JPH0222222B2 - - Google Patents

Info

Publication number
JPH0222222B2
JPH0222222B2 JP58174076A JP17407683A JPH0222222B2 JP H0222222 B2 JPH0222222 B2 JP H0222222B2 JP 58174076 A JP58174076 A JP 58174076A JP 17407683 A JP17407683 A JP 17407683A JP H0222222 B2 JPH0222222 B2 JP H0222222B2
Authority
JP
Japan
Prior art keywords
valve
engine
load
intake
intake passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58174076A
Other languages
Japanese (ja)
Other versions
JPS6067731A (en
Inventor
Makoto Ueno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP58174076A priority Critical patent/JPS6067731A/en
Publication of JPS6067731A publication Critical patent/JPS6067731A/en
Publication of JPH0222222B2 publication Critical patent/JPH0222222B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D17/00Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
    • F02D17/02Cutting-out

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は分割運転制御式内燃機関に関する。 従来技術 スロツトル弁により機関負荷を制御するように
した内燃機関ではスロツトル弁開度が小さくなる
につれて燃料消費率が悪化する。従つて燃料消費
率を向上するために機関低負荷運転時には一部の
気筒を休止させると共に残りの気筒に高負荷運転
を行なわせるようにした分割運転制御式内燃機関
が、例えば特開昭55−69736号公報に記載されて
いるように公知である。この公知の内燃機関では
第1図に示すように気筒が第1気筒群Aと第2気
筒群Bとに分割され、第1気筒群Aと第2気筒群
Bに夫々第1吸気マニホルド1と第2吸気マニホ
ルド2を接続すると共に第1吸気マニホルド1と
第2吸気マニホルド2を共通のスロツトル弁3を
介して大気に連通させ、第1吸気マニホルド1の
吸入空気入口部に吸気遮断弁4を設けると共に排
気マニホルド5と第1吸気マニホルド1とを連結
する排気還流通路6内に排気還流弁7を設け、機
関低負荷運転時には燃料噴射弁8からの燃料噴射
を停止させると共に吸気遮断弁4を閉弁しかつ排
気還流弁7を開弁して第2気筒群を高負荷運転せ
しめ、一方、機関高負荷運転時には全燃料噴射弁
8,9から燃料を噴射すると共に吸気遮断弁4を
開弁しかつ排気還流弁7を閉弁して全気筒A,B
を発火運転せしめるようにしている。この内燃機
関では上述のように機関低負荷運転時に吸気遮断
弁4が閉弁しかつ排気還流弁7が開弁して第1気
筒群Aに排気還流通路6を介して排気ガスが循環
されるためにポンピング損失をなくすことがで
き、しかもこのとき第2気筒群Bが高負荷運転せ
しめられるので燃料消費率を向上することができ
る。 このようにこの内燃機関では機関低負荷運転時
に部分気筒運転を行なうことによつて燃料消費率
を向上でき、機関高負荷運転時には全気筒運転を
行なうことによつて機関高出力を得るようにして
いるが機関全負荷運転時における出力がいま一つ
十分でなく、従つて機関全負荷運転時における出
力を向上する必要がある。機関出力を向上するた
めの一つの方法として等価吸気管長を機関の運転
状態に応じて変化させる方法が知られており、分
割運転制御式内燃機関においても等価吸気管長を
変えることによつて機関出力を向上することがで
きるがこのような等価吸気管長を変えることによ
つて円滑な分割運転制御が損なわれては等価吸気
管長を変える意味がない。 発明の目的 本発明は円滑な分割運転制御を確保しつつ機関
全負荷運転時における機関出力を向上するように
した分割運転制御式内燃機関を提供することにあ
る。 発明の構成 本発明の構成は、気筒を第1の気筒群と第2の
気筒群に分割し、吸気通路の下流部分を第1吸気
通路と第2吸気通路に分割して第1吸気通路を第
1気筒群に連結すると共に第2吸気通路を第2気
筒群に連結し、第1気筒群および第2気筒群に供
給する吸入空気量を制御するスロツトル弁を吸気
通路内に設け、スロツトル弁後流の第1吸気通路
内に吸気遮断弁を設けて機関負荷が予め定められ
た第1負荷よりも高い機関高負荷運転時に吸気遮
断弁を開弁し、吸気遮断弁後流の第1吸気通路と
機関排気通路とを連結する排気還流通路内に排気
還流弁を設けて機関負荷が第1負荷よりも高い機
関高負荷運転時に排気還流弁を閉弁し、機関負荷
が第1負荷よりも高い機関高負荷運転時に第1気
筒群並びに第2気筒群へ燃料を供給すると共に機
関負荷が第1負荷よりも低い機関低負荷運転時に
第1気筒群への燃料の供給を停止するための燃料
供給装置を具備した内燃機関において、第1吸気
通路と第2吸気通路を互に隣接配置すると共にス
ロツトル弁後流の第1吸気通路内に設けた吸気遮
断弁後流の第1吸気通路を連通孔を介して第2吸
気通路に連通させ、連通孔に開閉制御弁を設けて
機関負荷が第1負荷よりも大きな第2負荷以上で
ある機関全負荷運転時以外のときには開閉制御弁
を閉弁保持すると共に機関負荷が第2負荷よりも
高い機関全負荷運転時の予め定められた機関回転
数領域内で開閉制御弁を開弁するようにしたこと
にある。 実施例 第2図を参照すると、10は機関本体、11は
第1サージタンク、12は第2サージタンク、1
3aは第1サージタンク11内に連通する夫々独
立した第1枝管、13bは第2サージタンク12
内に連通する夫々独立した第2枝管、14は第1
排気マニホルド、15は第2排気マニホルド、1
6a,16b,16c,16d,16e,16f
は1番気筒、2番気筒、3番気筒、4番気筒、5
番気筒並びに6番気筒を夫々示す。なお、これら
の各気筒は気筒16a,16b,16cからなる
第1気筒群Aと、気筒16d,46e,46fか
らなる第2気筒群Bとに分割される。第2図から
わかるように第1サージタンク11並びに第1排
気マニホルド14は第1気筒群Aに接続され、第
2サージタンク12並びに第2排気マニホルド1
5は第2気筒群Bに接続される。第1サージタン
ク11並びに第2サージタンク12の各枝管13
a,13bには燃料噴射弁17a,17bが取付
けられ、これらの各燃料噴射弁17a,17bの
ソレノイドは電子制御ユニツト18に接続され
る。一方、第1排気マニホルド14および第2排
気マニホルド15は夫々別個のターボチヤージヤ
19a,19bの排気タービンTに連結され、各
ターボチヤージヤ19a,19bの排気タービン
Tの排気出口は共通の排気管20に連結される。
この排気管20内には酸素濃度検出器21が取付
けられ、この酸素濃度検出器21は電子制御ユニ
ツト18に接続される。なお、排気管20には三
元触媒コンバータ(図示せず)が取付けられる。 実線により図解的に示す吸気通路22はその下
流部分が第1吸気通路23aと第2吸気通路23
bに分割され、これらの第1吸気通路23aおよ
び第2吸気通路23bは一体形成のハウジング内
に形成される。第1吸気通路23aは第1サージ
タンク11に向けてほぼまつすぐに延びて第1サ
ージタンク11に連結され、第2吸気通路23b
は第2サージタンク12に向けてほぼまつすぐに
延びて第2サージタンク12に連結される。これ
らの第1吸気通路23aおよび第2吸気通路23
bは互にほぼ平行をなして延びかつ互に隣接配置
される。第1吸気通路23aおよび第2吸気通路
23bの共通の入口部にはスロツトル弁24が配
置され、このスロツトル弁24はアクセルペタル
に連結されたスロツトル軸26上に固定される。
第2図に示されるようにスロツトル軸26にはス
ロツトルセンサ25が取付けられる。このスロツ
トルセンサ25はスロツトル軸26が一定角度回
転する毎にパルス信号を発生し、従つてこのパル
ス信号からスロツトル弁24の開弁速度を検出す
ることができる。このスロツトルセンサ25は電
子制御ユニツト18に接続される。一方、吸気通
路22は各ターボチヤージヤ19a,19bのコ
ンプレツサCの吐出側に連結され、各コンプレツ
サCの吸込側は共通のエアフローメータ27を介
して図示しないエアクリーナに接続される。 第2図に示されるようにスロツトル弁24下流
の第1吸気通路23a内には吸気遮断弁29が挿
入される。この吸気遮断弁29の弁軸30は一方
では駆動装置31に連結され、他方ではバルブ位
置センサ32に連結される。駆動装置31は第
1DCモータ33と、第1DCモータ33の駆動軸に
固定されたウオーム(図示せず)と、このウオー
ムと噛合しかつ弁軸30上に固定されたウオーム
歯車34から構成される。従つて第1DCモータ3
3が駆動されると吸気遮断弁29が回動せしめら
れることがわかる。一方、バルブ位置センサ32
は固定抵抗32aと、この固定抵抗32aに接触
しかつ吸気遮断弁29と共に回転する可動接点3
2bとにより構成される。固定接点32aの一端
は電源35に接続され、固定接点32aの他端は
接地される。従つて可動接点32bには吸気遮断
弁29の開度に応じた電圧が発生することがわか
る。これらの第1DCモータ33およびバルブ位置
センサ32は電子制御ユニツト18に接続され
る。 第2図に示されるように吸気遮断弁29後流の
第1吸気通路23aは連通孔36を介して第2吸
気通路32bに連通せしめられる。第2吸気通路
23b内にはこの連通孔36の開閉制御をする開
閉制御弁37が挿入され、開閉制御弁37は第
2DCモータ38によつて駆動制御される。この開
閉制御弁37は後に詳細に説明するように部分気
筒運転時には閉弁状態に保持される。第2DCモー
タ38は電子制御ユニツト18に接続される。 第1排気マニホルド14と第1サージタンク1
1とは排気還流通路53によつて互に連結され、
この排気還流通路53内に排気還流弁54が配置
される。この排気還流弁54はダイアフラム55
によつて分離された負圧室56と大気圧室57を
具備し、負圧室56内にダイアフラム押圧用圧縮
ばね58が挿入される。この負圧室56は電磁切
換弁59に連結され、電磁切換弁59のソレノイ
ド60は電子制御ユニツト18に接続される。電
磁切換弁59は一方では負圧導管50を介して第
2サージタンク12に連結され、他方では負圧導
管51を介してスロツトル弁24上流の吸気通路
22内に連結される。従つて負圧室56は電磁切
換弁59の切換作用によつて第2サージタンク1
2或いはスロツトル弁24上流通路22内に選択
的に連結される。排気還流通路53内には排気還
流通路53の開閉制御をする弁体61が配置さ
れ、この弁体61は弁ロツド62を介してダイア
フラム55に連結される。更に排気還流弁54は
バルブ位置スイツチ63を具備する。このバルブ
位置スイツチ63はダイアフラム55の移動によ
つて作動せしめられる可動接点64と、この可動
接点64と接触可能な一対の固定接点65,66
を有し、これらの固定接点65,66は電子制御
ユニツト18に接続される。可動接点64は弁体
61が閉弁しているとき固定接点65に接続さ
れ、弁体61が開弁すると固定接点66に接続さ
れる。なお、第2図に示されるように第2サージ
タンク12には機関負荷検出器を構成する負圧セ
ンサ67が取付けられ、この負圧センサ67は電
子制御ユニツト18に接続される。また、第2図
に示さないが機関回転数を検出するために回転数
センサ72(第3図)が機関本体10に取付けら
れる。 第3図は電子制御ユニツト18の回路図を示
す。第3図を参照すると、電子制御ユニツト18
はデイジタルコンピユータからなり、各種の演算
処理を行なうマイクロプロセツサ(MPU)80、
ランダムアクセスメモリ(RAM)81、制御プ
ログラム、演算定数等が予め格納されているリー
ドオンリメモリ(ROM)82、入力ポート83
並びに出力ポート84が双方向性バス85を介し
て互に接続されている。更に、電子制御ユニツト
18内には各種のクロツク信号を発生するクロツ
ク発生器86が設けられる。第3図に示されるよ
うに回転数センサ72、スロツトルセンサ25お
よびバルブ位置スイツチ63は入力ポート83に
接続される。また、エアフローメータ27、負圧
センサ67およびバルブ位置センサ32は夫々対
応するAD変換器87,88,95を介して入力
ポート83に接続され、酸素濃度検出器21はコ
ンパレータ89を介して入力ポート83に接続さ
れる。 エアフローメータ27は吸入空気量に比例した
出力電圧を出力し、この出力電圧はAD変換器8
7において対応する2進数に変換された後入力ポ
ート83並びにバス85を介してMPU80に読
み込まれる。回転数センサ72は機関回転数に比
例した周期の連続パルスを出力し、この連続パル
スが入力ポート83並びにバス85を介して
MPU80に読み込まれる。酸素濃度検出器21
は排気ガスが酸化雰囲気のとき0.1ボルト程度の
出力電圧を発生し、排気ガスが還元雰囲気のとき
0.9ボルト程度の出力電圧を発生する。この酸素
濃度検出器21の出力電圧はコンパレータ89に
おいて例えば0.5ボルト程度の基準値と比較され、
例えば排気ガスが酸化雰囲気のときコンパレータ
89の一方の出力端子に出力信号が発生し、排気
ガスが還元雰囲気のときコンパレータ89の他方
の出力端子に出力信号が発生する。コンパレータ
89の出力信号は入力ポート83並びにバス85
を介してMPU80に読み込まれる。負圧センサ
67はサージタンク13内の負圧に比例した出力
電圧を出力し、この出力電圧はAD変換器88に
おいて対応する2進数に変換された後入力ポート
83並びにバス85を介してMPU80に読み込
まれる。また、バルブ位置センサ32は吸気遮断
弁29の開度に応じた出力電圧を発生し、この出
力電圧がAD変換器95において対応する2進数
に変換された後入力ポート83並びにバス85を
介してMPU80に読み込まれる。 一方、第1燃料噴射弁17a、第2燃料噴射弁
17b、第1DCモータ33、第2DCモータ38お
よび電磁切換弁59は夫々対応する駆動回路9
0,91,92,93,94を介して出力ポート
84に接続される。出力ポート84には夫々第1
燃料噴射弁17a、第2燃料噴射弁17b、第
1DCモータ33、第2DCモータ38および電磁切
換弁59を駆動するための駆動データが書き込ま
れる。 第4図および第5図は分割運転制御方法を説明
するためのタイムチヤートを示す。第4図および
第5図においてaからgの各線図は次のものを示
す。 a:負圧センサ67の出力電圧. b:第1DCモータ33に印加される駆動パルス. c:電磁切換弁59のソレノイド60に印加され
る制御電圧. d:第2気筒群Bの燃料噴射弁17bに印加され
る制御パルス. e:第1気筒群Aの燃料噴射弁17aに印加され
る制御パルス. f:吸気遮断弁29の開度. g:排気還流弁54の弁体61の開度. なお、第4図は高負荷運転から低負荷転に移る
ときを示しており、第5図は低負荷運転から高負
荷運転に移るときを示している。 第4図の時間T1は負圧センサ67の出力電圧
が低い高負荷運転時を示している。このとき第4
図bに示されるように第1DCモータ33は駆動さ
れておらず、第4図fに示されるように吸気遮断
弁29は全開している。また、このとき第4図c
に示すように電磁切換弁59のソレノイド60は
消勢されており、従つて排気還流弁54の負圧室
56は電磁切換弁59および負圧導管51を介し
てスロツトル弁24上流の吸気通路22内に連通
している。斯くしてこのとき負圧室56内には過
給圧が作用しているのでダイアフラム55は最も
大気圧室57側に移動しており、その結果第4図
gに示すように弁体61が排気還流通路53を全
閉している。 一方、このとき第3図のMPU80において回
転数センサ72の出力パルスから機関回転数が計
算され、更にこの機関回転数とエアフローメータ
27の出力信号から基本燃料噴射量が計算され
る。また、三元触媒を用いたときには機関シリン
ダ内に供給される混合気の空燃比が理論空燃比と
なつたときに最も浄化効率が高くなり、従つて機
関シリンダ内に供給される混合気の空燃比が理論
空燃比に近づくように基本燃料噴射量を酸素濃度
検出器21の出力信号に基いて補正して燃料噴射
量が計算される。この燃料噴射量を表わすデータ
は出力ポート84に書き込まれ、このデータに基
いて第4図d並びに第4図eに示されるようなパ
ルスが第1気筒群Aの燃料噴射弁17a並びに第
2気筒群Bの燃料噴射弁17bに印加される。従
つて機管高負荷運転時には全燃料噴射弁17a,
17bから燃料が噴射される。 次いで第4図の時刻Taにおいて高負荷運転か
ら低負荷運転に切換えられたとすると第4図aに
示すように負圧センサ67の出力電圧は急激に上
昇する。MPU80では負圧センサ67の出力電
圧が基準値Vr(第4図a)よりも大きくなつたと
きに低負荷運転であると判別され、その結果第4
図bに示されるような連続パルスからなる駆動信
号が第1DCモータ33に印加される。このとき第
1DCモータ33は駆動パルスの平均電圧に比例し
た速度で回転する。その結果、第4図fに示され
るように吸気遮断弁29は徐々に閉弁する。次い
で吸気遮断弁29が全閉し、このときが第4図の
時刻Tbで示される。MPU80がバルブ位置セン
サ32の出力信号から吸気遮断弁29が全閉した
と判断すると、MPU80は第1気筒群Aの燃料
噴射弁17aからの燃料噴射を停止させると共に
第2気筒群Bの燃料噴射弁17bからの燃料噴射
量を増量させるデータ、並びに電磁切換弁59の
ソレノイド60を付勢せしめるデータを出力ポー
ト84に書き込む。その結果、時刻Tbに達する
と第4図dに示されるように第2気筒群Bの燃料
噴射弁17bからの燃料噴射量は増大せしめら
れ、第4図eに示されるように第1気筒群Aの燃
料噴射弁17aからの燃料噴射は停止せしめられ
る。また、時刻Tbに達すると上述したように電
磁切換弁59のソレノイド60が付勢されるため
に排気還流弁54の負圧室56は負圧導管50を
介して第2サージタンク12に連結される。その
結果、ダイアフラム55が負圧室56側に移動す
るので弁体61が排気還流通路53を開弁し、第
4図gに示すようにこの弁体61は時刻Tcにお
いて全開する。 一方、第5図において時刻Tdは低負荷運転か
ら高負荷運転に移行したときを示している。この
とき、まず始めに第5図cに示されるように電磁
切換弁59のソレノイド60が消勢されるために
第5図gに示すように排気還流弁54の弁体61
が排気還流通路53をを閉鎖する。弁体61が全
閉してバルブ位置スイツチ63の可動接点64が
固定接点65に接触するとMPU80は第5図e
に示されるように第1気筒群Aへの燃料噴射を開
始するデータおよび第5図bに示されるように第
1DCモータ33の駆動データを出力ポート84に
書き込む。その結果、排気還流弁54の弁体61
が全閉すると第5図eに示されるように第1気筒
群Aの燃料噴射弁17aからの燃料噴射が開始さ
れ、第5図fに示されるように吸気遮断弁29が
徐々に開弁する。 次に開閉制御弁37の開閉制御について説明す
るがその前に等価吸気管長について簡単に説明す
る。内燃機関では吸気弁が閉弁すると吸気管内を
流れる吸入空気流が急にせき止められるために吸
気弁近傍の吸気管内の圧力が上昇する。この上昇
圧力は吸気管の入口開口に向かつて伝播して吸気
管入口開口で反射し、再び吸気弁に向かつて伝播
して吸気弁に達する。このとき吸気弁が再び開弁
すれば吸気管内圧力が高くなつているために充填
効率が向上し、機関出力が向上することになる。
機関回転数が高くなるにつれて吸気弁が閉弁して
から再び吸気弁が開弁するまでの時間間隔が短く
なるために充填効率を向上させるために機関回転
数が高くなるにつれて吸気管長を短くする必要が
ある。しかしながら実際問題として吸気管長を短
くすることはできず、従つて実際には吸気管長が
あたかも短くなつたように吸気管に操作を施す。
第2図において開閉制御弁37を開弁すると連通
INDUSTRIAL APPLICATION FIELD OF THE INVENTION The present invention relates to a split operation controlled internal combustion engine. Prior Art In an internal combustion engine in which the engine load is controlled by a throttle valve, the fuel consumption rate worsens as the throttle valve opening becomes smaller. Therefore, in order to improve the fuel consumption rate, a split-operation control type internal combustion engine, in which some cylinders are deactivated during low-load engine operation and the remaining cylinders are operated at high load, is proposed, for example, in Japanese Patent Laid-Open No. 1983-1999. This method is known as described in Japanese Patent No. 69736. In this known internal combustion engine, the cylinders are divided into a first cylinder group A and a second cylinder group B, as shown in FIG. The second intake manifold 2 is connected, the first intake manifold 1 and the second intake manifold 2 are communicated with the atmosphere through a common throttle valve 3, and an intake cutoff valve 4 is connected to the intake air inlet of the first intake manifold 1. In addition, an exhaust recirculation valve 7 is provided in the exhaust recirculation passage 6 that connects the exhaust manifold 5 and the first intake manifold 1, and when the engine is operated at low load, fuel injection from the fuel injection valve 8 is stopped and the intake cutoff valve 4 is closed. The valves are closed and the exhaust recirculation valve 7 is opened to allow the second cylinder group to operate under high load.On the other hand, during high load operation of the engine, fuel is injected from all fuel injection valves 8 and 9 and the intake cutoff valve 4 is opened. In addition, all cylinders A and B are closed by closing the exhaust recirculation valve 7.
It is designed to cause the engine to ignite. In this internal combustion engine, as mentioned above, when the engine is operated at low load, the intake cutoff valve 4 is closed and the exhaust recirculation valve 7 is opened, so that exhaust gas is circulated to the first cylinder group A via the exhaust recirculation passage 6. Therefore, pumping loss can be eliminated, and since the second cylinder group B is operated under high load at this time, the fuel consumption rate can be improved. In this way, in this internal combustion engine, the fuel consumption rate can be improved by performing partial cylinder operation when the engine is running at low load, and by operating all cylinders when the engine is running at high load, high engine output can be obtained. However, the output when the engine is running at full load is not quite sufficient, so it is necessary to improve the output when the engine is running at full load. One known method for improving engine output is to change the equivalent intake pipe length according to the operating state of the engine, and even in internal combustion engines with split operation control, engine output can be improved by changing the equivalent intake pipe length. However, there is no point in changing the equivalent intake pipe length if smooth divided operation control is impaired by changing the equivalent intake pipe length. OBJECTS OF THE INVENTION An object of the present invention is to provide a divided operation control type internal combustion engine that improves engine output during full engine load operation while ensuring smooth divided operation control. Configuration of the Invention The configuration of the present invention is to divide the cylinders into a first cylinder group and a second cylinder group, divide the downstream portion of the intake passage into a first intake passage and a second intake passage, and divide the first intake passage into a first intake passage and a second intake passage. A throttle valve is provided in the intake passage, which is connected to the first cylinder group, connects the second intake passage to the second cylinder group, and controls the amount of intake air supplied to the first cylinder group and the second cylinder group. An intake cutoff valve is provided in the first intake passage downstream, and the intake cutoff valve is opened during high engine load operation where the engine load is higher than a predetermined first load, and the intake cutoff valve is opened in the first intake passage downstream of the intake cutoff valve. An exhaust recirculation valve is provided in the exhaust recirculation passage that connects the passage and the engine exhaust passage, and the exhaust recirculation valve is closed during high engine load operation when the engine load is higher than the first load. Fuel for supplying fuel to the first cylinder group and the second cylinder group during high engine load operation, and for stopping fuel supply to the first cylinder group during engine low load operation when the engine load is lower than the first load. In an internal combustion engine equipped with a supply device, the first intake passage and the second intake passage are arranged adjacent to each other, and the first intake passage downstream of the intake cutoff valve provided in the first intake passage downstream of the throttle valve is communicated with each other. The opening/closing control valve is communicated with the second intake passage through the hole, and an opening/closing control valve is provided in the communication hole, and the opening/closing control valve is closed when the engine is not operating at full load when the engine load is equal to or higher than a second load which is greater than the first load. The opening/closing control valve is opened within a predetermined engine speed range during engine full-load operation in which the engine load is maintained and the engine load is higher than the second load. Embodiment Referring to FIG. 2, 10 is the engine body, 11 is the first surge tank, 12 is the second surge tank, 1
3a is an independent first branch pipe that communicates with the inside of the first surge tank 11, and 13b is a second surge tank 12.
14 is a first
Exhaust manifold, 15, second exhaust manifold, 1
6a, 16b, 16c, 16d, 16e, 16f
are cylinder 1, cylinder 2, cylinder 3, cylinder 4, cylinder 5
The number cylinder and the number 6 cylinder are shown respectively. Note that each of these cylinders is divided into a first cylinder group A consisting of cylinders 16a, 16b, and 16c, and a second cylinder group B consisting of cylinders 16d, 46e, and 46f. As can be seen from FIG. 2, the first surge tank 11 and the first exhaust manifold 14 are connected to the first cylinder group A, and the second surge tank 12 and the second exhaust manifold 1 are connected to the first cylinder group A.
5 is connected to the second cylinder group B. Each branch pipe 13 of the first surge tank 11 and the second surge tank 12
Fuel injection valves 17a and 17b are attached to a and 13b, and the solenoids of these fuel injection valves 17a and 17b are connected to an electronic control unit 18. On the other hand, the first exhaust manifold 14 and the second exhaust manifold 15 are connected to exhaust turbines T of separate turbochargers 19a and 19b, respectively, and the exhaust outlet of the exhaust turbine T of each turbocharger 19a and 19b is connected to a common exhaust pipe 20. Ru.
An oxygen concentration detector 21 is installed within the exhaust pipe 20, and this oxygen concentration detector 21 is connected to the electronic control unit 18. Note that a three-way catalytic converter (not shown) is attached to the exhaust pipe 20. The downstream portion of the intake passage 22 schematically shown by a solid line is a first intake passage 23a and a second intake passage 23.
The first intake passage 23a and the second intake passage 23b are formed in an integral housing. The first intake passage 23a extends almost straight toward the first surge tank 11 and is connected to the first surge tank 11, and the second intake passage 23b
extends almost straight toward the second surge tank 12 and is connected to the second surge tank 12 . These first intake passage 23a and second intake passage 23
b extend substantially parallel to each other and are arranged adjacent to each other. A throttle valve 24 is disposed at a common entrance of the first intake passage 23a and the second intake passage 23b, and the throttle valve 24 is fixed on a throttle shaft 26 connected to an accelerator pedal.
As shown in FIG. 2, a throttle sensor 25 is attached to the throttle shaft 26. The throttle sensor 25 generates a pulse signal every time the throttle shaft 26 rotates by a certain angle, and therefore the opening speed of the throttle valve 24 can be detected from this pulse signal. This throttle sensor 25 is connected to the electronic control unit 18. On the other hand, the intake passage 22 is connected to the discharge side of the compressor C of each turbocharger 19a, 19b, and the suction side of each compressor C is connected to an air cleaner (not shown) via a common air flow meter 27. As shown in FIG. 2, an intake cutoff valve 29 is inserted into the first intake passage 23a downstream of the throttle valve 24. A valve shaft 30 of this intake cutoff valve 29 is connected to a drive device 31 on the one hand and to a valve position sensor 32 on the other hand. The drive device 31
It consists of a 1DC motor 33, a worm (not shown) fixed to the drive shaft of the first DC motor 33, and a worm gear 34 meshing with the worm and fixed on the valve shaft 30. Therefore, the first DC motor 3
It can be seen that when 3 is driven, the intake cutoff valve 29 is rotated. On the other hand, the valve position sensor 32
A fixed resistor 32a and a movable contact 3 that contacts the fixed resistor 32a and rotates together with the intake cutoff valve 29.
2b. One end of the fixed contact 32a is connected to the power supply 35, and the other end of the fixed contact 32a is grounded. Therefore, it can be seen that a voltage corresponding to the opening degree of the intake cutoff valve 29 is generated at the movable contact 32b. These first DC motor 33 and valve position sensor 32 are connected to electronic control unit 18. As shown in FIG. 2, the first intake passage 23a downstream of the intake cutoff valve 29 is communicated with the second intake passage 32b via the communication hole 36. An opening/closing control valve 37 for controlling opening/closing of this communication hole 36 is inserted into the second intake passage 23b.
The drive is controlled by a 2DC motor 38. This opening/closing control valve 37 is maintained in a closed state during partial cylinder operation, as will be explained in detail later. A second DC motor 38 is connected to the electronic control unit 18. First exhaust manifold 14 and first surge tank 1
1 and are connected to each other by an exhaust gas recirculation passage 53,
An exhaust gas recirculation valve 54 is disposed within the exhaust gas recirculation passage 53. This exhaust recirculation valve 54 has a diaphragm 55
A negative pressure chamber 56 and an atmospheric pressure chamber 57 are separated by a negative pressure chamber 56 and a compression spring 58 for pressing the diaphragm is inserted into the negative pressure chamber 56. This negative pressure chamber 56 is connected to an electromagnetic switching valve 59, and a solenoid 60 of the electromagnetic switching valve 59 is connected to the electronic control unit 18. The electromagnetic switching valve 59 is connected on the one hand to the second surge tank 12 via a negative pressure conduit 50 and on the other hand to the intake passage 22 upstream of the throttle valve 24 via a negative pressure conduit 51. Therefore, the negative pressure chamber 56 is switched to the second surge tank 1 by the switching action of the electromagnetic switching valve 59.
2 or a throttle valve 24 is selectively connected within the upstream passage 22. A valve body 61 for controlling opening and closing of the exhaust gas recirculation passage 53 is disposed within the exhaust gas recirculation passage 53, and this valve body 61 is connected to the diaphragm 55 via a valve rod 62. Furthermore, the exhaust gas recirculation valve 54 is equipped with a valve position switch 63. This valve position switch 63 includes a movable contact 64 that is activated by movement of the diaphragm 55, and a pair of fixed contacts 65 and 66 that can make contact with the movable contact 64.
These fixed contacts 65 and 66 are connected to the electronic control unit 18. The movable contact 64 is connected to the fixed contact 65 when the valve body 61 is closed, and is connected to the fixed contact 66 when the valve body 61 is opened. As shown in FIG. 2, a negative pressure sensor 67 constituting an engine load detector is attached to the second surge tank 12, and this negative pressure sensor 67 is connected to the electronic control unit 18. Although not shown in FIG. 2, a rotation speed sensor 72 (FIG. 3) is attached to the engine body 10 to detect the engine rotation speed. FIG. 3 shows a circuit diagram of the electronic control unit 18. Referring to FIG. 3, the electronic control unit 18
consists of a digital computer, including a microprocessor (MPU) 80 that performs various arithmetic operations;
Random access memory (RAM) 81, read-only memory (ROM) 82 in which control programs, calculation constants, etc. are stored in advance, and input port 83
and output ports 84 are interconnected via a bidirectional bus 85. Additionally, a clock generator 86 is provided within the electronic control unit 18 for generating various clock signals. As shown in FIG. 3, rotational speed sensor 72, throttle sensor 25 and valve position switch 63 are connected to input port 83. Furthermore, the air flow meter 27, negative pressure sensor 67, and valve position sensor 32 are connected to the input port 83 via the corresponding AD converters 87, 88, and 95, respectively, and the oxygen concentration detector 21 is connected to the input port 83 via the comparator 89. 83. The air flow meter 27 outputs an output voltage proportional to the amount of intake air, and this output voltage is sent to the AD converter 8.
7, the data is converted into a corresponding binary number and then read into the MPU 80 via the input port 83 and bus 85. The rotation speed sensor 72 outputs continuous pulses with a period proportional to the engine rotation speed, and these continuous pulses are transmitted via the input port 83 and the bus 85.
Loaded into MPU80. Oxygen concentration detector 21
generates an output voltage of about 0.1 volt when the exhaust gas is in an oxidizing atmosphere, and when the exhaust gas is in a reducing atmosphere.
Generates an output voltage of about 0.9 volts. The output voltage of this oxygen concentration detector 21 is compared with a reference value of, for example, about 0.5 volts in a comparator 89.
For example, when the exhaust gas is in an oxidizing atmosphere, an output signal is generated at one output terminal of the comparator 89, and when the exhaust gas is in a reducing atmosphere, an output signal is generated at the other output terminal of the comparator 89. The output signal of comparator 89 is connected to input port 83 and bus 85.
is read into the MPU 80 via the . The negative pressure sensor 67 outputs an output voltage proportional to the negative pressure inside the surge tank 13, and this output voltage is converted into a corresponding binary number by the AD converter 88 and then sent to the MPU 80 via the input port 83 and bus 85. Loaded. Further, the valve position sensor 32 generates an output voltage according to the opening degree of the intake cutoff valve 29, and after this output voltage is converted into a corresponding binary number in the AD converter 95, it is transmitted via the input port 83 and the bus 85. Loaded into MPU80. On the other hand, the first fuel injection valve 17a, the second fuel injection valve 17b, the first DC motor 33, the second DC motor 38, and the electromagnetic switching valve 59 are connected to the corresponding drive circuit 9.
0, 91, 92, 93, and 94 to the output port 84. The output ports 84 each have a first
Fuel injection valve 17a, second fuel injection valve 17b,
Drive data for driving the 1DC motor 33, the 2nd DC motor 38, and the electromagnetic switching valve 59 is written. 4 and 5 show time charts for explaining the split operation control method. In FIGS. 4 and 5, each diagram from a to g indicates the following. a: Output voltage of negative pressure sensor 67. b: Drive pulse applied to the first DC motor 33. c: Control voltage applied to the solenoid 60 of the electromagnetic switching valve 59. d: Control pulse applied to the fuel injection valve 17b of the second cylinder group B. e: Control pulse applied to the fuel injection valve 17a of the first cylinder group A. f: Opening degree of the intake cutoff valve 29. g: Opening degree of the valve body 61 of the exhaust gas recirculation valve 54. Note that FIG. 4 shows the transition from high-load operation to low-load operation, and FIG. 5 shows the transition from low-load operation to high-load operation. Time T 1 in FIG. 4 indicates a high load operation when the output voltage of the negative pressure sensor 67 is low. At this time, the fourth
As shown in FIG. 4B, the first DC motor 33 is not driven, and as shown in FIG. 4F, the intake cutoff valve 29 is fully open. Also, at this time, Fig. 4c
As shown in , the solenoid 60 of the electromagnetic switching valve 59 is deenergized, and therefore the negative pressure chamber 56 of the exhaust recirculation valve 54 is connected to the intake passage 22 upstream of the throttle valve 24 via the electromagnetic switching valve 59 and the negative pressure conduit 51. It communicates within. At this time, since supercharging pressure is acting in the negative pressure chamber 56, the diaphragm 55 has moved furthest toward the atmospheric pressure chamber 57, and as a result, the valve body 61 is moved as shown in FIG. 4g. The exhaust gas recirculation passage 53 is completely closed. On the other hand, at this time, the MPU 80 shown in FIG. 3 calculates the engine rotation speed from the output pulse of the rotation speed sensor 72, and further calculates the basic fuel injection amount from this engine rotation speed and the output signal of the air flow meter 27. Furthermore, when a three-way catalyst is used, the purification efficiency is highest when the air-fuel ratio of the air-fuel mixture supplied into the engine cylinder reaches the stoichiometric air-fuel ratio; The fuel injection amount is calculated by correcting the basic fuel injection amount based on the output signal of the oxygen concentration detector 21 so that the fuel ratio approaches the stoichiometric air-fuel ratio. Data representing this fuel injection amount is written to the output port 84, and based on this data, pulses as shown in FIGS. 4d and 4e are sent to the fuel injection valves 17a of the first cylinder group A and the second cylinder It is applied to the group B fuel injection valves 17b. Therefore, during high machine load operation, all fuel injection valves 17a,
Fuel is injected from 17b. Next, if the high load operation is switched to the low load operation at time Ta in FIG. 4, the output voltage of the negative pressure sensor 67 will rise rapidly as shown in FIG. 4a. The MPU 80 determines that low load operation is occurring when the output voltage of the negative pressure sensor 67 becomes larger than the reference value Vr (Fig. 4 a), and as a result, the fourth
A drive signal consisting of continuous pulses as shown in FIG. b is applied to the first DC motor 33. At this time
The 1DC motor 33 rotates at a speed proportional to the average voltage of the drive pulses. As a result, the intake cutoff valve 29 gradually closes as shown in FIG. 4f. Next, the intake cutoff valve 29 is fully closed, and this time is indicated by time Tb in FIG. 4. When the MPU 80 determines that the intake cutoff valve 29 is fully closed from the output signal of the valve position sensor 32, the MPU 80 stops the fuel injection from the fuel injection valve 17a of the first cylinder group A, and also stops the fuel injection of the second cylinder group B. Data for increasing the fuel injection amount from the valve 17b and data for energizing the solenoid 60 of the electromagnetic switching valve 59 are written to the output port 84. As a result, when time Tb is reached, the amount of fuel injected from the fuel injection valve 17b of the second cylinder group B is increased as shown in FIG. 4d, and the amount of fuel injected from the fuel injection valve 17b of the second cylinder group B is increased as shown in FIG. Fuel injection from fuel injection valve 17a of A is stopped. Furthermore, when time Tb is reached, the solenoid 60 of the electromagnetic switching valve 59 is energized as described above, so the negative pressure chamber 56 of the exhaust recirculation valve 54 is connected to the second surge tank 12 via the negative pressure conduit 50. Ru. As a result, the diaphragm 55 moves toward the negative pressure chamber 56, so that the valve body 61 opens the exhaust gas recirculation passage 53, and as shown in FIG. 4g, the valve body 61 is fully opened at time Tc. On the other hand, in FIG. 5, time Td indicates a transition from low load operation to high load operation. At this time, the solenoid 60 of the electromagnetic switching valve 59 is first deenergized as shown in FIG.
closes the exhaust gas recirculation passage 53. When the valve body 61 is fully closed and the movable contact 64 of the valve position switch 63 comes into contact with the fixed contact 65, the MPU 80 operates as shown in FIG.
The data for starting fuel injection to the first cylinder group A as shown in FIG.
1Write the drive data of the DC motor 33 to the output port 84. As a result, the valve body 61 of the exhaust recirculation valve 54
When fully closed, fuel injection from the fuel injection valve 17a of the first cylinder group A starts as shown in FIG. 5e, and the intake cutoff valve 29 gradually opens as shown in FIG. 5f. . Next, the opening/closing control of the opening/closing control valve 37 will be explained, but before that, the equivalent intake pipe length will be briefly explained. In an internal combustion engine, when an intake valve closes, the intake air flow flowing through the intake pipe is suddenly stopped, so that the pressure inside the intake pipe near the intake valve increases. This increased pressure propagates toward the inlet opening of the intake pipe, is reflected at the intake pipe inlet opening, propagates toward the intake valve again, and reaches the intake valve. If the intake valve opens again at this time, the pressure inside the intake pipe has increased, so the filling efficiency improves and the engine output increases.
As the engine speed increases, the time interval between when the intake valve closes and when the intake valve opens again becomes shorter, so in order to improve filling efficiency, the length of the intake pipe is shortened as the engine speed increases. There is a need. However, as a practical matter, the length of the intake pipe cannot be shortened, and therefore, the intake pipe is actually manipulated as if the length of the intake pipe were shortened.
In Fig. 2, when the on-off control valve 37 is opened, communication is established.

【表】 上表からわかるように開閉制御弁37はハツチ
ングで示す領域、即ち全負荷運転時の中速運転時
においてのみ開弁され、その他の運転状態では閉
弁状態に保持される。即ち、全負荷運転時におけ
る低速運転時には開閉制御弁37が閉弁し、この
とき充填効率が高まるように吸気管長が設定され
ている。従つて全負荷運転時の低速運転時には充
填効率が高められる。機関回転数が高くなつて中
速運転時になると開閉制御弁37が開弁し、等価
吸気管長が短くなる。斯くしてこのときにも充填
効率が高められる。一方、全負荷運転時の高速運
転時には開閉制御弁37が閉弁する。このときに
は吸気管入口開口で反射した圧力波が吸気弁にお
いて再び反射し、この反射した圧力波が再び吸気
管入口開口で反射し、この2次反射波が吸気弁に
達したときに吸気弁が開弁するために充填効率が
高められる。このように全負荷運転時に機関回転
数に応じて開閉制御弁37を開閉制御することに
よつて充填効率を高めることができ、機関出力を
向上することができる。 これに対して部分気筒運転が行なわれる低負荷
運転時と全気筒運転が行なわれている高負荷運転
時には開閉制御弁37は閉弁している。それによ
つて部分気筒運転時、部分気筒運転から全気筒運
転に移行するとき、および全気筒運転から部分気
筒運転に移行するときに第1サージタンク11内
の排気ガスが第2サージタンク12内に侵入する
のを阻止することができる。 発明の効果 第1サージタンク内の排気ガスが第2サージタ
ンク内に侵入するのを阻止しつつ全負荷運転時の
全機関回転数領域に亘つて機関高出力を得ること
ができる。
[Table] As can be seen from the above table, the on-off control valve 37 is opened only in the area shown by hatching, that is, during medium-speed operation during full-load operation, and is kept closed in other operating conditions. That is, the intake pipe length is set so that the on-off control valve 37 closes during low-speed operation during full-load operation, and the filling efficiency increases at this time. Therefore, filling efficiency is increased during low speed operation during full load operation. When the engine speed becomes high and the engine is operated at medium speed, the on-off control valve 37 opens and the equivalent intake pipe length becomes shorter. In this way, the filling efficiency is also increased. On the other hand, during high-speed operation during full-load operation, the on-off control valve 37 is closed. At this time, the pressure wave reflected at the intake pipe inlet opening is reflected again at the intake valve, this reflected pressure wave is reflected again at the intake pipe entrance opening, and when this secondary reflected wave reaches the intake valve, the intake valve The filling efficiency is increased due to the valve opening. By controlling the opening and closing of the opening/closing control valve 37 according to the engine speed during full-load operation in this manner, charging efficiency can be increased and engine output can be improved. On the other hand, the opening/closing control valve 37 is closed during low load operation in which partial cylinder operation is performed and during high load operation in which full cylinder operation is performed. As a result, the exhaust gas in the first surge tank 11 flows into the second surge tank 12 during partial cylinder operation, when transitioning from partial cylinder operation to full cylinder operation, and when transitioning from all cylinder operation to partial cylinder operation. Intrusion can be prevented. Effects of the Invention High engine output can be obtained over the entire engine speed range during full load operation while preventing the exhaust gas in the first surge tank from entering the second surge tank.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の内燃機関を図解的に示す平面
図、第2図は本発明による内燃機関を図解的に示
す平面図、第3図は第2図の電子制御ユニツトの
回路図、第4図および第5図は本発明による分割
運転制御方法を説明するための線図である。 11…第1サージタンク、12…第2サージタ
ンク、17a,17b…燃料噴射弁、19a,1
9b…ターボチヤージヤ、23a…第1吸気通
路、23b…第2吸気通路、24…スロツトル
弁、29…吸気遮断弁、36…連通孔、37…開
閉制御弁。
FIG. 1 is a plan view schematically showing a conventional internal combustion engine, FIG. 2 is a plan view schematically showing an internal combustion engine according to the present invention, FIG. 3 is a circuit diagram of the electronic control unit shown in FIG. 5 and 5 are diagrams for explaining the divided operation control method according to the present invention. 11...First surge tank, 12...Second surge tank, 17a, 17b...Fuel injection valve, 19a, 1
9b...turbocharger, 23a...first intake passage, 23b...second intake passage, 24...throttle valve, 29...intake cutoff valve, 36...communication hole, 37...opening/closing control valve.

Claims (1)

【特許請求の範囲】[Claims] 1 気筒を第1の気筒群と第2の気筒群に分割
し、吸気通路の下流部分を第1吸気通路と第2吸
気通路に分割して第1吸気通路を第1気筒群に連
結すると共に第2吸気通路を第2気筒群に連結
し、第1気筒群および第2気筒群に供給する吸入
空気量を制御するスロツトル弁を吸気通路内に設
け、該スロツトル弁後流の第1吸気通路内に吸気
遮断弁を設けて機関負荷が予め定められた第1負
荷よりも高い機関高負荷運転時に該吸気遮断弁を
開弁し、該吸気遮断弁後流の第1吸気通路と機関
排気通路とを連結する排気還流通路内に排気還流
弁を設けて機関負荷が上記第1負荷よりも高い機
関高負荷運転時に該排気還流弁を閉弁し、機関負
荷が上記第1負荷よりも高い機関高負荷運転時に
上記第1気筒群並びに第2気筒群へ燃料を供給す
ると共に機関負荷が上記第1負荷よりも低い機関
低負荷運転時に第1気筒群への燃料の供給を停止
するための燃料供給装置を具備した内燃機関にお
いて、上記第1吸気通路と第2吸気通路を互に隣
接配置すると共に上記スロツトル弁後流の第1吸
気通路内に設けた吸気遮断弁後流の第1吸気通路
を連通孔を介して第2吸気通路に連通させ、該連
通孔に開閉制御弁を設けて機関負荷が上記第1負
荷よりも大きな第2負荷以上である機関全負荷運
転時以外のときには該開閉制御弁を閉弁保持する
と共に機関負荷が上記第2負荷よりも高い機関全
負荷運転時の予め定められた機関回転数領域内で
該開閉制御弁を開弁するようにした分割運転制御
式内燃機関。
1. Dividing the cylinder into a first cylinder group and a second cylinder group, dividing the downstream portion of the intake passage into the first intake passage and the second intake passage, and connecting the first intake passage to the first cylinder group. A throttle valve that connects the second intake passage to the second cylinder group and controls the amount of intake air supplied to the first cylinder group and the second cylinder group is provided in the intake passage, and the first intake passage is downstream of the throttle valve. An intake cutoff valve is provided inside the engine, and the intake cutoff valve is opened during high-load operation of the engine where the engine load is higher than a predetermined first load, and the intake cutoff valve is opened in the first intake passage and the engine exhaust passage downstream of the intake cutoff valve. An exhaust recirculation valve is provided in the exhaust recirculation passageway connecting the engine, and the exhaust recirculation valve is closed during high-load operation of the engine where the engine load is higher than the first load, and the exhaust recirculation valve is closed when the engine load is higher than the first load. Fuel for supplying fuel to the first cylinder group and the second cylinder group during high load operation and for stopping the supply of fuel to the first cylinder group during low engine load operation when the engine load is lower than the first load. In an internal combustion engine equipped with a supply device, the first intake passage and the second intake passage are arranged adjacent to each other, and the first intake passage downstream of the intake cutoff valve is provided within the first intake passage downstream of the throttle valve. communicates with the second intake passage through a communication hole, and an opening/closing control valve is provided in the communication hole to control the opening/closing when the engine is not operating at full load when the engine load is a second load or higher, which is larger than the first load. A split operation control type internal combustion system in which the control valve is held closed and the on-off control valve is opened within a predetermined engine speed range during engine full-load operation where the engine load is higher than the second load. institution.
JP58174076A 1983-09-22 1983-09-22 Internal-combustion engine controlled for operation of divided group of cylinders Granted JPS6067731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58174076A JPS6067731A (en) 1983-09-22 1983-09-22 Internal-combustion engine controlled for operation of divided group of cylinders

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58174076A JPS6067731A (en) 1983-09-22 1983-09-22 Internal-combustion engine controlled for operation of divided group of cylinders

Publications (2)

Publication Number Publication Date
JPS6067731A JPS6067731A (en) 1985-04-18
JPH0222222B2 true JPH0222222B2 (en) 1990-05-17

Family

ID=15972217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58174076A Granted JPS6067731A (en) 1983-09-22 1983-09-22 Internal-combustion engine controlled for operation of divided group of cylinders

Country Status (1)

Country Link
JP (1) JPS6067731A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2522225A (en) * 2014-01-17 2015-07-22 Ford Global Tech Llc A method of and a system for deactivating a cylinder of an engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56124642A (en) * 1980-03-06 1981-09-30 Nissan Motor Co Ltd Intake-air flow controlling device for multicylinder internal combustion engine
JPS5747409U (en) * 1980-08-28 1982-03-16

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56124642A (en) * 1980-03-06 1981-09-30 Nissan Motor Co Ltd Intake-air flow controlling device for multicylinder internal combustion engine
JPS5747409U (en) * 1980-08-28 1982-03-16

Also Published As

Publication number Publication date
JPS6067731A (en) 1985-04-18

Similar Documents

Publication Publication Date Title
JPH0339175B2 (en)
US4089310A (en) Internal combustion engine providing improved exhaust-gas purification
EP0829630B1 (en) A control apparatus for an internal combustion engine
US4483288A (en) Split engine
JPS5977051A (en) Divided operation control type internal-combustion engine
JPH0222222B2 (en)
US4466404A (en) Split engine
JPH0219293B2 (en)
JPS6065238A (en) Partial-cylinder operation control type internal- combustion engine
JPS6065237A (en) Partial-cylinder operaion control type internal- combustion engine
JPS6085229A (en) Partial operation control type internal-combustion engine
JPS6065239A (en) Partial-cylinder operation control method in internal- combustion engine
JPS6062625A (en) Divided running control system internal-combustion engine
JP2627104B2 (en) Assist air supply device for internal combustion engine
JPS5977053A (en) Divided operation control type internal-combustion engine
JPH0229845B2 (en)
JPS59215934A (en) Split operation control-type internal-combustion engine
JPH0339174B2 (en)
JPS6018609Y2 (en) Internal combustion engine exhaust gas recirculation device
JPH0340220B2 (en)
JPH0370099B2 (en)
JPS61218720A (en) Intake device of engine with supercharger
JPS5977055A (en) Suction control valve of internal-combustion engine
JPH0734163Y2 (en) Secondary air supply for engine
JPS5970847A (en) Divided-operation control type internal-combustion engine