JPH02138230A - Production of alkyl-substituted aromatic hydrocarbon - Google Patents

Production of alkyl-substituted aromatic hydrocarbon

Info

Publication number
JPH02138230A
JPH02138230A JP1201033A JP20103389A JPH02138230A JP H02138230 A JPH02138230 A JP H02138230A JP 1201033 A JP1201033 A JP 1201033A JP 20103389 A JP20103389 A JP 20103389A JP H02138230 A JPH02138230 A JP H02138230A
Authority
JP
Japan
Prior art keywords
alkali metal
solid base
aromatic hydrocarbon
reaction
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1201033A
Other languages
Japanese (ja)
Other versions
JP2748577B2 (en
Inventor
Masami Fukao
正美 深尾
Takao Hibi
卓男 日比
Kiyoshi Ikimi
伊喜見 清志
Takeo Suzukamo
鈴鴨 剛夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP1201033A priority Critical patent/JP2748577B2/en
Publication of JPH02138230A publication Critical patent/JPH02138230A/en
Application granted granted Critical
Publication of JP2748577B2 publication Critical patent/JP2748577B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the subject substance under mild condition in high yield by reacting an olefin with an aromatic hydrocarbon having H on the alpha-site of a side chain in the presence of a solid base prepared from alumina, an alkali metal hydroxide and an alkali metal hydride at a specific temperature. CONSTITUTION:The objective compound is produced by alkylating (A) an aromatic hydrocarbon having H on the alpha-site of a side chain (e. g., toluene or ethylbenzene) with (B) an olefin usually at 0-300 deg.C under a reaction pressure of usually from atmospheric pressure to 200kg/cm<2> in the presence of (C) a catalyst consisting of a solid base produced by heating alumina, an alkali metal hydroxide and an alkali metal hydride in an inert gas atmosphere at 200-800 deg.C (preferably the reaction temperature of alumina and alkali metal hydroxide is 260-480 deg.C and that of alkali metal hydride is 200-450 deg.C). The molar ratio of the olefin to the aromatic hydrocarbon is preferably 0.2-5.

Description

【発明の詳細な説明】[Detailed description of the invention]

〈産業上の利用分野〉 本発明はアルキル置換芳香族炭化水素の製造法に関し、
詳しくは特定の温度下でアルミナ、アルカリ金属水酸化
物およびアルカリ金属水素化物から調製した固体塩基の
存在下に、側鎖のα位に水素原子を有する芳香族炭化水
素とオレフィンとを反応させてα位をアルキル化せしめ
ることによるアルキル置換芳香族炭化水素の製造法に関
するものである。 〈従来の技術〉 アルキル置換芳香族炭化水素は農・医薬品、化成品等フ
ァインケミカルズの中間原料とし7で有用であり、塩基
触媒の存在下に側鎖のα位に水素を有する芳香族炭化水
素とオレフィンとを反応させることにより得られる。 例えば、触媒として金属ナトリウムとクロルトルエンか
らなる触媒を用いる方法、金属ナトリウムを炭酸カリウ
ムに担持した触媒を用いる方法等が知られている(J、
Am、CheIIl、Soc、、78.4316(19
56)、英国、特許第1269280号、特開昭61−
53229号公報)。 〈発明が解決しようとする課題〉 しかしながら、上記のような触媒を用いた場合、触媒活
性が充分ではなく、生成するアルキル置換芳香族炭化水
素の触媒光たりの収量が低いという問題、触媒と生成物
の分ぬ1が煩雑であるという問題、更には触媒が大気中
の空気、水分と接した場合に失活し易くまた発火の危険
を伴うという問題等があった。 く課題を解決するための手段〉 本発明者らは芳香族炭化水素のα位のアルキル化による
アルキル置換芳香族炭化水素の優れた製造法を開発すべ
く、アルキル化触媒について鋭意検討を重ねた結果、ア
ルミナ、アルカリ金属水酸化物およびアルカリ金属水素
化物を加熱処理して得られる特定の固体塩基が、著しく
高いアルキル化活性を示し、少ない触媒量で効率良く目
的とするアルキル置換芳香族炭化水素を生成せしめ、し
かも反応生成物との分離も容易であり、そのうえ該固体
塩基は大気中の空気、水分と接触しても発火の危険が少
なく、取扱いが極めて容易であることを見出すとともに
、更に種々の検討を加えて本発明を完成した。 すなわち本発明は、側鎖のα位に水素原子を有する芳香
族炭化水素をオレフィンでアルキル化して、アルキル置
換芳香族炭化水素を製造するに当たり、触媒としてアル
ミナ、アルカリ金属水酸化物およびアルカリ金属水素化
物を不活性ガス雰囲気中、200乃至800℃の温度下
で加熱処理してなる固体塩基を用いることを特徴とする
工業的にイ】れたアルキル置換芳香族炭化水素の製造方
法を提供するものである。 本発明はアルミナ、アルカリ金属水酸化物、アルカリ金
属水素化物を特定温度下で加熱処理してなる固体塩基を
用いることを特徴とするものであるが、アルミナとして
はα−アルミナ以外の種々の形jBのものが使用し得、
中でもr−2χ−1ρ−型のような表面積の大きなアル
ミナが好ましく用いられる。 またアルカリ金属水素化物としては周期律表第!族のリ
チウム、ナトリウム、カリウム、ルビジウム等のアルカ
リ金属の水素化物が用いられ、好ましくはナトリウム水
素化物、カリウム水素化物もしくはこれ等q)混合物、
更に好ましくはカリウム水素化物が用いられる。アルカ
リ金属水素化物の使用量はアルミナに対し通常2乃至1
5wtχである。 アルカリ金属水酸化物としては、例えば水酸化リチウム
、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウ
ム、水酸化セシウム等が挙げられるが、好ましくは水酸
化ナトリウム、水酸化カリウム、水酸化セシウムが用い
られる。アルカリ金属水酸化物は2種以上用いることも
できる。1吏用量はアルミナに対し、通常5乃至40w
 tχである。 固体塩基を調製するに当たっては不活性ガス雰囲気下で
、先ずアルミナにアルカリ金属水酸化物を、次いでアル
カリ金属水素化物を作用させるのが好ましい。 例えば、アルミナにアルカリ金属水酸化物を加えて加熱
作用せしめ、次いでこれにアルカリ金属水素化物を加え
て加熱作用せしめる方法、アルミナをアルカリ金属水酸
化物の溶液に含浸、乾燥した後、加熱作用せしめ、次い
でこれにアルカリ金属水素化物を加えて加熱作用せしめ
る方法等が挙げられる。 不活性ガスとしては窒素、ヘリウム、アルゴン等が挙げ
られる。 触媒調製温度は重要であり、通常200乃至800’C
1好ましくはアルミナとアルカリ金属水酸化物とを作用
せしめる温度は250乃至700℃1より好ましくは2
60乃至480℃である。アルカリ金属水素化ワフを作
用せしめる温度は、好ましくは200乃至450’Cで
ある。 加熱時間は選定する温度条件等にもよるが、ア
ルカリ金属水酸化物を作用せしめる工程は通常0.5乃
至10時間で充分であり、アルカリ金属水素化物を作用
せしめる工程は通常10乃至3゜0分である。 かくして、高活性なうえに流動性、操作性が良好でしか
も空気にふれても発火の危険性のない固体塩基が得られ
る。 本発明はかかる固体塩基を用いて、側鎖のα位に水素を
有する芳香族炭化水素とオレフィンとを反応させるもの
であるが、咳芳香族炭化水素としては通常重環芳香族炭
化水素の他、縮合多環芳香族炭化水素が用いられる。こ
れらは側鎖が結合して環を形成していても良い。 例エバ)ルエン、エチルベンゼン、イソプロピルベンゼ
ン、n−プロビルヘンゼン、n−プチルベンセン、5e
e−ブチルベンゼン、イソブチレンゼン、キシレン、シ
メン、ジイソプロピルベンゼン、メチルナフタレン、テ
トラヒドロナフタレン、インダン等が例示できる。トル
エン、エチルベンゼン、イソプロビルヘンゼンが好まし
く使用される。 またオレフィンとしては炭素数が2〜20のオレフィン
が通常用いられ、直鎖のもの、分岐のものいずれでも良
い。また二重結合が末端、内部いずれにあっても使用で
きる。末端オレフィンが好ましく用いられる。 これらの具体化合物としては、例えばエチレン、プロピ
レン、1−ブテン、2−ブテン、イソブチレン、1−ペ
ンテン、2−ペンテン、1−ヘキセン、2−ヘキセン、
3−ヘキセン、シクロヘキセン、l−ヘプテン、2−ヘ
プテン、3−ヘプテン、オクテン、ノネン、3−メチル
−1−ブテン、2−メチル−2−ブテン、3−メチル−
1−ペンテン、3−メチル−2−ペンテン等が挙げられ
る。 エチレン、プロピレン、1−ブテン、2−ブテンが好ま
しく使用される。 アルキル化反応を実施するに当たっては、バ・ノチ方式
、流動床、固定床を用いた流通方式いずれも採用できる
。 反応温度は通常O乃至300℃1好ましくは20乃至2
00℃であり1反応圧力は通常大気圧乃至200Kg/
cm”、好ましくは2乃至100にg/ceb”である
。 また芳香族炭化水素に対するオレフィンのモル比は通常
0.1乃至lO1好ましくは0.2乃至5である。 バッチ方式における触媒の使用量は通常、使用する芳香
族炭化水素の0.01乃至20−
<Industrial Application Field> The present invention relates to a method for producing an alkyl-substituted aromatic hydrocarbon,
Specifically, an aromatic hydrocarbon having a hydrogen atom at the α-position of the side chain is reacted with an olefin in the presence of a solid base prepared from alumina, an alkali metal hydroxide, and an alkali metal hydride at a specific temperature. This invention relates to a method for producing an alkyl-substituted aromatic hydrocarbon by alkylating the α-position. <Prior art> Alkyl-substituted aromatic hydrocarbons are useful as intermediate raw materials for fine chemicals such as agricultural products, pharmaceuticals, and chemical products. Obtained by reacting with olefin. For example, a method using a catalyst consisting of metallic sodium and chlorotoluene as a catalyst, a method using a catalyst in which metallic sodium is supported on potassium carbonate, etc. are known (J,
Am, CheIII, Soc, 78.4316 (19
56), UK, Patent No. 1269280, JP-A-61-
53229). <Problems to be Solved by the Invention> However, when the above-mentioned catalyst is used, there are problems such as insufficient catalytic activity and a low yield of alkyl-substituted aromatic hydrocarbons per catalytic light; There is a problem that the catalyst is complicated, and furthermore, the catalyst is easily deactivated when it comes into contact with air or moisture in the atmosphere, and there is a risk of ignition. Means for Solving the Problems> In order to develop an excellent method for producing alkyl-substituted aromatic hydrocarbons by alkylating the α-position of aromatic hydrocarbons, the present inventors conducted intensive studies on alkylation catalysts. As a result, specific solid bases obtained by heat treating alumina, alkali metal hydroxides, and alkali metal hydrides exhibit significantly high alkylation activity, and can efficiently convert target alkyl-substituted aromatic hydrocarbons with a small amount of catalyst. It has been found that the solid base can be easily separated from the reaction products, and that the solid base has little risk of ignition even when it comes into contact with air or moisture in the atmosphere, and is extremely easy to handle. The present invention was completed after various studies. That is, the present invention involves alkylating an aromatic hydrocarbon having a hydrogen atom at the α-position of the side chain with an olefin to produce an alkyl-substituted aromatic hydrocarbon, using alumina, an alkali metal hydroxide, and an alkali metal hydrogen as a catalyst. Provided is an industrial method for producing alkyl-substituted aromatic hydrocarbons, characterized in that a solid base obtained by heat-treating a compound at a temperature of 200 to 800°C in an inert gas atmosphere is used. It is. The present invention is characterized by using a solid base obtained by heat-treating alumina, alkali metal hydroxide, or alkali metal hydride at a specific temperature. jB's can be used,
Among them, alumina having a large surface area such as r-2χ-1ρ-type is preferably used. Also, it is the number one alkali metal hydride in the periodic table! q) mixtures thereof, preferably sodium hydride, potassium hydride or mixtures thereof;
More preferably, potassium hydride is used. The amount of alkali metal hydride used is usually 2 to 1 per alumina.
5wtχ. Examples of the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, etc., but sodium hydroxide, potassium hydroxide, and cesium hydroxide are preferably used. . Two or more types of alkali metal hydroxides can also be used. The dosage is usually 5 to 40 w for alumina.
It is tχ. In preparing the solid base, it is preferable to first treat alumina with an alkali metal hydroxide and then with an alkali metal hydride under an inert gas atmosphere. For example, a method of adding an alkali metal hydroxide to alumina and applying a heating effect to the alumina, then adding an alkali metal hydride to the alumina and applying a heating effect, or a method of impregnating alumina with a solution of an alkali metal hydroxide, drying it, and then applying a heating effect to the alumina. Then, a method of adding an alkali metal hydride to the mixture and applying a heating effect to the mixture can be mentioned. Examples of the inert gas include nitrogen, helium, and argon. The catalyst preparation temperature is important and is usually between 200 and 800'C.
1 Preferably, the temperature at which the alumina and alkali metal hydroxide are allowed to interact is 250 to 700°C1, more preferably 2
The temperature is 60 to 480°C. The temperature at which the alkali metal hydrogenation waff is applied is preferably 200 to 450'C. The heating time depends on the selected temperature conditions, etc., but normally 0.5 to 10 hours is sufficient for the step of applying an alkali metal hydroxide, and usually 10 to 3 hours for the step of applying an alkali metal hydride. It's a minute. In this way, a solid base is obtained which is highly active, has good fluidity and operability, and has no risk of ignition even when exposed to air. The present invention uses such a solid base to react an aromatic hydrocarbon having hydrogen at the α-position of the side chain with an olefin. , a fused polycyclic aromatic hydrocarbon is used. These may have side chains bonded to form a ring. Example Eva) Luene, ethylbenzene, isopropylbenzene, n-propylbenzene, n-butylbenzene, 5e
Examples include e-butylbenzene, isobutylene, xylene, cymene, diisopropylbenzene, methylnaphthalene, tetrahydronaphthalene, and indane. Toluene, ethylbenzene and isopropyrhenzene are preferably used. Further, as the olefin, an olefin having 2 to 20 carbon atoms is usually used, and either a linear or branched olefin may be used. Further, it can be used regardless of whether the double bond is located at the terminal or internally. Terminal olefins are preferably used. Specific examples of these compounds include ethylene, propylene, 1-butene, 2-butene, isobutylene, 1-pentene, 2-pentene, 1-hexene, 2-hexene,
3-hexene, cyclohexene, l-heptene, 2-heptene, 3-heptene, octene, nonene, 3-methyl-1-butene, 2-methyl-2-butene, 3-methyl-
Examples include 1-pentene and 3-methyl-2-pentene. Ethylene, propylene, 1-butene, 2-butene are preferably used. In carrying out the alkylation reaction, any of the Ba-Noti method, fluidized bed, and flow method using a fixed bed can be adopted. The reaction temperature is usually 0 to 300°C, preferably 20 to 20°C.
00℃, and the reaction pressure is usually atmospheric pressure to 200Kg/
cm", preferably 2 to 100 g/ceb". The molar ratio of olefin to aromatic hydrocarbon is usually 0.1 to 101, preferably 0.2 to 5. The amount of catalyst used in the batch process is usually 0.01 to 20-20% of the aromatic hydrocarbon used.

【χ、好ましくは0.
05乃至5 wLX ”il’ To ”)、反応は通
常0.57[50時間、好ましくはl乃至25時間であ
る。また流通反応における芳香族炭化水素と脂肪族オレ
フィンの合計の供給速度はLH3Vで通常0.1乃至6
00hr川、好ましくは0.5乃至400hr−’が採
用される。 〈発明の効果〉 かくして、アルキル置換芳香族炭化水素が生成するが、
本発明によれば少ない触媒量で、しかも緩和な条件下で
も、極めて効率良く目的とするアルキル置換芳香族炭化
水素を製造し得る。 加えて、触媒の取扱いのみならず反応後の後処理も極め
て容易であるので、本発明方法はこの点でも有利である
。 〈実施例〉 以下、実施例により本発明をさらに詳細に説明するが、
本発明はこれら実施例のみに限定されるものではない。 触媒調製例 (固体塩基A) 42〜200メツシユに揃えた活性アルミナ26.5g
を窒素雰囲気下510’Cで1時間撹拌し、次いで38
0℃に冷却した後、水酸化カリウム2.5gを加えて、
同温度で3時間撹拌した。 次いで310”Cに冷却した後、水素化カリウム2.3
3gを加えて、同温度で0.2時間撹拌した。 これを
室温まで放冷して24.2 gの固体塩基Aを得た。 (固体塩基B) 固体塩基Aにおいて、水素化カリウム1.78gを用い
る以外は固体塩基Aの調製例に準りして実施して固体塩
基Bを得た。 (固体塩基C) 固体塩基Aにおいて、水酸化カリウムを加える時の温度
およびその後の撹拌温度を380℃から550℃に代え
、水素化カリウム1.81 gを用いる以外は固体塩基
Aの調製例に準拠して実施し、固体塩基Cを得た。 (固体塩基D) 固体塩基Aで用いたと同じ活性アルミナ26.5 gを
水酸化カリウム2.5 gと水50gからなる溶液に加
え、これを70℃減圧下にロータリーエバポレーターを
用いて乾燥した。 次いで、このものを窒素雰囲気、250℃下で3時間撹
拌した後、310℃に昇温しで水素化カリウム3.18
gを加え、同温度で0.2時間撹拌した。これを室温ま
で冷却して固体塩基りを得た。 (固体塩基E) 固体塩基りにおいて、水酸化カリウムを加える前の温度
を250″Cから380℃に代え、水素化カワウム3.
15gを用いる以外は固体塩基りの調製例に準拠して実
施し、固体塩基Eを得た。 (固体塩基F) 固体塩基りにおいて、水酸化カリウムを加える前の温度
を250℃から550’Cに代え、水素化カリウム3.
25gを用いる以外は固体塩基りの調製例に準拠して実
施し、固体塩基Fを得た。 (固体塩基G) 固体塩基りにおいて、水酸化カリウムを加える前の温度
を250℃から700’Cに代え、水素化カリウム3.
15gを用いる以外は固体塩基りのm製例に準拠して実
施し、固体塩基Gを得た。 (固体塩基H) 固体塩基Aにおいて、水酸化カリウムの代わりに水酸化
ナトリウム2.5gを用い、2.0gの水素化カリウム
を用いる以外は固体塩基Aの調製例に準拠して実施し、
固体塩基Hを得た。 (固体塩基り 固体塩基Aにおいて、水素化カリウムの代わりに水素化
ナトリウム2.5gを用いる以外は固体塩基Aの調製例
に準拠して実施し、固体塩基1を得たた。 (固体塩基J) 固体塩5Aで用いたと同じ活性アルミナ26.5gと、
水酸化カリウム2.5 gとを混合粉砕した後、これを
坩堝に入れてマツフル炉で1000℃下、3時間撹拌し
た0次いで200℃まで冷却した後、窒素雰囲気下、デ
シケータ−中で室温迄冷却して微細な粉体を得た。 これを窒素雰囲気下、310℃に加熱した後、撹拌しな
がらこれに水素化ナトリウム2.6gを加えて同温度で
0.2時間撹拌した。これを室温まで冷却して固体塩基
Jを得た。 実施例1 電磁撹拌器付600−オートクレーブに窒素雰囲気下、
固体塩基D 0.32g、7 メ7240gを入a、1
000r、p、m、撹拌下に100℃に昇a後、同温度
でエチレンガスを10にg/cwh”・Gで供給しなが
ら3時間反応を行った。 反応後オートクレーブを冷却し、触媒を濾別した後、反
応液をガスクロマトグラフィーで分析した。 反応結果
を表1に示した。 実施例2〜10、比較例1 実施例1において、固体塩iAの代わりに固体塩基へ〜
Jをそれぞれ用い、表1に示す条件以外は実施例1に準
じて実施した0反応結果を表1に示した。 尚、実施例
1−10においては、反応終了後の触媒はなお活性であ
り、更に反応を行なったところ該反応が進行した。 比較例2 窒素雰囲気下で電磁撹拌器付200alオートクレーブ
に、あらかじめ400℃5窒素雰囲気下で2時間焼成し
た無水炭酸カリウム8.19g、ナトリウム0.30 
g、クメン26.7gを加えた後、190℃に昇温し、
同温度で2時間1000r、p、m、で撹拌を続けた。 次いでオートクレーブを冷却し、クメン53.3g、を
追加した後、1000r、p、m、撹拌下160℃に昇
温し、同温度でエチレンガスを10Kg/cm”・Gで
供給しながら3時間反応を行った。 反応後、実施例1
と同様にしてガスクロマトグラフィーで分析した。 反応結果を表1に示した。 表1 実施例1以外は反応温度160’cで実施した。 TAB・terし アミルベンゼン 実施例11 電弧d撹拌器付300InRオートクレーブに窒素雰囲
気下、固体塩5A 0.99g、クメン80gを入れ、
液化プロピレン100mff1を圧入した後、160℃
で24時間撹拌を続けた。 反応終了後、オートクレーブを冷却した後、反応液を実
施例1と同様にしてガスクロマトグラフィーで分析した
。 反応結果はクメン転化率71.1%、1,1.2−
 ) +J / チルプロピルベンゼン(TMPII)
 ’M W率85.7%であった。 尚、反応終了後の触媒はなお活性であり、更に反応を行
なったところ該反応が進行した。 比較例3 窒素雰囲気下で電磁撹拌器付200dオートクレーブに
、あらかじめ400℃、窒素雰囲気下で2時間焼成した
無水炭酸カリウム8.86g、ナトリウム0.30g、
クメン81.2 gを加えた後、190℃に昇温し、同
温度で2時間撹拌を続けた。 次いでオートクレーブを冷却し、液化プロピレン70m
1を圧入した後、160℃で24時間撹拌した。 反応後、実htii例】と同様にしてガスクロマトグラ
フィーで分析したところクメン転化率8.0%、丁MP
B選択率81.5%であった。 実施例12 電磁撹拌器付300 dオートクレーブに窒素雰囲気下
、固体塩基A 2.81g、トルエン80gを入れ、液
化プロピレン70m1を圧入した後、160℃で6時間
撹拌を続けた。 反応終了後、オートクレーブを冷却した後、反応液を実
施例1と同様にしてガスクロマトグラフィーで分析した
0反応結果はトルエン転化率22.9%、イソブチルベ
ンゼン(IBB) M沢率91.0%であった。 尚、反応終了後の触媒はなお活性であり、更に反応を行
なったところ該反応が進行した。 比較例4 窒素雰囲気下で電磁撹拌器付200dオートクレーブに
、あらかじめ400℃1窒素雰囲気下で2時間焼成した
無水炭酸カリウム8.45g、ナトリウム0.30 g
、トルエン26.6gを加えた後、190℃に昇温し、
同温度で2時間撹拌を続けた。 次いでオートクレーブを冷却してトルエン53.2g、
?&化プロピレン70dを圧入した後、160℃で24
時間撹拌した。 反応後、実施例1と同様にしてガスク
ロマトグラフィーで分析したところトルエン転化率3,
5%、IIIB選択率89.2%であった。
[χ, preferably 0.
05 to 5 wLX "il'To"), the reaction time is usually 0.57 [50 hours, preferably 1 to 25 hours. In addition, the total feed rate of aromatic hydrocarbons and aliphatic olefins in the flow reaction is usually 0.1 to 6 at LH3V.
00 hr river, preferably 0.5 to 400 hr-' is employed. <Effect of the invention> In this way, alkyl-substituted aromatic hydrocarbons are produced,
According to the present invention, target alkyl-substituted aromatic hydrocarbons can be produced extremely efficiently with a small amount of catalyst and even under mild conditions. In addition, the method of the present invention is advantageous in this respect as not only the handling of the catalyst but also the post-treatment after the reaction is extremely easy. <Example> The present invention will be explained in more detail with reference to Examples below.
The present invention is not limited only to these examples. Catalyst preparation example (solid base A) 26.5 g of activated alumina arranged in a mesh of 42 to 200
was stirred at 510'C for 1 hour under nitrogen atmosphere, then 38
After cooling to 0°C, add 2.5g of potassium hydroxide,
The mixture was stirred at the same temperature for 3 hours. Then, after cooling to 310"C, 2.3% potassium hydride
3 g was added and stirred at the same temperature for 0.2 hours. This was allowed to cool to room temperature to obtain 24.2 g of solid base A. (Solid Base B) Solid base B was obtained in the same manner as in the preparation example of solid base A except that 1.78 g of potassium hydride was used. (Solid base C) Same as the preparation example of solid base A except that in solid base A, the temperature when adding potassium hydroxide and the subsequent stirring temperature were changed from 380°C to 550°C, and 1.81 g of potassium hydride was used. A solid base C was obtained. (Solid base D) 26.5 g of the same activated alumina used in solid base A was added to a solution consisting of 2.5 g of potassium hydroxide and 50 g of water, and this was dried at 70° C. under reduced pressure using a rotary evaporator. Next, this material was stirred for 3 hours at 250°C in a nitrogen atmosphere, and then heated to 310°C, and 3.18% of potassium hydride was added.
g was added thereto, and the mixture was stirred at the same temperature for 0.2 hours. This was cooled to room temperature to obtain a solid base. (Solid base E) In the solid base preparation, the temperature before adding potassium hydroxide was changed from 250"C to 380"C, and potassium hydride 3.
Solid base E was obtained in accordance with the preparation example of solid base except that 15 g was used. (Solid base F) In solid base formation, the temperature before adding potassium hydroxide was changed from 250°C to 550'C, and potassium hydride 3.
Solid base F was obtained in accordance with the preparation example of solid base except that 25 g was used. (Solid base G) In solid base formation, the temperature before adding potassium hydroxide was changed from 250°C to 700'C, and potassium hydride 3.
Solid base G was obtained by carrying out the procedure according to Example M for solid base preparation except that 15 g was used. (Solid base H) In solid base A, the procedure was carried out according to the preparation example of solid base A, except that 2.5 g of sodium hydroxide was used instead of potassium hydroxide and 2.0 g of potassium hydride was used.
A solid base H was obtained. (Solid base A) Solid base 1 was obtained by following the preparation example of solid base A except that 2.5 g of sodium hydride was used instead of potassium hydride. (Solid base J ) 26.5 g of the same activated alumina used in solid salt 5A,
After mixing and pulverizing 2.5 g of potassium hydroxide, the mixture was placed in a crucible and stirred for 3 hours at 1000°C in a Matsufuru furnace. After cooling to 200°C, the mixture was heated to room temperature in a desiccator under a nitrogen atmosphere. After cooling, a fine powder was obtained. After heating this to 310° C. under a nitrogen atmosphere, 2.6 g of sodium hydride was added thereto while stirring, and the mixture was stirred at the same temperature for 0.2 hours. This was cooled to room temperature to obtain solid base J. Example 1 In a 600-autoclave with a magnetic stirrer under a nitrogen atmosphere,
Add 7240 g of solid base D, 0.32 g, 7 a, 1
After raising the temperature to 100°C with stirring at 000r, p, m, the reaction was carried out at the same temperature for 3 hours while supplying ethylene gas at 10g/cwh''.G.After the reaction, the autoclave was cooled and the catalyst was removed. After filtering, the reaction solution was analyzed by gas chromatography. The reaction results are shown in Table 1. Examples 2 to 10, Comparative Example 1 In Example 1, solid base was used instead of solid salt iA.
Table 1 shows the results of the 0 reaction, which was carried out according to Example 1 except for the conditions shown in Table 1, using J. In Examples 1-10, the catalyst was still active after the reaction was completed, and when the reaction was further carried out, the reaction proceeded. Comparative Example 2 8.19 g of anhydrous potassium carbonate and 0.30 g of sodium were calcined in advance at 400° C. for 2 hours under a nitrogen atmosphere in a 200 al autoclave equipped with a magnetic stirrer under a nitrogen atmosphere.
After adding 26.7 g of cumene, the temperature was raised to 190°C,
Stirring was continued at 1000 r, p, m for 2 hours at the same temperature. Next, the autoclave was cooled, and after adding 53.3 g of cumene, the temperature was raised to 160° C. with stirring at 1000 r, p, m, and reacted for 3 hours at the same temperature while supplying ethylene gas at 10 kg/cm”・G. After the reaction, Example 1
Analyzed by gas chromatography in the same manner as above. The reaction results are shown in Table 1. Table 1 Except for Example 1, the reaction temperature was 160'C. TAB・ter. Amylbenzene Example 11 In a 300 InR autoclave equipped with an electric arc stirrer, 0.99 g of solid salt 5A and 80 g of cumene were placed in a nitrogen atmosphere.
After pressurizing 100 mff1 of liquefied propylene, the temperature was increased to 160°C.
Stirring was continued for 24 hours. After the reaction was completed, the autoclave was cooled, and the reaction solution was analyzed by gas chromatography in the same manner as in Example 1. The reaction results were cumene conversion rate of 71.1%, 1,1.2-
) +J/Tylpropylbenzene (TMPII)
'MW rate was 85.7%. It should be noted that the catalyst was still active after the reaction was completed, and when the reaction was further carried out, the reaction proceeded. Comparative Example 3 8.86 g of anhydrous potassium carbonate, 0.30 g of sodium, which had been previously calcined at 400° C. for 2 hours in a 200 d autoclave with a magnetic stirrer under a nitrogen atmosphere, and 0.30 g of sodium.
After adding 81.2 g of cumene, the temperature was raised to 190°C, and stirring was continued at the same temperature for 2 hours. The autoclave was then cooled and 70 m of liquefied propylene was added.
After pressurizing 1, the mixture was stirred at 160°C for 24 hours. After the reaction, analysis by gas chromatography in the same manner as in Actual Example] revealed that the cumene conversion rate was 8.0%.
The B selectivity was 81.5%. Example 12 2.81 g of solid base A and 80 g of toluene were placed in a 300 d autoclave equipped with a magnetic stirrer under a nitrogen atmosphere, and after 70 ml of liquefied propylene was pressurized, stirring was continued at 160° C. for 6 hours. After the reaction was completed, the autoclave was cooled, and the reaction solution was analyzed by gas chromatography in the same manner as in Example 1.The reaction results were as follows: toluene conversion rate 22.9%, isobutylbenzene (IBB) M content rate 91.0%. Met. It should be noted that the catalyst was still active after the reaction was completed, and when the reaction was further carried out, the reaction proceeded. Comparative Example 4 8.45 g of anhydrous potassium carbonate and 0.30 g of sodium were calcined in advance at 400° C. for 2 hours under a nitrogen atmosphere in a 200 d autoclave equipped with a magnetic stirrer under a nitrogen atmosphere.
, after adding 26.6g of toluene, the temperature was raised to 190°C,
Stirring was continued for 2 hours at the same temperature. Then, the autoclave was cooled and 53.2 g of toluene was added.
? After press-fitting 70d of propylene, it was heated at 160°C for 24
Stir for hours. After the reaction, analysis by gas chromatography in the same manner as in Example 1 revealed that the toluene conversion rate was 3,
5%, and the IIIB selectivity was 89.2%.

Claims (1)

【特許請求の範囲】[Claims] 側鎖のα位に水素原子を有する芳香族炭化水素をオレフ
ィンでアルキル化して、アルキル置換芳香族炭化水素を
製造するに当たり、触媒としてアルミナ、アルカリ金属
水酸化物およびアルカリ金属水素化物を不活性ガス雰囲
気中、200乃至800℃の温度下で加熱処理してなる
固体塩基を用いることを特徴とするアルキル置換芳香族
炭化水素の製造法。
When producing an alkyl-substituted aromatic hydrocarbon by alkylating an aromatic hydrocarbon having a hydrogen atom at the α-position of the side chain with an olefin, alumina, alkali metal hydroxide, and alkali metal hydride are used as a catalyst in an inert gas. A method for producing an alkyl-substituted aromatic hydrocarbon, characterized by using a solid base obtained by heat treatment at a temperature of 200 to 800° C. in an atmosphere.
JP1201033A 1988-08-12 1989-08-01 Process for producing alkyl-substituted aromatic hydrocarbons Expired - Fee Related JP2748577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1201033A JP2748577B2 (en) 1988-08-12 1989-08-01 Process for producing alkyl-substituted aromatic hydrocarbons

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-202468 1988-08-12
JP20246888 1988-08-12
JP1201033A JP2748577B2 (en) 1988-08-12 1989-08-01 Process for producing alkyl-substituted aromatic hydrocarbons

Publications (2)

Publication Number Publication Date
JPH02138230A true JPH02138230A (en) 1990-05-28
JP2748577B2 JP2748577B2 (en) 1998-05-06

Family

ID=26512540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1201033A Expired - Fee Related JP2748577B2 (en) 1988-08-12 1989-08-01 Process for producing alkyl-substituted aromatic hydrocarbons

Country Status (1)

Country Link
JP (1) JP2748577B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57170863A (en) * 1981-04-13 1982-10-21 Toyo Pairu Hiyuumukan Seisakus Inorganic heat-insulating board manufacture and heat-insulating board

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57170863A (en) * 1981-04-13 1982-10-21 Toyo Pairu Hiyuumukan Seisakus Inorganic heat-insulating board manufacture and heat-insulating board

Also Published As

Publication number Publication date
JP2748577B2 (en) 1998-05-06

Similar Documents

Publication Publication Date Title
JP2748631B2 (en) Method for producing alkyl-substituted aromatic hydrocarbon
JP6968336B2 (en) Method for Producing Alkyl Substituted Aromatic Hydrocarbons
EP0356790B1 (en) Process for preparing alkyl-substituted aromatic hydrocarbons
EP0328940B1 (en) Process for preparing alkyl-substituted aromatic hydrocarbons
JP2625985B2 (en) Method for producing alkyl-substituted aromatic hydrocarbon
EP0569742B1 (en) Process for producing monoalkenyl aromatic hydrocarbon compound
JPH02138230A (en) Production of alkyl-substituted aromatic hydrocarbon
JP2748646B2 (en) Method for producing alkyl-substituted aromatic hydrocarbon
EP0612706A1 (en) Process for producing monoalkenylbenzenes
US5043507A (en) Process for preparing alkyl-substituted aromatic hydrocarbons
JP2830129B2 (en) Preparation of alkyl-substituted aromatic hydrocarbons
JP2596108B2 (en) Preparation of alkyl-substituted aromatic hydrocarbons
US5227559A (en) Process for preparing alkyl-subtituted aromatic hydrocarbons
JP2615987B2 (en) Method for producing alkyl-substituted aromatic hydrocarbon
JP2792132B2 (en) Process for producing alkyl-substituted aromatic hydrocarbons
US5347062A (en) Process for preparing alkyl-substituted aromatic hydrocarbons
KR19980080303A (en) Process for producing monoalkenyl aromatic hydrocarbon compound
JP2745706B2 (en) Method for producing alkyl-substituted aromatic hydrocarbon
JPH10309460A (en) Catalyst and method for side chain alkylation by using the same
JP3028020B2 (en) Method for producing monoalkenylbenzenes
EP0610598A1 (en) Process for producing monoalkenylbenzenes
KR0148564B1 (en) Process for preparing alkyl substituted aromatic hydrocarbons
JP2004522564A (en) Process for the preparation of alkali metal catalysts and their use for side-chain alkylation of alkylaromatics
JPH10338654A (en) Production of alkenyl-substituted aromatic hydrocarbon
JPH11140000A (en) Production of alkenyl-substituted aromatic hydrocarbon

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees