JPH04292814A - Manufacture of bismuth-based oxide superconductive wire - Google Patents

Manufacture of bismuth-based oxide superconductive wire

Info

Publication number
JPH04292814A
JPH04292814A JP3056690A JP5669091A JPH04292814A JP H04292814 A JPH04292814 A JP H04292814A JP 3056690 A JP3056690 A JP 3056690A JP 5669091 A JP5669091 A JP 5669091A JP H04292814 A JPH04292814 A JP H04292814A
Authority
JP
Japan
Prior art keywords
critical current
wire
hours
bismuth
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3056690A
Other languages
Japanese (ja)
Inventor
Munetsugu Kamiyama
宗譜 上山
Kenichi Sato
謙一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3056690A priority Critical patent/JPH04292814A/en
Priority to AU12860/92A priority patent/AU641088B2/en
Publication of JPH04292814A publication Critical patent/JPH04292814A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain a superconductive wire having high critical current density and critical current by carrying out plastic processing while filling a metal sheath with a bismuth-based oxide superconductor or its raw materials and heating it. CONSTITUTION:Each powder of Bi2O3, PbO, SrCO3, CaCO3, and CuO is weighed and mixed each other in a prescribed ratio, and heated at 800 deg.C for 8 hours and at 860 deg.C for 5 hours. The powder is pulverized until the maximum particle size and the average particle size become 1.8 and 0.8mum, respectively, while a silver pipe having 6mm outer diameter and 4mm inner diameter being filled with the powder, the pipe is extruded until the diameter becomes 1mm and rolled until the thickness becomes 0.3mm. The resulting tape-like wire is heated at 845 deg.C for 50 hours twice while pressing-processed to make the thickness 0.15mm. As a result, the superconductive phase 2 of the superconductive part 1 is well oriented along the longitudinal direction of the wire and thus a superconductive wire with high critical current density and critical current is obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、ビスマス系酸化物超
電導線材の製造方法に関するもので、特に、臨界電流密
度の向上を図るための改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing bismuth-based oxide superconducting wire, and in particular to an improvement for improving critical current density.

【0002】0002

【従来の技術】たとえばビスマス系のような酸化物超電
導材料を長尺の超電導線材とするため、酸化物超電導体
またはその原料を金属シースによって被覆することが行
なわれている。この場合、酸化物超電導体またはその原
料と金属シースとによって構成される複合物を塑性加工
することによって薄いテープ状となるように強加工し、
次いで熱処理することにより、高い臨界電流密度が得ら
れることがわかっている。特に、塑性加工と熱処理とを
複数回繰り返すことにより、臨界電流密度がさらに高め
られることもわかっている。
2. Description of the Related Art In order to make a long superconducting wire from an oxide superconducting material such as a bismuth-based material, the oxide superconductor or its raw material is coated with a metal sheath. In this case, a composite made of an oxide superconductor or its raw material and a metal sheath is strongly processed into a thin tape shape by plastic processing,
It has been found that a high critical current density can be obtained by subsequent heat treatment. In particular, it has been found that the critical current density can be further increased by repeating plastic working and heat treatment multiple times.

【0003】0003

【発明が解決しようとする課題】超電導材料を、たとえ
ば超電導線材として実際に使用する場合、高い臨界電流
密度だけでなく高い臨界電流を与え得ることが必要であ
る。これに関して、たとえば高い臨界電流を得るだけな
ら、上述したテープ材の厚みを大きくすればよい。しか
しながら、この場合、前述した塑性加工における加工度
をそれほど高くできないか、塑性加工による臨界電流密
度向上の効果をそれほど期待できないため、臨界電流密
度が低いという欠点がある。臨界電流密度が低いと、た
とえ低い外部磁場であっても、臨界電流密度が低下し、
磁場下において高い臨界電流が得られない。
When a superconducting material is actually used, for example, as a superconducting wire, it is necessary to be able to provide not only a high critical current density but also a high critical current. In this regard, for example, if only a high critical current is to be obtained, the thickness of the above-mentioned tape material may be increased. However, in this case, the degree of working in the above-mentioned plastic working cannot be increased so much, or the effect of improving the critical current density by plastic working cannot be expected to be that great, so there is a drawback that the critical current density is low. If the critical current density is low, even a low external magnetic field will reduce the critical current density,
High critical current cannot be obtained under magnetic field.

【0004】それゆえに、この発明の目的は、臨界電流
密度および臨界電流のいずれにおいても優れたビスマス
系酸化物超電導線材を製造するための方法を提供しよう
とすることである。
[0004] Therefore, an object of the present invention is to provide a method for producing a bismuth-based oxide superconducting wire that is excellent in both critical current density and critical current.

【0005】[0005]

【課題を解決するための手段】この発明は、ビスマス系
酸化物超電導体またはその原料を金属シースに充填し、
次いで塑性加工して線材化するステップを備える、ビス
マス系酸化物超電導線材の製造方法に向けられるもので
あって、上述した技術的課題を解決するため、前記塑性
加工ステップが、熱処理を行ないながら塑性加工を行な
うステップを含むことを特徴としている。
[Means for Solving the Problems] The present invention is characterized by filling a metal sheath with a bismuth-based oxide superconductor or its raw material,
The present invention is directed to a method for manufacturing a bismuth-based oxide superconducting wire, which comprises a step of then plastic working to form a wire, and in order to solve the above-mentioned technical problems, the plastic working step includes plastic working while performing heat treatment. It is characterized by including a step of performing processing.

【0006】なお、塑性加工ステップに含まれる熱処理
の温度は、800〜850℃に選ばれ、熱処理の時間は
、0.5〜200時間に選ばれるのが好ましい。0.5
時間未満では、効果が少なく、他方、200時間を超え
ると、効果が飽和するからである。また、塑性加工ステ
ップに含まれる熱処理の時間は、塑性加工の時間と一致
しなくてもよく、たとえば、熱処理時間の一部のみにお
いて、塑性加工を実施してもよい。塑性加工しながら熱
処理するため、HIP、通常のプレスなどの装置を適用
することができる。
[0006] It is preferable that the temperature of the heat treatment included in the plastic working step is selected to be 800 to 850°C, and the time of the heat treatment is selected to be 0.5 to 200 hours. 0.5
This is because if the time is less than 200 hours, the effect will be small, and if it exceeds 200 hours, the effect will be saturated. Further, the time for the heat treatment included in the plastic working step does not have to match the time for the plastic working, and for example, the plastic working may be performed only during a part of the heat treatment time. Since heat treatment is performed while plastic working, equipment such as HIP and a normal press can be applied.

【0007】[0007]

【発明の作用および効果】図1には、この発明に従って
製造された酸化物超電導線材における超電導部1が拡大
されて示されている。図1に示すように、この発明によ
れば、超電導相2を、線材の長手方向に沿って、きれい
に配向させながら成長させることができる。なお、図1
において、3は、超電導相2中に分散する非超電導相を
示している。
FIG. 1 shows an enlarged view of a superconducting portion 1 in an oxide superconducting wire manufactured according to the present invention. As shown in FIG. 1, according to the present invention, the superconducting phase 2 can be grown while being neatly oriented along the longitudinal direction of the wire. In addition, Figure 1
In, 3 indicates a non-superconducting phase dispersed in the superconducting phase 2.

【0008】図2には、熱処理と塑性加工とを各々別の
ステップで実施した場合に得られた酸化物超電導線材に
おける超電導部4が示されている。図2からわかるよう
に、この発明を適用しない場合、超電導相5の配向性が
劣っている。なお、6は、非超電導相を示す。
FIG. 2 shows a superconducting portion 4 in an oxide superconducting wire obtained when heat treatment and plastic working are performed in separate steps. As can be seen from FIG. 2, when the present invention is not applied, the orientation of the superconducting phase 5 is poor. Note that 6 indicates a non-superconducting phase.

【0009】このように、この発明によれば、図1に示
すように、超電導相2が線材の長手方向に沿ってきれい
に配向しているので、高い臨界電流密度および高い臨界
電流を示すビスマス系酸化物超電導線材を得ることがで
きる。
As described above, according to the present invention, the superconducting phase 2 is neatly oriented along the longitudinal direction of the wire as shown in FIG. An oxide superconducting wire can be obtained.

【0010】なお、この発明において用いられるビスマ
ス系酸化物超電導体またはその原料は、最大粒径が2.
0μm以下であり、平均粒径が1.0μm以下であるこ
とが好ましい。
[0010] The bismuth-based oxide superconductor or its raw material used in the present invention has a maximum particle size of 2.
It is preferable that the average particle size is 0 μm or less, and the average particle size is 1.0 μm or less.

【0011】また、このようなビスマス系酸化物超電導
体またはその原料は、一般的には、多結晶体または超電
導相と非超電導相との集合物からなる。
[0011] Such bismuth-based oxide superconductors or their raw materials generally consist of polycrystals or an aggregate of a superconducting phase and a non-superconducting phase.

【0012】また、この発明において用いられる金属シ
ースの材質としては、酸化物超電導体と反応せず、かつ
低比抵抗の金属または合金が用いられることが好ましく
、一例として、銀もしくは銀合金が挙げられる。
[0012] Furthermore, as the material of the metal sheath used in the present invention, it is preferable to use a metal or alloy that does not react with the oxide superconductor and has a low resistivity, such as silver or a silver alloy. It will be done.

【0013】[0013]

【実施例】以下に、この発明に従って実施した実験例に
ついて説明する。
EXAMPLES Experimental examples carried out in accordance with the present invention will be described below.

【0014】実験例1 Bi2 O3 、PbO、SrCO3 、CaCO3 
およびCuOの各粉末を、Bi:Pb:Sr:Ca:C
u=1.8:0.4:2.0:2.2:3.0になるよ
うに秤量し、混合した。
Experimental Example 1 Bi2 O3, PbO, SrCO3, CaCO3
and CuO powder, Bi:Pb:Sr:Ca:C
They were weighed and mixed so that u=1.8:0.4:2.0:2.2:3.0.

【0015】次に、この粉末に対して、800℃で8時
間の熱処理を施し、さらに860℃で5時間の熱処理を
施して、2212相:2223相=83:17となる粉
末を作製した。なお、「2212相」とは、(Bi+P
b):Sr:Ca:Cuの組成比がほぼ2:2:1:2
となっている超電導相であり、「2223相」とは、同
組成比がほぼ2:2:2:3となっている超電導相であ
る。
Next, this powder was heat-treated at 800° C. for 8 hours, and further heat-treated at 860° C. for 5 hours to produce a powder having a ratio of 2212 phase:2223 phase=83:17. In addition, "2212 phase" means (Bi+P
b): The composition ratio of Sr:Ca:Cu is approximately 2:2:1:2
The "2223 phase" is a superconducting phase in which the composition ratio is approximately 2:2:2:3.

【0016】上述のようにして得られた粉末を、最大粒
径が1.8μm、平均粒径が0.8μmとなるように粉
砕した。この粉砕された粉末を、外径6.0mm、内径
4.0mmの銀パイプに充填し、その状態で、直径1.
0mmになるまで伸線し、さらに厚さ0.3mmになる
まで圧延加工した。この圧延加工して得られたテープ状
線材を、 (1)  試料1では、プレス加工を施しながら845
℃で50時間熱処理し、さらに、厚さ0.15mmにな
るまでプレス加工し、次いで、再び845℃で50時間
熱処理した。
The powder obtained as described above was pulverized to a maximum particle size of 1.8 μm and an average particle size of 0.8 μm. This pulverized powder was filled into a silver pipe with an outer diameter of 6.0 mm and an inner diameter of 4.0 mm, and in that state, a silver pipe with a diameter of 1.0 mm was filled.
The wire was drawn to a thickness of 0 mm, and further rolled to a thickness of 0.3 mm. (1) In sample 1, the tape-shaped wire rod obtained by this rolling process was rolled to 845 mm while being pressed.
It was heat-treated at 845°C for 50 hours, further pressed to a thickness of 0.15 mm, and then heat-treated again at 845°C for 50 hours.

【0017】(2)  試料2では、845℃で50時
間熱処理し、さらに、厚さ0.15mmになるまで圧延
加工し、次いで、再び845℃で50時間熱処理した。
(2) Sample 2 was heat treated at 845°C for 50 hours, further rolled to a thickness of 0.15 mm, and then heat treated again at 845°C for 50 hours.

【0018】得られた試料1および2の各々について、
77.3Kの温度下において零磁場における臨界電流お
よび臨界電流密度の測定を行なった。その結果、試料1
においては、39Aの臨界電流および60000A/c
m2 の臨界電流密度が得られ、他方、試料2において
は、26Aの臨界電流および40000A/cm2 の
臨界電流密度が得られた。
For each of the obtained samples 1 and 2,
The critical current and critical current density in zero magnetic field were measured at a temperature of 77.3K. As a result, sample 1
In, critical current of 39A and 60000A/c
A critical current density of 26 A and a critical current density of 40000 A/cm2 were obtained in sample 2, while a critical current density of 26 A and a critical current density of 40000 A/cm2 was obtained.

【0019】したがって、この発明の実施例に相当する
試料1において、より高い臨界電流およびより高い臨界
電流密度を示すビスマス系酸化物超電導線材が得られて
いる。
Therefore, in Sample 1 corresponding to the embodiment of the present invention, a bismuth-based oxide superconducting wire exhibiting a higher critical current and higher critical current density was obtained.

【0020】実験例2 Bi2 O3 、PbO、SrCO3 、CaCO3 
およびCuOの各粉末を、Bi:Pb:Sr:Ca:C
u=1.8:0.4:2.0:2.2:3.0になるよ
うに秤量し、混合した。
Experimental Example 2 Bi2 O3, PbO, SrCO3, CaCO3
and CuO powder, Bi:Pb:Sr:Ca:C
They were weighed and mixed so that u=1.8:0.4:2.0:2.2:3.0.

【0021】次に、この粉末に対して、800℃で8時
間の熱処理を施し、さらに860℃で8時間の熱処理を
施した。得られた粉末を、最大粒径が1.8μm、平均
粒径が0.8μmとなるように粉砕した。次いで、この
粉末を、外径6.0mm、内径4.0mmの銀パイプに
充填し、その状態で、直径2.0mmになるまで伸線し
、さらに厚さ0.3mmになるまで圧延加工した。この
圧延加工されたテープ状線材を、 (1)  試料3では、プレス加工を施しながら800
℃で10時間熱処理し、次いで、850℃で50時間熱
処理し、さらに、厚さ0.15mmになるまでプレス加
工し、次いで、再び845℃で50時間熱処理した。
Next, this powder was heat-treated at 800°C for 8 hours, and further heat-treated at 860°C for 8 hours. The obtained powder was pulverized to have a maximum particle size of 1.8 μm and an average particle size of 0.8 μm. Next, this powder was filled into a silver pipe with an outer diameter of 6.0 mm and an inner diameter of 4.0 mm, and in that state, wire was drawn to a diameter of 2.0 mm, and further rolled to a thickness of 0.3 mm. . (1) In sample 3, this rolled tape-shaped wire rod was
C. for 10 hours, then at 850.degree. C. for 50 hours, further pressed to a thickness of 0.15 mm, and then again at 845.degree. C. for 50 hours.

【0022】(2)  試料4では、850℃で50時
間熱処理し、さらに、厚さ0.15mmになるまで圧延
加工し、次いで、再び845℃で50時間熱処理した。
(2) Sample 4 was heat-treated at 850°C for 50 hours, further rolled to a thickness of 0.15 mm, and then heat-treated again at 845°C for 50 hours.

【0023】得られた試料1および2の各々について、
77.3Kの温度下において零磁場における臨界電流密
度の測定を行なった。その結果、試料3においては、5
0000A/cm2 の臨界電流密度が、試料4におい
ては、38000A/cm2 の臨界電流密度が得られ
た。 したがって、この発明の実施例に相当する試料3におい
て、より高い臨界電流密度を示す酸化物超電導線材が得
られている。
For each of the obtained samples 1 and 2,
The critical current density was measured in zero magnetic field at a temperature of 77.3K. As a result, in sample 3, 5
In sample 4, a critical current density of 38,000 A/cm2 was obtained. Therefore, in sample 3 corresponding to the example of the present invention, an oxide superconducting wire exhibiting a higher critical current density was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】この発明に従って製造された酸化物超電導線材
の超電導部1を示す拡大断面図である。
FIG. 1 is an enlarged sectional view showing a superconducting portion 1 of an oxide superconducting wire manufactured according to the present invention.

【図2】この発明に従わずに製造された酸化物超電導線
材の超電導部4を示す拡大断面図である。
FIG. 2 is an enlarged cross-sectional view showing a superconducting portion 4 of an oxide superconducting wire manufactured not in accordance with the present invention.

【符号の説明】[Explanation of symbols]

2  超電導相 3  非超電導相 5  超電導相 6  非超電導相 2 Superconducting phase 3 Non-superconducting phase 5 Superconducting phase 6 Non-superconducting phase

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  ビスマス系酸化物超電導体またはその
原料を金属シースに充填し、次いで塑性加工して線材化
するステップを備える、ビスマス系酸化物超電導線材の
製造方法において、前記塑性加工ステップは、熱処理を
行ないながら塑性加工を行なうステップを含むことを特
徴とする、ビスマス系酸化物超電導線材の製造方法。
1. A method for producing a bismuth-based oxide superconducting wire comprising the steps of filling a metal sheath with a bismuth-based oxide superconductor or a raw material thereof and then plastic-working the wire into a wire, wherein the plastic-working step comprises: A method for producing a bismuth-based oxide superconducting wire, the method comprising the step of performing plastic working while performing heat treatment.
JP3056690A 1991-03-20 1991-03-20 Manufacture of bismuth-based oxide superconductive wire Withdrawn JPH04292814A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3056690A JPH04292814A (en) 1991-03-20 1991-03-20 Manufacture of bismuth-based oxide superconductive wire
AU12860/92A AU641088B2 (en) 1991-03-20 1992-03-13 Electric cooking apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3056690A JPH04292814A (en) 1991-03-20 1991-03-20 Manufacture of bismuth-based oxide superconductive wire

Publications (1)

Publication Number Publication Date
JPH04292814A true JPH04292814A (en) 1992-10-16

Family

ID=13034447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3056690A Withdrawn JPH04292814A (en) 1991-03-20 1991-03-20 Manufacture of bismuth-based oxide superconductive wire

Country Status (1)

Country Link
JP (1) JPH04292814A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6311384B1 (en) * 1989-12-28 2001-11-06 Hidehito Mukai Method of manufacturing oxide superconducting wire
WO2005001852A1 (en) * 2003-06-26 2005-01-06 Sumitomo Electric Industries, Ltd Bismuth oxide superconducting wire rod and process for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6311384B1 (en) * 1989-12-28 2001-11-06 Hidehito Mukai Method of manufacturing oxide superconducting wire
WO2005001852A1 (en) * 2003-06-26 2005-01-06 Sumitomo Electric Industries, Ltd Bismuth oxide superconducting wire rod and process for producing the same
JPWO2005001852A1 (en) * 2003-06-26 2006-10-12 住友電気工業株式会社 Bismuth oxide superconducting wire and method for producing the same

Similar Documents

Publication Publication Date Title
JPH04212215A (en) Manufacture of bismuthal oxide superconductor
JP2567505B2 (en) Method for producing bismuth oxide superconductor
US5246917A (en) Method of preparing oxide superconducting wire
EP0496281B1 (en) Method of preparing a multifilamentary bismuth oxide superconducting wire
US6074991A (en) Process for producing an elongated superconductor with a bismuth phase having a high transition temperature and a superconductor produced according to this process
EP0449222B1 (en) Thallium oxide superconductor and method of preparing the same
WO1993002460A1 (en) Method for manufacturing superconductive wire material of bismuth based oxide
JPH04292814A (en) Manufacture of bismuth-based oxide superconductive wire
EP0676817B1 (en) Method of preparing high-temperature superconducting wire
JPH02207420A (en) Manufacture of superconducting wire rod
JPH06275146A (en) Composite superconducting wire
JP3109076B2 (en) Manufacturing method of oxide superconducting wire
JP3149429B2 (en) Superconductor manufacturing method
JP3149170B2 (en) Method for producing bismuth-based oxide superconductor
JPH0864044A (en) Manufacture of high temperature superconductive wire material
JPH04292812A (en) Manufacture of bismuth-based oxide superconductive wire
JPH06223650A (en) Manufacture of bi oxide superconducting wire
JP2966134B2 (en) Method for producing Bi-based oxide superconductor
JP3044732B2 (en) Method for producing bismuth-based oxide superconductor
JPH03265523A (en) Bismuth-containing oxide superconductor and production thereof
JPH01123405A (en) Manufacture of superconducting power lead
JPH0554735A (en) Manufacture of ceramic superconductor
JPH0644841A (en) Manufacture of oxide superconducting wire rod
JPH04214034A (en) Thallium-based oxide superconductor and its production
JPH09235120A (en) Production of bismuth-based oxide superconductor

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514