP2004183115 A JP 2004183115A JP 2002348102 A JP2002348102 A JP 2002348102A JP 2002348102 A JP2002348102 A JP 2002348102A JP 2004183115 A JP2004183115 A JP 2004183115A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
fiber
activated carbon
fibers
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002348102A
Other languages
Japanese (ja)
Inventor
Susumu Ichikawa
進 市川
Yuki Shimagami
祐樹 島上
Hiroyuki Suzuki
啓之 鈴木
Masatoshi Ishihara
昌利 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUZUKI RYUICHI SHOTEN KK
TOYO SERVICE CO Ltd
TOYO SERVICE KK
Aichi Prefecture
Original Assignee
SUZUKI RYUICHI SHOTEN KK
TOYO SERVICE CO Ltd
TOYO SERVICE KK
Aichi Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUZUKI RYUICHI SHOTEN KK, TOYO SERVICE CO Ltd, TOYO SERVICE KK, Aichi Prefecture filed Critical SUZUKI RYUICHI SHOTEN KK
Priority to JP2002348102A priority Critical patent/JP2004183115A/en
Publication of JP2004183115A publication Critical patent/JP2004183115A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for production with which nonwoven fabric-like active carbon having excellent mechanical strength and uniform quality can stably be produced even when waste fibers containing various fibers mixed therein are used as a raw material. <P>SOLUTION: The method for producing the nonwoven fabric-like active carbon is carried out by passing the waste fibers through at least the following first step, second step and third step. The first step of cutting the fibers containing the nonmelting waste fibers to 2-20 cm fiber length, carrying out a recarding treatment of the cut waste fibers and providing loose fiber-like waste fibers. The second step of carrying out a carding treatment of the loose fiber-like waste fibers obtained in the first step, processing the loose fiber-like waste fibers into a nonwoven fabric and affording a nonwoven fabric composed of the waste fibers. The third step of subjecting the nonwoven fabric obtained in the second step and composed of the waste fibers to a carbonizing treatment in an inert gas atmosphere and affording a carbonized nonwoven fabric. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、不織布状活性炭の製造方法及びその製造方法から得られた不織布状活性炭に関し、更に詳しくは、原糸、原綿、編織、染色仕上げ、縫製等の繊維製品の製造工程及び一般家庭から排出される屑繊維から不織布状活性炭を製造する方法及びその製造方法から得られた不織布状活性炭に関する。
【0002】
【従来の技術】
従来、原糸、原綿、編織、染色仕上げ、縫製等の繊維製品の製造工程や一般家庭から大量に排出される屑繊維は、埋め立てや焼却などにより処分されていた。
しかし、近年、地球環境の保護問題や省資源化などの観点から、これら屑繊維を有効利用してリサイクルすることが強く要請されている。
【0003】
本発明者らは、かかる要請に応えるべく、上記のように廃棄されていた屑繊維を不織布状活性炭に変えることを鋭意検討してきた。従来、不織布状活性炭を製造する方法としては、次のようなものが知られている。
【0004】
セルロース系繊維にリン化合物を含浸させた後、炭化、賦活処理して活性炭素繊維を製造する方法(特許文献1参照)、木綿わたにコロイダルシリカ液とミネラルウォーターを含浸させた後、熱処理、賦活処理して繊維状活性炭を製造する方法(特許文献2参照)、天然セルロース繊維綿を炭化、賦活処理して活性炭素繊維綿を製造する方法(特許文献3参照)、繊維形成性ピッチを不織布にし、該不織布を不融化した後に賦活して、ピッチ系活性炭繊維からなる不織布にする方法(特許文献4参照)などである。
【0005】
しかし、これら従来の不織布状活性炭の製造方法は、不織布状に加工することが困難であったり、得られた不織布状活性炭が機械的強度が低いため実用に供することが出来ないという欠点があった。さらに、従来の不織布状活性炭の製造方法は、いずれも原料として特定の繊維を用いなければならないため、屑繊維のように多様な繊維が混在した混合物を使用したのでは、安定した品質の不織布状活性炭が得られないという問題があった。
【0006】
【特許文献1】
特公昭53−30810号公報
【特許文献2】
特開平10−168667号公報
【特許文献3】
特開2002−146636号公報
【特許文献4】
特開昭61−132629号公報
【0007】
【発明が解決しようとする課題】
本発明の目的は、原料として多様な繊維が混合した屑繊維を用いても、機械的強度に優れ、かつ均一な品質の不織布状活性炭を安定に製造することができる製造方法を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成する本発明の不織布状活性炭の製造方法は、少なくとも下記第1工程、第2工程及び第3工程を経ることを特徴とするものである。
【0009】
第1工程:非溶融性の屑繊維を含む繊維を繊維長2〜20cmに裁断し、該裁断した屑繊維を反毛処理して綿状屑繊維を得る工程
第2工程:前記第1工程で得られた綿状屑繊維をカード処理及び不織布化加工して、屑繊維からなる不織布を得る工程
第3工程:前記第2工程で得られた屑繊維からなる不織布を不活性ガス雰囲気下で炭化処理して炭化不織布を得る工程
本発明によれば、上記構成からなることにより、種々の繊維が混在した屑繊維から、機械的強度に優れると共に、均一な品質を有する不織布状活性炭を安定に製造することを可能にする。
【0010】
【発明の実施の形態】
前述したように、本発明の製造方法は、少なくとも三つの工程からなることを特徴とする。その第1工程は、非溶融性の繊維を含む屑繊維を繊維長2〜20cmに裁断した後、この裁断後の屑繊維を反毛処理することにより綿状屑繊維を得るようにする工程である。
【0011】
ここで使用する屑繊維としては、(1)繊維製造工場等のフィラメント製造工程、紡績工程、織布工程、編成工程、染色工程、裁断・縫製工程、編組工程等の各種繊維製品の製造工程から発生する屑繊維、及び(2)一般家庭等で古着、古布、中古布団等の使用済み繊維製品として発生する屑繊維等が挙げられる。かかる屑繊維を構成する繊維としては、木綿繊維、羊毛繊維、絹繊維、麻繊維等の天然繊維、レーヨン繊維、ポリノジック繊維等の半合成繊維、ポリエステル繊維、ナイロン繊維、アクリル繊維、炭素繊維、ポリオレフィン繊維等の合成繊維等が挙げられるが、これらの中に少なくとも非溶融性の繊維を含むことが必要である。このような非溶融性の繊維としては、好ましくはアクリル繊維又はアクリル繊維と炭素繊維とを5重量%以上含むものがよい。
【0012】
本発明に供する屑繊維を裁断する方法としては、特に制限するものではないが、例えば、ローラーカッターで裁断する方法、ギロチンカッターで裁断する方法などを挙げることができる。これら屑繊維は、形状により適宜選択して所定の繊維長に裁断するものとし、その繊維長としては、2〜30cmとし、好ましくは5〜20cmとする。
【0013】
このようにして所定の繊維長に裁断された屑繊維は、反毛処理することにより綿状屑繊維にする。反毛処理の条件は特に制限されるものではなく、公知の反毛機を用いて所定繊維長に裁断された屑繊維を反毛処理して綿状屑繊維にすることができる。このときの反毛機としては、ガーネット機を代表的なものとして使用することができる。
【0014】
次の第2工程は、以上のようにして得られた綿状屑繊維をカード処理することによりカードウェッブを作成し、これを不織布化加工する。カード処理する方法は特に限定されるものではなく、公知のカード方法がいずれも適用可能である。
カード処理機としては、ローラーカード、フラットカード等を挙げることができる。
【0015】
次いで、カード処理して得られたカードウェッブは不織布化加工してフェルト状の不織布にする。不織布化加工の条件は特に制限するものではなく、公知の不織布化加工機によりカードウェッブから屑繊維の不織布にすることができる。不織布化加工機としては、ニードルパンチ法、ウォータージェット法等の機械を挙げることができる。
【0016】
第3工程は、以上のようにして得られた屑繊維の不織布を、不活性ガス、好ましくは窒素雰囲気下で炭化処理し、炭化不織布を得るようにする。炭化処理の温度及び時間は炭化を可能にするものであれば特に制限するものではなく、炭化処理する不織布を構成する繊維の種類、密度等により適宜選択すればよい。
【0017】
しかし、好ましくは、炭化処理の温度としては200〜1000℃にするとよく、さらに好ましくは300〜900℃にするのがよい。また、炭化処理の時間としては、好ましくは5分〜2時間であり、さらに好ましくは0.5〜2時間にすのがよい。また、原料によっては、炭化前に、炭化促進剤を含浸させるか、あるいは空気中で、200〜300℃で熱処理する耐炎化処理を行うことが好ましい。耐炎化処理の時間は2〜10時間程度である。
【0018】
本発明において、第4工程は必須要件ではないが、原料の屑繊維の素材によっては、第3工程に引き続いて第4工程を行うことが好ましい。
【0019】
第4工程は、第3工程で得られた炭化不織布を賦活処理して不織布状活性炭にすることである。第3工程で炭化処理された不織布の賦活処理とは、炭化処理された不織布の炭化繊維表面に孔をあけることにより、表面積を増加させる処理である。
【0020】
賦活処理の条件は特に制限するものではないが、例えば、炭化処理された不織布を700℃〜1000℃の高温で、水蒸気、二酸化炭素、酸素から選ばれた1種以上の反応性気体の中に、好ましくは5〜120分間暴露させることで賦活処理するとができる。賦活処理法としては、上記のように反応性気体を用いるガス賦活法の他に、塩化亜鉛、リン酸、アルカリ性化合物等による化学的賦活法も使用することができる。
【0021】
本発明において、第2工程の不織布加工以前の屑繊維には、リン系化合物、ハロゲン系化合物、珪素系化合物の少なくとも1種を1〜20重量%付着させておくことが好ましい。これらの化合物の具体例としては、リン・窒素化合物として“ノンネン600”(丸菱油化工業社製)、ハロゲン・リン・窒素化合物として“ノンネンN−561”(丸菱油化工業社製)、尿素・リン酸誘導体として“アンファール261”(東海製油工業社製)、コロイダルシリカとして“スノーテックスST”(日産化学工業社製)及びメタ珪酸ソーダ(水ガラス)などを挙げることができる。
【0022】
上述のようにして本発明の製造方法により得られた不織布状活性炭は、様々な有害物質を吸着する特性を有し、特にホルムアルデヒドなどの人体に有害な多くのガスを吸着除去することができる。したがって、高性能な有害ガスフィルターとして活用することができ、更にこの特徴を生かして住宅向けシックハウス原因物質除去内装材や廃水浄化材などにも応用することができる。また、電気抵抗値が非常に低いため、電磁波シールド材や電極材等としても有効に活用することができる。
【0023】
【実施例】
以下、実施例を挙げて本発明を具体的に説明する。
【0024】
(試料の準備)
織布工程から排出されたポリエステルを含む綿主体の捨て耳と、同じく織布工程から排出されたアクリル繊維を、それぞれ5/45/50(重量%)の割合で混合し、反毛、カード、ニードルパンチ工程を通して不織布に加工した。さらに、強度を上げるためにリン系炭化促進剤(丸菱油化工業株式会社製 ノンネン600 )を含浸させ、120℃の熱風乾燥機で加熱処理し水分を蒸発させて乾燥させた。その後、この不織布を活性炭製造装置に入れ、装置内に窒素ガスを流しながら、300℃〜900℃の範囲内の温度に加熱して炭化させた。
【0025】
次に、装置内に二酸化炭素ガスを流しながら、700℃〜1,000℃の温度に加熱し、賦活処理を行った。賦活処理後、装置内への大気の流入を遮断しながら、室温まで冷却し、不織布状活性炭を得た。この不織布状活性炭を、本件試料とした。
【0026】
実施例1
(炭化温度の影響)
炭化時間を1時間に固定し、炭化温度500〜900℃で得た不織布状活性炭について、炭化温度と不織布の比表面積との関係を調べ、その結果を図1に示した。比表面積は湯浅アイオニクス社製 Quantasorb Jr.を用いてBET1点法(窒素吸着)で測定した。又、収率は炭化前と最終不織布の重量から計算した。
【0027】
図1の結果から、炭化温度と比表面積及び収率の関係は、炭化温度700℃〜800℃の間を境に、比表面積が650m/g程度にまで急激に増加し、収率は炭化温度が高くなるにつれて、一様に減少することがわかる。
【0028】
同様に、炭化温度と電気抵抗値との関係を調べ、その結果を図2に示した。電気抵抗値は4探針式電気抵抗測定器(三菱油化社製 ロレスタSP MCP−T500)を用いて測定した。
【0029】
図2の結果から、炭化温度が高くなると不織布状活性炭の電気抵抗値が減少することが分かる。
【0030】
実施例2
(賦活時間の影響)
炭化時間を1時間、炭化温度を500℃、賦活処理温度を900℃に固定し、賦活処理時間を振って得た不織布状活性炭について、賦活処理時間と不織布の比表面積との関係を調べ、その結果を図3に示した。
【0031】
図3の結果から、賦活時間と比表面積及び収率の関係は、賦活時間の増加に伴い、収率は一様に減少し、比表面積は一様に増加した。炭化処理のみ(賦活時間0)では、高々650m/g程度の比表面積までしか得られない、20分以上の賦活処理で比表面積が1,000m/gオーダーの活性炭が得られることがわかる。
【0032】
また、賦活時間と不織布状活性炭の吸着能を調べるために、各種濃度のメチレンブルー溶液(溶媒:リン酸緩衝液pH7)に本件試料を加えて、平衡時の液相濃度を分光光度計で測定し、図4の吸着等温線を作成した。図4において、対照( reference)は市販の粒状活性炭である。
【0033】
図4から、賦活時間の増加と共に、吸着等温線の勾配が緩やかになったことから、賦活処理によって、低濃度域での吸着能力が向上することが分かる。
【0034】
実施例3
(ガス吸着能)
炭化時間を1時間、炭化温度を500℃、賦活処理温度を900℃、賦活処理を時間を20分にして得た不織布状活性炭について次の試験を行った。
【0035】
テドラーバッグに、0.2gの本件試料を入れて密封し、初期濃度60ppmのアンモニアガスを注入して、ガス濃度の変化をガス検知管にて観測した。その結果を図5に示す。24時間後には80%のアンモニアガスを除去することができた。
【0036】
また、初期濃度48ppmのホルムアルデヒドガスを注入して同様の試験を行い、その結果を図6に示した。
【0037】
図6の結果から、未処理の木綿は30分経ても、ホルムアルデヒドガスを完全に除去することできないが、本発明の不織布状活性炭は30分でホルムアルデヒドを完全に除去することができることが分かる。
【0038】
実施例4
(機械的強度試験)
実施例3と同じ試料(目付340g/m)を幅20mmに調製し、引っ張り速度50mm/min、つかみ間隔50mmの条件で、強伸度試験(測定機器:東洋ボールドウイン社製 テンシロンUTM−III −200)を行った。
【0039】
その結果、木綿のみで作成した不織布状活性炭では、もろくて測定が不可能であったが、本発明の製品は、強度が8.5N、伸度が6.3%であり、十分に実用性を有するものであった。
【0040】
【発明の効果】
上述したように、本発明の不織布状活性炭の製造方法は屑繊維から製造するので、地球資源の再利用を促進し、また得られた不織布状活性炭は吸着能に優れ、品質も均一であるので、各種吸着材や有害ガスフィルターとして利用することが可能である。
【図面の簡単な説明】
【図1】本発明の製造方法における炭化温度と比表面積を示すグラフである。
【図2】本発明の製造方法における炭化温度と電気抵抗値を示すグラフである。
【図3】本発明の製造方法における賦活時間と比表面積を示すグラフである。
【図4】本発明の製造方法における賦活時間と吸着特性を示すグラフである。
【図5】本発明で得られた製品のアンモニアガス吸着能を示すグラフである。
【図6】本発明で得られた製品のホルムアルデヒドガス吸着能を示すグラフである。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a nonwoven fabric activated carbon and a nonwoven fabric activated carbon obtained from the production method, and more particularly to a process for producing fiber products such as raw yarn, raw cotton, knitting, dyeing finishing, sewing and the like, and discharging from general households. The present invention relates to a method for producing nonwoven fabric activated carbon from waste fibers to be produced and a nonwoven fabric activated carbon obtained from the production process.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, waste fibers discharged in large quantities from the manufacturing process of fiber products such as raw yarn, raw cotton, knitting, weaving, dyeing finishing, sewing and the like and general households have been disposed of by landfilling or incineration.
However, in recent years, from the viewpoints of protection of the global environment and resource saving, it has been strongly demanded to effectively utilize and recycle these waste fibers.
[0003]
In order to respond to such a demand, the present inventors have intensively studied changing waste fibers discarded as described above to non-woven fabric activated carbon. 2. Description of the Related Art Conventionally, the following methods have been known as methods for producing nonwoven fabric activated carbon.
[0004]
A method of producing an activated carbon fiber by impregnating a cellulosic fiber with a phosphorus compound, and then carbonizing and activating (see Patent Document 1), impregnating a cotton wadding with a colloidal silica liquid and mineral water, and then performing heat treatment and activation. A method for producing fibrous activated carbon by treatment (see Patent Document 2), a method for producing activated carbon fiber cotton by carbonizing and activating natural cellulose fiber cotton (see Patent Document 3), and forming a fiber-forming pitch into a nonwoven fabric A method of inactivating the nonwoven fabric and then activating the nonwoven fabric to form a nonwoven fabric made of pitch-based activated carbon fibers (see Patent Document 4).
[0005]
However, these conventional methods for producing non-woven activated carbon have the drawback that it is difficult to process them into a non-woven or that the obtained non-woven activated carbon has low mechanical strength and cannot be put to practical use. . Furthermore, in the conventional method of producing nonwoven fabric activated carbon, since a specific fiber must be used as a raw material, if a mixture of various fibers such as waste fibers is used, a stable quality nonwoven fabric can be obtained. There was a problem that activated carbon could not be obtained.
[0006]
[Patent Document 1]
JP-B-53-30810 [Patent Document 2]
JP-A-10-168667 [Patent Document 3]
JP 2002-146636 A [Patent Document 4]
JP-A-61-132629
[Problems to be solved by the invention]
An object of the present invention is to provide a production method capable of stably producing nonwoven fabric-like activated carbon having excellent mechanical strength and uniform quality even when using waste fibers in which various fibers are mixed as a raw material. is there.
[0008]
[Means for Solving the Problems]
The method for producing a nonwoven fabric activated carbon of the present invention that achieves the above object is characterized by passing at least the following first, second and third steps.
[0009]
First step: a step of cutting the fiber containing the non-melting waste fiber into a fiber length of 2 to 20 cm, and obtaining a flocculent waste fiber by subjecting the cut waste fiber to anti-hair treatment. A step of treating the obtained flocculent fiber with a card treatment and converting it into a nonwoven fabric to obtain a nonwoven fabric composed of the waste fiber third step: carbonizing the nonwoven fabric composed of the waste fiber obtained in the second step in an inert gas atmosphere According to the present invention, a nonwoven fabric-like activated carbon having excellent mechanical strength and uniform quality is stably produced from waste fibers in which various fibers are mixed according to the present invention. To be able to
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
As described above, the manufacturing method of the present invention is characterized by comprising at least three steps. The first step is a step of cutting waste fibers containing non-melting fibers into a fiber length of 2 to 20 cm, and then subjecting the cut waste fibers to anti-hair treatment to obtain cotton-like waste fibers. is there.
[0011]
Examples of the waste fiber used here include (1) various fiber product manufacturing processes such as a filament manufacturing process of a fiber manufacturing plant and the like, a spinning process, a woven fabric process, a knitting process, a dyeing process, a cutting and sewing process, and a braiding process. Waste fibers generated and (2) waste fibers generated as used fiber products such as used clothes, used cloths, used futons and the like in general households and the like. Examples of the fibers constituting such waste fibers include natural fibers such as cotton fibers, wool fibers, silk fibers, and hemp fibers, semi-synthetic fibers such as rayon fibers and polynosic fibers, polyester fibers, nylon fibers, acrylic fibers, carbon fibers, and polyolefins. Synthetic fibers such as fibers may be mentioned, and it is necessary to include at least non-melting fibers in these. Such non-melting fibers preferably include acrylic fibers or fibers containing acrylic fibers and carbon fibers in an amount of 5% by weight or more.
[0012]
The method for cutting the waste fiber used in the present invention is not particularly limited, and examples thereof include a method of cutting with a roller cutter and a method of cutting with a guillotine cutter. These waste fibers are appropriately selected depending on the shape and cut into a predetermined fiber length, and the fiber length is 2 to 30 cm, preferably 5 to 20 cm.
[0013]
The waste fibers cut to a predetermined fiber length in this way are subjected to anti-hair treatment to be made into cotton-like waste fibers. The conditions of the anti-hair treatment are not particularly limited, and the waste fibers cut into a predetermined fiber length can be subjected to the anti-hair treatment by using a known anti-hair machine to be made into cotton-like waste fibers. A typical garnet machine can be used as the anti-hair machine at this time.
[0014]
In the next second step, a card web is prepared by treating the flocculent fiber obtained as described above with a card, and the card web is processed into a nonwoven fabric. The method of card processing is not particularly limited, and any known card method can be applied.
Examples of the card processing machine include a roller card and a flat card.
[0015]
Next, the card web obtained by the card treatment is processed into a nonwoven fabric to make a felt-like nonwoven fabric. The conditions for the non-woven fabric processing are not particularly limited, and the card web can be converted to non-woven fabric of waste fibers by a known non-woven fabric processing machine. Examples of the nonwoven fabric processing machine include machines such as a needle punch method and a water jet method.
[0016]
In the third step, the nonwoven fabric of waste fibers obtained as described above is carbonized under an inert gas atmosphere, preferably a nitrogen atmosphere, to obtain a carbonized nonwoven fabric. The temperature and time of the carbonization treatment are not particularly limited as long as carbonization is possible, and may be appropriately selected depending on the type, density, and the like of the fibers constituting the nonwoven fabric to be carbonized.
[0017]
However, the temperature of the carbonization treatment is preferably set to 200 to 1000 ° C, and more preferably 300 to 900 ° C. The carbonization time is preferably from 5 minutes to 2 hours, and more preferably from 0.5 to 2 hours. Further, depending on the raw material, it is preferable to impregnate with a carbonization accelerator before carbonization or to perform a flame-resistant treatment in which heat treatment is performed at 200 to 300 ° C. in air. The time of the oxidization treatment is about 2 to 10 hours.
[0018]
In the present invention, the fourth step is not an essential requirement, but it is preferable to perform the fourth step subsequent to the third step depending on the raw material of the waste fiber.
[0019]
The fourth step is to activate the carbonized nonwoven fabric obtained in the third step to obtain a nonwoven fabric activated carbon. The activation treatment of the nonwoven fabric carbonized in the third step is a process of increasing the surface area by making holes in the carbonized fiber surface of the carbonized nonwoven fabric.
[0020]
The condition of the activation treatment is not particularly limited, but, for example, the carbonized nonwoven fabric is heated at a high temperature of 700 ° C to 1000 ° C in one or more reactive gases selected from steam, carbon dioxide, and oxygen. The activation treatment can be performed preferably by exposing for 5 to 120 minutes. As the activation treatment method, in addition to the gas activation method using a reactive gas as described above, a chemical activation method using zinc chloride, phosphoric acid, an alkaline compound, or the like can be used.
[0021]
In the present invention, it is preferable that 1 to 20% by weight of at least one of a phosphorus compound, a halogen compound and a silicon compound is adhered to the waste fiber before the nonwoven fabric processing in the second step. Specific examples of these compounds include “Nonnene 600” (manufactured by Marubishi Yuka Kogyo Co., Ltd.) as a phosphorus / nitrogen compound and “Nonnene N-561” (manufactured by Marubishi Yuka Kogyo Co., Ltd.) as a halogen / phosphorus / nitrogen compound. Examples of the urea / phosphoric acid derivative include "Amphal 261" (manufactured by Tokai Oil Industries), and the colloidal silica includes "Snowtex ST" (manufactured by Nissan Chemical Industries, Ltd.) and sodium metasilicate (water glass).
[0022]
The nonwoven fabric activated carbon obtained by the production method of the present invention as described above has a property of adsorbing various harmful substances, and particularly can adsorb and remove many gases harmful to the human body such as formaldehyde. Therefore, it can be used as a high-performance harmful gas filter, and furthermore, by making use of this feature, it can be applied to interior materials for removing sick house causal substances for houses and wastewater purifying materials. Further, since the electric resistance value is extremely low, it can be effectively used as an electromagnetic wave shielding material or an electrode material.
[0023]
【Example】
Hereinafter, the present invention will be described specifically with reference to examples.
[0024]
(Preparation of sample)
The cotton-based waste ears containing polyester discharged from the weaving process and the acrylic fibers also discharged from the weaving process are mixed at a ratio of 5/45/50 (% by weight), respectively. It was processed into a nonwoven fabric through a needle punching process. Further, in order to increase the strength, a phosphorus-based carbonization accelerator (Nonnen 600, manufactured by Marubishi Yuka Kogyo Co., Ltd.) was impregnated, and was heated with a hot air drier at 120 ° C. to evaporate water and dried. Thereafter, the nonwoven fabric was placed in an activated carbon production apparatus, and heated to a temperature in the range of 300 ° C to 900 ° C and carbonized while flowing nitrogen gas into the apparatus.
[0025]
Next, while flowing carbon dioxide gas in the apparatus, the apparatus was heated to a temperature of 700 ° C. to 1,000 ° C. to perform an activation treatment. After the activation treatment, the device was cooled to room temperature while shutting off the inflow of air into the device, to obtain a nonwoven fabric activated carbon. This non-woven activated carbon was used as the sample of the present invention.
[0026]
Example 1
(Effect of carbonization temperature)
The relationship between the carbonization temperature and the specific surface area of the nonwoven fabric was examined for the activated carbon obtained at a carbonization temperature of 500 to 900 ° C. with the carbonization time fixed at 1 hour. The results are shown in FIG. The specific surface area is Quantasorb Jr. manufactured by Yuasa Ionics. Was measured by the BET one-point method (nitrogen adsorption). The yield was calculated from the weight of the non-woven fabric before carbonization and the final non-woven fabric.
[0027]
From the results shown in FIG. 1, the relationship between the carbonization temperature, the specific surface area, and the yield shows that the specific surface area sharply increases to about 650 m 2 / g between the carbonization temperatures of 700 ° C. to 800 ° C. It can be seen that the temperature decreases uniformly as the temperature increases.
[0028]
Similarly, the relationship between the carbonization temperature and the electric resistance value was examined, and the results are shown in FIG. The electric resistance was measured using a four-probe electric resistance meter (Loresta SP MCP-T500 manufactured by Mitsubishi Yuka Co., Ltd.).
[0029]
From the results shown in FIG. 2, it can be seen that as the carbonization temperature increases, the electric resistance value of the activated carbon nonwoven fabric decreases.
[0030]
Example 2
(Effect of activation time)
The carbonization time was 1 hour, the carbonization temperature was 500 ° C, the activation temperature was fixed at 900 ° C, and the activated carbon obtained by shaking the activation time was examined for the relationship between the activation time and the specific surface area of the nonwoven fabric. The results are shown in FIG.
[0031]
From the results of FIG. 3, the relationship between the activation time, the specific surface area, and the yield showed that the yield decreased uniformly and the specific surface area increased uniformly as the activation time increased. It can be seen that only the carbonization treatment (activation time 0) can provide at most a specific surface area of at most about 650 m 2 / g, and that the activation treatment of 20 minutes or more can provide activated carbon having a specific surface area of the order of 1,000 m 2 / g. .
[0032]
In addition, in order to examine the activation time and the adsorption capacity of the activated carbon in the form of nonwoven fabric, the sample was added to a methylene blue solution of various concentrations (solvent: phosphate buffer pH 7), and the liquid phase concentration at equilibrium was measured with a spectrophotometer. The adsorption isotherm of FIG. 4 was created. In FIG. 4, the reference is a commercially available granular activated carbon.
[0033]
FIG. 4 shows that the slope of the adsorption isotherm became gentler with the increase of the activation time, indicating that the activation treatment improves the adsorption capacity in a low concentration region.
[0034]
Example 3
(Gas adsorption capacity)
The following test was performed on nonwoven fabric activated carbon obtained by setting the carbonization time to 1 hour, the carbonization temperature to 500 ° C, the activation temperature to 900 ° C, and the activation time to 20 minutes.
[0035]
0.2 g of the present sample was put in a Tedlar bag and sealed, and an ammonia gas having an initial concentration of 60 ppm was injected, and a change in gas concentration was observed with a gas detector tube. The result is shown in FIG. After 24 hours, 80% of the ammonia gas could be removed.
[0036]
A similar test was conducted by injecting a formaldehyde gas having an initial concentration of 48 ppm, and the results are shown in FIG.
[0037]
From the results of FIG. 6, it can be seen that the untreated cotton cannot completely remove the formaldehyde gas even after 30 minutes, but the non-woven activated carbon of the present invention can completely remove the formaldehyde in 30 minutes.
[0038]
Example 4
(Mechanical strength test)
The same sample as in Example 3 (basis weight: 340 g / m 2 ) was prepared to have a width of 20 mm, and a tensile strength test (measuring device: Tensilon UTM-III manufactured by Toyo Baldwin Co., Ltd.) was performed under the conditions of a pulling speed of 50 mm / min and a gripping interval of 50 mm. -200).
[0039]
As a result, non-woven activated carbon made of only cotton was brittle and could not be measured. However, the product of the present invention had a strength of 8.5 N and an elongation of 6.3%, and was sufficiently practical. It was what had.
[0040]
【The invention's effect】
As described above, since the method for producing nonwoven fabric activated carbon of the present invention is produced from waste fiber, it promotes the reuse of earth resources, and the obtained nonwoven fabric activated carbon has excellent adsorption capacity and uniform quality. It can be used as various adsorbents and harmful gas filters.
[Brief description of the drawings]
FIG. 1 is a graph showing the carbonization temperature and the specific surface area in the production method of the present invention.
FIG. 2 is a graph showing a carbonization temperature and an electric resistance value in the production method of the present invention.
FIG. 3 is a graph showing activation time and specific surface area in the production method of the present invention.
FIG. 4 is a graph showing activation time and adsorption characteristics in the production method of the present invention.
FIG. 5 is a graph showing ammonia gas adsorption capacity of a product obtained by the present invention.
FIG. 6 is a graph showing the formaldehyde gas adsorption ability of the product obtained in the present invention.

Claims (8)

少なくとも下記第1工程、第2工程及び第3工程を経ることを特徴とする不織布状活性炭の製造方法。
第1工程:非溶融性の屑繊維を含む繊維を繊維長2〜20cmに裁断し、該裁断した屑繊維を反毛処理して綿状屑繊維を得る工程
第2工程:前記第1工程で得られた綿状屑繊維をカード処理及び不織布化加工して、屑繊維からなる不織布を得る工程
第3工程:前記第2工程で得られた屑繊維からなる不織布を不活性ガス雰囲気下で炭化処理して炭化不織布を得る工程
A method for producing a nonwoven fabric-like activated carbon, comprising at least the following first step, second step and third step.
First step: a step of cutting the fiber containing the non-melting waste fiber into a fiber length of 2 to 20 cm, and obtaining a flocculent waste fiber by subjecting the cut waste fiber to anti-hair treatment. A step of treating the obtained flocculent fiber with a card treatment and converting it into a nonwoven fabric to obtain a nonwoven fabric composed of the waste fiber third step: carbonizing the nonwoven fabric composed of the waste fiber obtained in the second step in an inert gas atmosphere Process to obtain carbonized nonwoven fabric
前記第3工程に続いて下記の第4工程を行う請求項1に記載の不織布状活性炭の製造方法。
第4工程:前記第3工程で得られた炭化不織布を賦活処理して不織布状活性炭を得る工程。
The method for producing nonwoven fabric activated carbon according to claim 1, wherein the following fourth step is performed following the third step.
Fourth step: a step of activating the carbonized nonwoven fabric obtained in the third step to obtain a nonwoven fabric activated carbon.
前記第3工程の炭化処理を温度200〜1000℃、1〜3時間で行う請求項1又は2に記載の不織布状活性炭の製造方法。The method for producing a nonwoven fabric activated carbon according to claim 1, wherein the carbonization treatment in the third step is performed at a temperature of 200 to 1000 ° C. for 1 to 3 hours. 前記第4工程の賦活処理を温度700〜1000℃、5分〜2時間で、かつ水蒸気、二酸化炭素及び酸素から選ばれた1種以上の雰囲気下で行う請求項2又は3に記載の不織布状活性炭の製造方法。The nonwoven fabric according to claim 2 or 3, wherein the activation treatment in the fourth step is performed at a temperature of 700 to 1000 ° C for 5 minutes to 2 hours and in at least one atmosphere selected from steam, carbon dioxide, and oxygen. Method for producing activated carbon. 前記非溶融性の屑繊維がアクリル繊維又はアクリル繊維と炭素繊維を5重量%以上の割合で含有する繊維である請求項1〜4いずれかに記載の不織布状活性炭の製造方法。The method for producing a nonwoven fabric activated carbon according to any one of claims 1 to 4, wherein the non-melting waste fiber is an acrylic fiber or a fiber containing an acrylic fiber and a carbon fiber in a ratio of 5% by weight or more. 前記第2工程の不織布化加工する以前の屑繊維が、下記の炭化促進剤から選ばれた少なくとも1種を1〜20重量%の割合で付着している請求項1〜5のいずれかに記載の不織布状活性炭の製造方法。
炭化促進剤:リン系化合物、チッソ系化合物、ハロゲン系化合物及びケイ素系化合物
The waste fiber before the non-woven fabric processing in the second step has adhered at least one selected from the following carbonization accelerators at a ratio of 1 to 20% by weight. Method for producing non-woven activated carbon.
Carbonization accelerators: phosphorus compounds, nitrogen compounds, halogen compounds and silicon compounds
前記第3工程の炭化処理前に、炭化促進剤を含浸させるか、あるいは空気中で、200〜300℃で熱処理する耐炎化処理を行う請求項1〜6いずれかに記載の不織布状活性炭の製造方法。The non-woven fabric activated carbon production according to any one of claims 1 to 6, wherein before the carbonization treatment in the third step, a carbonization accelerator is impregnated or subjected to a flame-resistant treatment of heat treatment at 200 to 300 ° C in air. Method. 請求項1〜7のいずれかに記載の製造方法によって得られた不織布状活性炭。A nonwoven fabric activated carbon obtained by the production method according to claim 1.
JP2002348102A 2002-11-29 2002-11-29 Method for producing nonwoven fabric-like active carbon and nonwoven fabric-like active carbon Pending JP2004183115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002348102A JP2004183115A (en) 2002-11-29 2002-11-29 Method for producing nonwoven fabric-like active carbon and nonwoven fabric-like active carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002348102A JP2004183115A (en) 2002-11-29 2002-11-29 Method for producing nonwoven fabric-like active carbon and nonwoven fabric-like active carbon

Publications (1)

Publication Number Publication Date
JP2004183115A true JP2004183115A (en) 2004-07-02

Family

ID=32751103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002348102A Pending JP2004183115A (en) 2002-11-29 2002-11-29 Method for producing nonwoven fabric-like active carbon and nonwoven fabric-like active carbon

Country Status (1)

Country Link
JP (1) JP2004183115A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006043385A1 (en) * 2004-10-19 2006-04-27 Akamatsu Kougyou Co., Ltd. Process for producing carbonaceous material
JP2006339587A (en) * 2005-06-06 2006-12-14 Kuraray Co Ltd Manufacturing method of polarizable electrode, screening method of polarizable electrode and electric double layer capacitor, as well as carbonaceous material
JP2008069492A (en) * 2006-09-15 2008-03-27 Japan Science & Technology Agency Method for producing activated carbon nonwoven fabric

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006043385A1 (en) * 2004-10-19 2006-04-27 Akamatsu Kougyou Co., Ltd. Process for producing carbonaceous material
JP2006339587A (en) * 2005-06-06 2006-12-14 Kuraray Co Ltd Manufacturing method of polarizable electrode, screening method of polarizable electrode and electric double layer capacitor, as well as carbonaceous material
JP4694271B2 (en) * 2005-06-06 2011-06-08 株式会社クラレ Polarized electrode manufacturing method, polarizable electrode, electric double layer capacitor, and carbonaceous material selection method
JP2008069492A (en) * 2006-09-15 2008-03-27 Japan Science & Technology Agency Method for producing activated carbon nonwoven fabric

Similar Documents

Publication Publication Date Title
JP6790095B2 (en) Graphene adsorbent, its manufacturing method and its application, and tobacco filter and tobacco
CA1159810A (en) Process for the production of fibrous activated carbon
JP6470750B2 (en) Activated carbon fiber and method for producing the same
EP1118698B1 (en) Multifibrous carbon fiber and utilization thereof
RU2233696C2 (en) Method of manufacturing filtering article and protecting cloth
US4714649A (en) Carbonizable fabrics of activated, carbonized fibers and differently activated or unactivated fibers
JP7106390B2 (en) activated carbon fiber material
JP2004183115A (en) Method for producing nonwoven fabric-like active carbon and nonwoven fabric-like active carbon
JP7229788B2 (en) activated carbon fiber material
JP4879861B2 (en) Charcoal-containing fiber and method for producing the same
JP2888635B2 (en) Adsorption activated carbonized polyarylamide
KR101659728B1 (en) A method for manufacturing non-woven fabric of composite activated carbon fiber
JPS62141126A (en) Production of activated carbon fiber
JP2565769B2 (en) Activated carbon fiber and manufacturing method thereof
US3661503A (en) Process for dehydrating cellulosic textile material
KR101647966B1 (en) Method of making composite fiber filter for degasing and elemination of dilute hamful gas
JP7383263B2 (en) Composite yarns and fabrics
JP7204026B1 (en) NONWOVEN FABRIC AND METHOD FOR MANUFACTURING SAME, METHOD FOR COLLECTING ORGANIC SOLVENT USING SAME, AND ORGANIC SOLVENT COLLECTION APPARATUS
TWI833290B (en) Molded body for water purification
JP3775595B2 (en) Water repellent fibrous activated carbon knitted fabric
RU2224057C2 (en) Carbon textured thread and method for manufacturing the same
JPH02259149A (en) Active carbon fiber nonwoven fabric and production thereof
Su et al. Influence of flame retardant on manufacturing carbon fiber absorbents
JPS6045123B2 (en) Manufacturing method of fibrous activated carbon
JPH03199426A (en) Activated carbon having form of spherical fiber lump and production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080226