JPH05274933A - Manufacture of oxide superconducting wire material - Google Patents

Manufacture of oxide superconducting wire material

Info

Publication number
JPH05274933A
JPH05274933A JP4068175A JP6817592A JPH05274933A JP H05274933 A JPH05274933 A JP H05274933A JP 4068175 A JP4068175 A JP 4068175A JP 6817592 A JP6817592 A JP 6817592A JP H05274933 A JPH05274933 A JP H05274933A
Authority
JP
Japan
Prior art keywords
tape
oxide
wire
critical current
wire material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4068175A
Other languages
Japanese (ja)
Inventor
Shoji Miyashita
章志 宮下
Hiroko Higuma
弘子 樋熊
Akira Usami
亮 宇佐美
Yoshio Kubo
芳生 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4068175A priority Critical patent/JPH05274933A/en
Publication of JPH05274933A publication Critical patent/JPH05274933A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To provide a method for manufacturing an oxide superconducting wire material having large critical current density, and critical current characteristics with less magnetic field dependency. CONSTITUTION:An oxide superconductor pellet 2 is inserted in a 9mmX6mm diameter silver square tube, and a tape of 5mm width X0.2mm thickness is obtained via scribing and rolling processes. This tape is subjected to heat treatment at a temperature between 800 deg.C and 900 deg.C for 10 to 120 hours in the atmosphere. Then, the tape is pressed to 0.17mm thickness with a uniaxial press. 10 pieces of the tape so obtained are bundled, and a silver tape 3 of 0.1mm thickness is spirally wound around the tape bundle, thereby forming a single wire material. This wire material is again thermally treated on an alumina bed plate at a temperature between 800 deg.C and 900 deg.C, for 10 to 120 hours in the atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、高磁界を発生する超
電導コイル、および磁気シールド材等に用いられる酸化
物超電導線材の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting coil that generates a high magnetic field, and a method for manufacturing an oxide superconducting wire used as a magnetic shield material.

【0002】[0002]

【従来の技術】最近高エネルギ−物理、磁気浮上列車、
核磁気共鳴装置、基礎物性研究などの分野において、運
転コストの低い超電導コイル、磁気シ−ルド材の必要性
が高まっている。従来の超電導コイルは臨界温度の低い
合金および金属間化合物超電導体からなる超電導線によ
って製作されている。1987年になって、非常に高い
臨界温度を持った酸化物超電導体が発見され、それは液
体窒素温度(77K)でも超電導性を示した。この酸化
物超電導体は、例えば(Bi1-XPbX)SrYCaZCu
WVの組成で代表される酸化物である。ここでXは0〜
0.4、Y、Z、Wは0.5〜2である。これは通常B
23、PbO、CuO、SrCO3、CaCO3の各粉
末を混合、成形後熱処理して作製される。なお、この分
野の製造技術については、例えば刊行物{J.J.A.
P.,27(1988)L1041}に記載されてい
る。すなわち、従来から高い臨界温度を持つ酸化物超電
導線材は、Bi−Pb−Sr−Ca−Cu−O系酸化物
を例にとれば、Bi23、PbO、SrCO3、CaC
3、CuOの各粉末を混合し、仮焼、成形した後、金
属パイプに挿入し、線材に加工した後、熱処理して作製
される。
2. Description of the Related Art Recently, high energy physics, magnetic levitation trains,
In fields such as nuclear magnetic resonance apparatus and basic physical property research, there is an increasing need for superconducting coils and magnetic shield materials with low operating costs. A conventional superconducting coil is made of a superconducting wire made of an alloy having a low critical temperature and an intermetallic compound superconductor. In 1987, an oxide superconductor with a very high critical temperature was discovered, which showed superconductivity even at liquid nitrogen temperature (77K). This oxide superconductor is, for example, (Bi 1-X Pb X ) Sr Y Ca Z Cu
It is an oxide represented by the composition of W O V. Where X is 0
0.4, Y, Z, and W are 0.5-2. This is usually B
It is produced by mixing powders of i 2 O 3 , PbO, CuO, SrCO 3 , and CaCO 3 and heat-treating after molding. Regarding the manufacturing technology in this field, for example, publications {J. J. A.
P. , 27 (1988) L1041}. In other words, the oxide superconducting wire conventionally having a high critical temperature, taking a Bi-Pb-Sr-Ca- Cu-O -based oxide as an example, Bi 2 O 3, PbO, SrCO 3, CaC
It is manufactured by mixing powders of O 3 and CuO, calcining and molding, inserting into a metal pipe, processing into a wire, and then heat-treating.

【0003】[0003]

【発明が解決しようとする課題】上記従来の方法で作製
された酸化物超電導線材において、臨界電流密度を向上
させるためには酸化物の結晶配向を高めることが必要
で、できるだけ超電導層を薄くして一軸プレス、および
圧延等の処理を熱処理の間に施すが、超電導層が薄いた
め臨界電流が小さい。そこで臨界電流密度を高め、臨界
電流を稼ぐために、複数の単芯線材を束ねて金属パイプ
に挿入し、それを線材に加工する複合加工法が用いられ
ている。しかし、複合加工法により作製した多層線材
は、プレスおよび圧延を施すと導体中心部の酸化物に十
分に圧力が伝達しない結果、中心部における結晶の配向
度が高まらず、十分高い臨界電流密度を得ることができ
なかった。
In the oxide superconducting wire produced by the above-mentioned conventional method, it is necessary to increase the crystal orientation of the oxide in order to improve the critical current density. Although uniaxial pressing and rolling are applied during the heat treatment, the critical current is small because the superconducting layer is thin. Therefore, in order to increase the critical current density and earn the critical current, a composite processing method is used in which a plurality of single-core wire rods are bundled and inserted into a metal pipe, and the wire rods are processed. However, the multilayer wire produced by the composite processing method does not transmit enough pressure to the oxide in the center of the conductor when pressed and rolled, and as a result, the degree of crystal orientation in the center does not increase and a sufficiently high critical current density is obtained. I couldn't get it.

【0004】この発明は、かかる課題を解決するために
なされたもので、高い臨界電流密度と、磁場依存性の少
ない臨界電流特性を有する酸化物超電導線材の製造方法
を得ることを目的としている。
The present invention has been made to solve the above problems, and an object thereof is to obtain a method for producing an oxide superconducting wire having a high critical current density and a critical current characteristic with little magnetic field dependence.

【0005】[0005]

【課題を解決するための手段】この発明の酸化物超電導
線材の製造方法は、熱処理により超電導体になる酸化物
粉末および酸化物超電導体粉末の内の少なくとも一種
を、金属管に充填して金属酸化物複合体を作製し、線材
に加工する工程、線材を熱処理して超電導体とする工
程、線材に結晶配向を高める処理をして、線材を複数本
束ね一体化する工程、並びに再熱処理する工程を施す方
法である。
The method for producing an oxide superconducting wire according to the present invention is a method of filling a metal tube with at least one of an oxide powder and an oxide superconductor powder which become a superconductor by heat treatment. A step of producing an oxide composite and processing it into a wire, a step of heat-treating the wire to a superconductor, a step of increasing the crystal orientation of the wire to integrate a plurality of wires, and a reheat treatment It is a method of applying steps.

【0006】[0006]

【作用】この発明において、臨界電流を高めるために導
体断面を大きくしても、例えばプレスおよび圧延等の結
晶性を高めるための処理の効果が導体断面の中心部にま
で及ぼされ、高い臨界電流密度を持ち、なおかつ臨界電
流の大きな酸化物超電導線材が得られる。
According to the present invention, even if the conductor cross section is increased in order to increase the critical current, the effect of the treatment for increasing the crystallinity such as pressing and rolling is exerted even on the central portion of the conductor cross section, and the high critical current is high. An oxide superconducting wire having a density and a large critical current can be obtained.

【0007】[0007]

【実施例】【Example】

実施例1.熱処理して酸化物としたときに、Bi1.6
0.4Sr2Ca2Cu39.8の組成比になるように配合
したBi23、PbO、CuOの酸化物、SrCO3
CaCO3の炭酸塩の原料粉末(純度99.99%、平
均粒径〜5μm)をよく混合した後、700〜800℃
で5〜30時間空気中で仮焼した。この酸化物粉末を、
油圧プレスにより約1000Kg/cm2の荷重を加え
て、長さ50mm、直径5.8mmの円柱状ペレットを
作成した。こうして得られたペレットを銀パイプ(φ9
mm×φ6mm)に挿入し、線引きと圧延により幅5m
m、厚さ0.2mmのテープを得た。さらに、空気中、
800〜900℃で10〜120時間熱処理した後、一
軸プレスにより、厚さO.17mmまで潰し、得られた
テープを10等分し、その10本を束ね、外周部に厚さ
0.1mmの銀のテープをスパイラル状に巻いて1本の
線材を作製した。図1はこの発明の一実施例に係わる一
体化した線材の斜視図であり、図中1は銀シース、2は
酸化物、3は銀テープである。上記の様にして得た線材
を、約5cm切取り、空気中、800〜900℃で10
〜120時間、アルミナ台板の上で熱処理し、この発明
の一実施例による酸化物超電導線材を得た。得られた線
材の磁場中、4.2Kにおける臨界電流密度の値を表1
および図2に示す。図2はこの発明と従来例を比較する
酸化物超電導線材の液体ヘリウム中における臨界電流密
度の印加磁界依存性を示した特性図であり、図中Aはこ
の発明の一実施例による酸化物超電導線材の特性、Bは
従来法による比較例1の線材の特性、縦軸は臨界電流密
度(A/cm2)、横軸は印加磁場(T)である。
Example 1. Bi 1.6 P when heat treated to form an oxide
b 0.4 Sr 2 Ca 2 Cu 3 O 9.8 , Bi 2 O 3 , PbO, CuO oxide, SrCO 3 ,
After thoroughly mixing the raw material powder of CaCO 3 carbonate (purity 99.99%, average particle size ˜5 μm), 700 to 800 ° C.
It was calcined in the air for 5 to 30 hours. This oxide powder,
A load of about 1000 kg / cm 2 was applied by a hydraulic press to form a cylindrical pellet having a length of 50 mm and a diameter of 5.8 mm. The pellets thus obtained were put into a silver pipe (φ9
(mm × φ6mm), width and width of 5m by wire drawing and rolling
A tape having a thickness of m and a thickness of 0.2 mm was obtained. Furthermore, in the air,
After heat treatment at 800 to 900 ° C. for 10 to 120 hours, the thickness O.D. The resulting tape was crushed to 17 mm, divided into 10 equal parts, 10 pieces were bundled, and a silver tape having a thickness of 0.1 mm was spirally wound around the outer peripheral portion to produce one wire rod. FIG. 1 is a perspective view of an integrated wire rod according to an embodiment of the present invention, in which 1 is a silver sheath, 2 is an oxide, and 3 is a silver tape. The wire rod obtained as described above is cut out by about 5 cm, and it is heated in air at 800 to 900 ° C. for 10 minutes.
Heat treatment was performed for 120 hours on an alumina bed plate to obtain an oxide superconducting wire according to an example of the present invention. Table 1 shows the values of the critical current densities of the obtained wires at 4.2K in the magnetic field.
And shown in FIG. FIG. 2 is a characteristic diagram showing an applied magnetic field dependence of the critical current density in liquid helium of an oxide superconducting wire for comparing the present invention with a conventional example. In the figure, A is an oxide superconducting material according to an embodiment of the present invention. The characteristics of the wire, B is the characteristics of the wire of Comparative Example 1 according to the conventional method, the vertical axis is the critical current density (A / cm 2 ), and the horizontal axis is the applied magnetic field (T).

【0008】[0008]

【表1】 [Table 1]

【0009】比較例1.実施例1と同じ超電導材料を用
いて、複合加工法により厚さ2.35mmの多層(10
層)テープを作製し、空気中、800〜900℃で10
〜120時間熱処理した後、厚さ2mmまで一軸プレス
した。これを約5cm切取り、空気中、800〜900
℃で10〜120時間、アルミナ台板の上で熱処理して
従来法による線材を得た。得られた線材の磁場中、4.
2Kにおける臨界電流密度の値を表1および図2に示
す。
Comparative Example 1. The same superconducting material as in Example 1 was used, and a multi-layer (10
Layer) tape is prepared, and it is 10 at 800-900 degreeC in the air.
After heat treatment for up to 120 hours, it was uniaxially pressed to a thickness of 2 mm. Cut this out about 5 cm, and in air, 800-900
A heat treatment was performed on the alumina base plate at 10 ° C. for 10 to 120 hours to obtain a wire rod according to a conventional method. 3. In the magnetic field of the obtained wire rod.
The values of the critical current density at 2K are shown in Table 1 and FIG.

【0010】表1および図2の結果からこの発明の一実
施例による線材は、従来の複合加工法による線材に比べ
て、高い臨界電流密度を得ることができ、磁場依存性も
少ない臨界電流特性が得られた。
From the results shown in Table 1 and FIG. 2, the wire according to one embodiment of the present invention can obtain a higher critical current density and has a smaller magnetic field dependence than the conventional composite processing method. was gotten.

【0011】実施例2.熱処理して酸化物としたとき
に、Bi2Sr2Ca1Cu28の組成比になるように配
合したBi23、CuOの酸化物、SrCO3、CaC
3の炭酸塩の原料粉末(純度99.99%、平均粒径
〜5μm)をよく混合し、700〜800℃で5〜30
時間空気中で仮焼した後、粒径数μmまで粉砕した。こ
の酸化物超電導粉末を、油圧プレスによって約1000
Kg/cm2の荷重を加えて、長さ50mm、直径5.
8mmの円柱状ペレットを作成した。こうして得られた
ペレットを銀パイプ(φ9mm×φ6mm)に挿入し、
線引きと圧延により幅5mm、厚さ0.2mmのテープ
を得、空気中、800〜900℃で10〜120時間熱
処理した後、厚さO.17mmまで圧延し、得られたテ
ープを10等分しその10本を束ね、外周部に厚さ0.
1mmの銀線をスパイラル状に巻いて1本の導体を作製
した。図3はこの発明の他の実施例に係わる一体化した
線材の斜視図である。これら導体を約10cm切取り、
直径35mmのアルミナ巻き枠に巻き付け、空気中、8
00〜900℃で10〜120時間熱処理し、この発明
の他の実施例による酸化物超電導線材を得た。得られた
線材の磁場中、4.2Kにおける臨界電流密度の値を表
2および図4に示す。図4はこの発明と従来例を比較す
る酸化物超電導線材の液体ヘリウム中における臨界電流
密度の印加磁界依存性を示した特性図であり、図中Cは
この発明の他の実施例による酸化物超電導線材の特性、
Dは従来法による比較例2の線材の特性、縦軸は臨界電
流密度(A/cm2)、横軸は印加磁場(T)である。
Embodiment 2. When the oxide is heat-treated, Bi 2 Sr 2 Ca 1 Cu 2 O 8 Bi 2 O 3 were blended so that the composition ratio of the oxide of CuO, SrCO 3, CaC
A raw material powder of O 3 carbonate (purity 99.99%, average particle size ~ 5 µm) is mixed well, and it is 5 to 30 at 700 to 800 ° C.
After calcination in air for a period of time, it was ground to a particle size of several μm. About 1000 of this oxide superconducting powder was pressed by a hydraulic press.
With a load of Kg / cm 2 , a length of 50 mm and a diameter of 5.
8 mm cylindrical pellets were made. Insert the pellets thus obtained into a silver pipe (φ9mm × φ6mm),
A tape having a width of 5 mm and a thickness of 0.2 mm was obtained by drawing and rolling, and heat-treated in the air at 800 to 900 ° C. for 10 to 120 hours, and then the thickness O. Rolled to 17 mm, the obtained tape is divided into 10 equal parts, 10 of which are bundled, and the outer periphery has a thickness of 0.
A 1 mm silver wire was spirally wound to produce one conductor. FIG. 3 is a perspective view of an integrated wire rod according to another embodiment of the present invention. Cut about 10 cm of these conductors,
Wrap around a 35mm diameter alumina reel, in air,
Heat treatment was performed at 00 to 900 ° C. for 10 to 120 hours to obtain an oxide superconducting wire according to another embodiment of the present invention. Table 2 and FIG. 4 show the values of the critical current densities of the obtained wires at 4.2 K in the magnetic field. FIG. 4 is a characteristic diagram showing the applied magnetic field dependence of the critical current density in liquid helium of the oxide superconducting wire for comparing the present invention with the conventional example, and C in the figure is an oxide according to another embodiment of the present invention. Characteristics of superconducting wire,
D is the characteristics of the wire of Comparative Example 2 according to the conventional method, the vertical axis is the critical current density (A / cm 2 ), and the horizontal axis is the applied magnetic field (T).

【0012】[0012]

【表2】 [Table 2]

【0013】比較例2.実施例1と同じ超電導材料を用
いて、複合加工法により厚さ2.35mmの多層(10
層)テープを作製し、空気中、800〜900℃で10
〜120時間熱処理した後、厚さ2mmまで圧延した。
これら導体を約10cm切取り、直径35mmのアルミ
ナ巻き枠に巻き付け、空気中、800〜900℃で10
〜120時間熱処理し、従来法による線材を得た。得ら
れた線材の磁場中、4.2Kにおける臨界電流密度の値
を表2および図4に示す。
Comparative Example 2. The same superconducting material as in Example 1 was used, and a multi-layer (10
Layer) tape is prepared, and it is 10 at 800-900 degreeC in the air.
After heat treatment for up to 120 hours, it was rolled to a thickness of 2 mm.
Cut about 10 cm of these conductors and wind them around an alumina reel of 35 mm in diameter.
Heat treatment was performed for 120 hours to obtain a wire rod according to the conventional method. Table 2 and FIG. 4 show the values of the critical current densities of the obtained wires at 4.2 K in the magnetic field.

【0014】表2および図4の結果から、この発明の他
の実施例による線材は、従来の複合加工法による線材に
比べて、高い臨界電流を得ることができ、磁場依存性も
少ない臨界電流特性が得られた。
From the results shown in Table 2 and FIG. 4, the wire according to another embodiment of the present invention can obtain a higher critical current and has a smaller magnetic field dependency than the wire according to the conventional composite processing method. The characteristics were obtained.

【0015】なお、この発明に係わる結晶性を高めるた
めの処理としては、上記実施例に示したようにプレスお
よび圧延等があるがこれに限定されない。
The treatment for improving the crystallinity according to the present invention includes, but is not limited to, pressing and rolling as shown in the above embodiment.

【0016】なお上記実施例では、Bi−Pb−Sr−
Ca−Cu−O、Bi−Sr−Ca−Cu−O系酸化物
について述べたが、それ以外の臨界温度の高い超電導性
を有する酸化物、例えばY−Ba−Cu−O、Tl−B
a−Ca−Cu−O酸化物に適用してもよい。
In the above embodiment, Bi-Pb-Sr-
Although the Ca-Cu-O and Bi-Sr-Ca-Cu-O-based oxides have been described, other oxides having superconductivity with a higher critical temperature, such as Y-Ba-Cu-O and Tl-B.
It may be applied to a-Ca-Cu-O oxide.

【0017】さらに上記実施例では、熱処理は空気中、
800〜950℃で10〜120時間行ったが、熱処理
雰囲気の酸素を0%から100%まで変化させること
で、熱処理温度範囲は必ずしもこの温度範囲に限定され
ず、750〜1000℃において、良好な臨界電流密度
を得ることができる。
Further, in the above embodiment, the heat treatment is performed in air,
Although it was performed at 800 to 950 ° C. for 10 to 120 hours, by changing the oxygen in the heat treatment atmosphere from 0% to 100%, the heat treatment temperature range is not necessarily limited to this temperature range, and at 750 to 1000 ° C. The critical current density can be obtained.

【0018】また上記実施例では導体を一体化するため
に、銀線および銀テープを用いたが、金等の貴金属、ス
テンレス等の合金線およびテープを用いても問題ない。
In the above embodiment, the silver wire and the silver tape are used to integrate the conductors, but noble metal such as gold, alloy wire such as stainless steel and the tape may be used.

【0019】[0019]

【発明の効果】この発明は、以上説明した通り、熱処理
により超電導体になる酸化物粉末および酸化物超電導体
粉末の内の少なくとも一種を、金属管に充填して金属酸
化物複合体を作製し、線材に加工する工程、線材を熱処
理して超電導体とする工程、線材に結晶配向を高める処
理をして、線材を複数本束ね一体化する工程、並びに再
熱処理する工程を施すことにより、大きな臨界電流密度
と、磁場依存性の少ない臨界電流特性を有する酸化物超
電導線材の製造方法を得ることができる。
As described above, according to the present invention, a metal tube is filled with at least one of an oxide powder to be a superconductor by heat treatment and an oxide superconductor powder to prepare a metal oxide composite. , A step of processing into a wire, a step of heat-treating the wire into a superconductor, a step of increasing the crystal orientation of the wire to bundle a plurality of the wires together, and a step of re-heat treatment It is possible to obtain a method for manufacturing an oxide superconducting wire having a critical current density and a critical current characteristic having little magnetic field dependence.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例に係わる一体化した線材の
斜視図である。
FIG. 1 is a perspective view of an integrated wire rod according to an embodiment of the present invention.

【図2】この発明と従来例を比較する酸化物超電導線材
の液体ヘリウム中における臨界電流密度の印加磁界依存
性を示した特性図である。
FIG. 2 is a characteristic diagram showing an applied magnetic field dependence of a critical current density in liquid helium of an oxide superconducting wire for comparison between the present invention and a conventional example.

【図3】この発明の他の実施例に係わる一体化した線材
の斜視図である。
FIG. 3 is a perspective view of an integrated wire rod according to another embodiment of the present invention.

【図4】この発明と従来例を比較する酸化物超電導線材
の液体ヘリウム中における臨界電流密度の印加磁界依存
性を示した特性図である。
FIG. 4 is a characteristic diagram showing an applied magnetic field dependence of a critical current density in liquid helium of an oxide superconducting wire for comparison between the present invention and a conventional example.

【符号の説明】[Explanation of symbols]

1 銀シース 2 酸化物 3 銀テープ 1 silver sheath 2 oxide 3 silver tape

フロントページの続き (72)発明者 久保 芳生 尼崎市塚口本町8丁目1番1号 三菱電機 株式会社材料デバイス研究所内Front page continuation (72) Inventor Yoshio Kubo 8-1-1 Tsukaguchihonmachi, Amagasaki City Mitsubishi Electric Corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 熱処理により超電導体になる酸化物粉末
および酸化物超電導体粉末の内の少なくとも一種を、金
属管に充填して金属酸化物複合体を作製し、線材に加工
する工程、線材を熱処理して超電導体とする工程、線材
に結晶配向を高める処理をして、線材を複数本束ね一体
化する工程、並びに再熱処理する工程を施す酸化物超電
導線材の製造方法。
1. A process of filling a metal tube with at least one of oxide powder and oxide superconductor powder to be a superconductor by heat treatment to prepare a metal oxide composite, and processing the wire into a wire. A method for producing an oxide superconducting wire, which comprises a step of heat-treating to form a superconductor, a step of increasing the crystal orientation of a wire, bundling a plurality of wires together, and a step of re-heat-treating.
JP4068175A 1992-03-26 1992-03-26 Manufacture of oxide superconducting wire material Pending JPH05274933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4068175A JPH05274933A (en) 1992-03-26 1992-03-26 Manufacture of oxide superconducting wire material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4068175A JPH05274933A (en) 1992-03-26 1992-03-26 Manufacture of oxide superconducting wire material

Publications (1)

Publication Number Publication Date
JPH05274933A true JPH05274933A (en) 1993-10-22

Family

ID=13366181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4068175A Pending JPH05274933A (en) 1992-03-26 1992-03-26 Manufacture of oxide superconducting wire material

Country Status (1)

Country Link
JP (1) JPH05274933A (en)

Similar Documents

Publication Publication Date Title
JPH09185916A (en) Manufacture of composite oxide ceramic superconducting wire
EP0648379A1 (en) High tc superconductor and method of making
JP3034255B2 (en) Superconductor, superconductor wire, and method of manufacturing superconducting wire
JP2889286B2 (en) Superconducting body and superconducting coil formed using the superconducting body
JP2003203532A (en) Manufacturing method of superconducting wire
JPH05274933A (en) Manufacture of oxide superconducting wire material
JP2951419B2 (en) Method for manufacturing large-capacity oxide superconducting conductor
WO1995005680A1 (en) Improved superconductor tapes and coils and method of manufacture
JPH02207420A (en) Manufacture of superconducting wire rod
JPH05334921A (en) Ceramic superconductor
JP3029153B2 (en) Manufacturing method of multilayer ceramic superconductor
JPH01163914A (en) Manufacture of oxide superconductive wire
JP2951423B2 (en) Manufacturing method of ceramic superconducting conductor
JP3053411B2 (en) Manufacturing method of oxide superconducting wire
JP2644245B2 (en) Oxide superconducting wire
JP3109077B2 (en) Manufacturing method of oxide superconducting wire
JPH04329218A (en) Superconductive wire material
JP2904348B2 (en) Method for manufacturing compound superconducting wire
JPH06251929A (en) Manufacture of oxide superconducting coil
JPH0864044A (en) Manufacture of high temperature superconductive wire material
JPH05274932A (en) Manufacture of oxide superconducting wire material
JPH01163913A (en) Manufacture of oxide superconductive wire
JPH06223650A (en) Manufacture of bi oxide superconducting wire
JP2966134B2 (en) Method for producing Bi-based oxide superconductor
JPH01119002A (en) Superconductor coil and manufacture thereof