JPH02122831A - Catalyst for removal of nitrogen oxide - Google Patents

Catalyst for removal of nitrogen oxide

Info

Publication number
JPH02122831A
JPH02122831A JP63277693A JP27769388A JPH02122831A JP H02122831 A JPH02122831 A JP H02122831A JP 63277693 A JP63277693 A JP 63277693A JP 27769388 A JP27769388 A JP 27769388A JP H02122831 A JPH02122831 A JP H02122831A
Authority
JP
Japan
Prior art keywords
catalyst
nitrate
oxide
group
baked
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63277693A
Other languages
Japanese (ja)
Inventor
Masafumi Yoshimoto
吉本 雅文
Tadao Nakatsuji
忠夫 仲辻
Kazuhiko Nagano
永野 一彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Chemical Industry Co Ltd
Original Assignee
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Chemical Industry Co Ltd filed Critical Sakai Chemical Industry Co Ltd
Priority to JP63277693A priority Critical patent/JPH02122831A/en
Priority to EP89202496A priority patent/EP0362960A3/en
Priority to US07/417,422 priority patent/US5128305A/en
Publication of JPH02122831A publication Critical patent/JPH02122831A/en
Priority to US07/518,560 priority patent/US5049364A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To permit an efficient cleavage of nitrogen oxides in a gas in the presence of CO by forming a catalyst of the baked product of (1) the oxides of alkali metal (2) Co3O4, Cu2O, etc., and (3) platinum group metal or its oxide. CONSTITUTION:A mixture of alkali metal and/or the oxide of alkaline earth metal and an oxide selected from Co3O4, Cu2O, Cr2O3, etc., after formation by extrusion molding, is baked at a temperature of 300-800 deg.C. Such baked product is immersed in an aqueous solution of an element selected from the water-soluble salts of Ru, Rh, Pd, Ag, Pt and Au and, after drying, is baked at a temperature of 300-800 deg.C and baked again, as required, in a reducing atmosphere to form a catalyst. This catalyst can effect the reductive cleavage of nitrogen oxides for removal from exhaust gases with the addition of reducing agent CO thereto at the gas temperature ranging from 300 to 800 deg.C.

Description

【発明の詳細な説明】 産業上の利用分解 本発明は、排ガス中に含まれる窒素酸化物を除去する方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION Industrial Application Decomposition The present invention relates to a method for removing nitrogen oxides contained in exhaust gas.

従来Q技術 従来排ガス中に含まれる窒素酸化物は、■窒素酸化物を
酸化しアルカリ吸収させる方法、■窒素酸化物をNH,
、N2、CO等の還元剤により、N2とする方法などに
より除去されてきた。これらの方法は■の場合排水処理
が必要となり、■の場合NH3等の還元剤が必要である
ため処理コストが高く、特にNH3を還元剤とする場合
SOxとの反応による塩類生成による活性低下があるな
どの問題を有してきた。またCOを還元剤とする場合上
記問題点を有しないが、酸素の共存下ではCOが02と
反応し、効率的に還元反応が起こらないという問題点が
あった。
Conventional Q technology Conventionally, nitrogen oxides contained in exhaust gas are treated by: ■ oxidizing nitrogen oxides and absorbing alkali, ■ converting nitrogen oxides to NH,
, N2, CO, and other reducing agents. These methods require wastewater treatment in the case of ①, and require a reducing agent such as NH3 in the case of ①, resulting in high treatment costs.In particular, when NH3 is used as the reducing agent, activity decreases due to salt formation due to reaction with SOx. There have been some problems. Further, when CO is used as a reducing agent, the above-mentioned problems do not occur, but there is a problem that CO reacts with 02 in the presence of oxygen, and the reduction reaction does not occur efficiently.

発器が解決旦孟j上す名利照点 本発明は、上記の欠点を解決し、還元剤COを添加し窒
素酸化物を高効率に還元分解することができる触媒にか
かるものである。
SUMMARY OF THE INVENTION The present invention is directed to a catalyst that solves the above-mentioned drawbacks and is capable of highly efficiently reducing and decomposing nitrogen oxides by adding a reducing agent CO.

10  六 ′    1 の二 本発明にかかる触媒は、排ガス中に含有する窒素酸化物
を (a)アルカリ金属及びもしくはアルカリ土類金属酸化
物 (b)Co30a、Cu2O、Cr2O3、Mn2O3
、Ni01PbO,Bi2O3、MoO2から選択され
る1種以上の金属酸化物及び(C)Ru%Rh、Pd、
Ag5PtSAuから選択される1種以上の金属もしく
は、金属酸化物とからなる触媒とCOの共存下で接触さ
せ、窒素酸化物をN2とCO2に還元分解することがで
きる触媒である。
10 6' 1-2 The catalyst according to the present invention converts nitrogen oxides contained in exhaust gas into (a) alkali metal and/or alkaline earth metal oxides (b) Co30a, Cu2O, Cr2O3, Mn2O3
, one or more metal oxides selected from Ni01PbO, Bi2O3, MoO2, and (C) Ru%Rh, Pd,
This is a catalyst that can reduce and decompose nitrogen oxides into N2 and CO2 by bringing them into contact with a catalyst made of one or more metals selected from Ag5PtSAu or metal oxides in the coexistence of CO.

本触媒は(a)(b)と(C)から選択される触媒成分
もしくはそれらの前駆体を用いて、公知の方法により調
整することができる。
The present catalyst can be prepared by a known method using a catalyst component selected from (a), (b) and (C) or a precursor thereof.

例えば (1)アルカリ土類金属酸化物(マグネシア、カルシア
、酸化ストロンチウムなど)と(b)群から選択される
酸化物を予め混合し、任意の成形方法(押出成形、打錠
成形、球状成形など)により成形しその後300℃〜8
00℃の温度条件で焼成し、これを(C)群から選択さ
れる金属及びもしくはアルカリ金属塩水溶液に浸漬し、
乾燥後300℃〜800℃の温度条件で焼成する。さら
に必要に応じて還元雰囲気中で焼成する。
For example, (1) an alkaline earth metal oxide (magnesia, calcia, strontium oxide, etc.) and an oxide selected from group (b) are mixed in advance, and any molding method (extrusion molding, tablet molding, spherical molding, etc.) is used. ) and then molded at 300℃~8
Calcined at a temperature of 00°C, immersed in a metal and/or alkali metal salt aqueous solution selected from group (C),
After drying, it is fired at a temperature of 300°C to 800°C. Further, if necessary, it is fired in a reducing atmosphere.

(2)アルカリ土類金属塩と(b)群から選択される金
属の塩を水などに溶解しこれにアルカリ(アンモニア、
水酸化ナトリウムなど)など沈澱剤を加え沈澱を生成し
、これを乾燥し、その後300℃〜800℃の温度条件
で焼成し粉砕し、任意の成形方法(押出成形、打錠成形
、球状成形など)により成形し、さらに必要に応じて3
00℃〜800℃の温度条件で焼成し、これを(C)群
から選択される金属及びもしくはアルカリ金属塩水溶液
に浸漬し、乾燥後300℃〜800℃の温度条件で焼成
する。さらに必要に応じて還元雰囲気中で焼成する。
(2) Dissolve an alkaline earth metal salt and a salt of a metal selected from group (b) in water, etc., and add alkali (ammonia,
Add a precipitant (such as sodium hydroxide) to form a precipitate, dry this, then sinter and crush at a temperature of 300°C to 800°C. ), and further 3 as necessary.
It is fired at a temperature of 00°C to 800°C, immersed in an aqueous solution of a metal and/or alkali metal salt selected from group (C), dried, and then fired at a temperature of 300°C to 800°C. Further, if necessary, it is fired in a reducing atmosphere.

(3)アルカリ金属塩、(b)群から選択される金属塩
及び(C)群から選択される金属塩を水などに溶解し、
これにアルカリ(アンモニア、水酸化ナトリウムなど)
など沈澱剤を加え、沈澱を生成し、これを乾燥し、その
後300℃〜800℃の温度条件で焼成する。これを粉
砕し任意の成形方法(押出成形、打錠成形、球状成形な
ど)により成形し、さらに必要に応じて300℃〜80
0℃の温度条件で焼成する。さらに場合によってはこれ
を還元雰囲気中で焼成してもよい。
(3) Dissolving an alkali metal salt, a metal salt selected from group (b), and a metal salt selected from group (C) in water or the like,
Add to this an alkali (ammonia, sodium hydroxide, etc.)
A precipitant such as the like is added to form a precipitate, which is dried and then calcined at a temperature of 300°C to 800°C. This is crushed and molded by any molding method (extrusion molding, tablet molding, spherical molding, etc.), and further heated to 300°C to 800°C as necessary.
Fired at a temperature of 0°C. Furthermore, depending on the case, this may be fired in a reducing atmosphere.

これらの方法は本発明触媒の調整方法を例示したもので
あり、これに特定されるものではなく、触媒成分が同じ
ものであれば同等の効果が得られる。
These methods are illustrative of methods for preparing the catalyst of the present invention, and are not limited thereto, and equivalent effects can be obtained if the catalyst components are the same.

本発明に用いることができる(a)群の金属酸化物は酸
化マグネシウム、酸化カルシウム、酸化ストロンチウム
であり、(a)群の前駆体は水酸化マグネシウム、水酸
化カルシラJい水酸化ストロンチウム、水酸化バリウム
などの水酸化物、硝酸マグネシウム、硝酸カルシウム、
硝酸ストロンチウム、硝酸バリウムなど水溶性塩などで
ある。なおこれらの沈澱剤としては炭酸塩あるいは水酸
化ナトリウムなどのアルカリが好ましい。
The metal oxides of group (a) that can be used in the present invention are magnesium oxide, calcium oxide, and strontium oxide, and the precursors of group (a) are magnesium hydroxide, calcium hydroxide, strontium hydroxide, and strontium oxide. Hydroxides such as barium, magnesium nitrate, calcium nitrate,
These include water-soluble salts such as strontium nitrate and barium nitrate. As the precipitant, carbonate or alkali such as sodium hydroxide is preferable.

また本発明に用いることができる(b)群の金属酸化物
はCo3O4、Cu2O、Cr2O3Mn2O3、Ni
0%PbO1Bi203、MoO2であり、好ましい原
料である(b)群の前駆体としては硝酸第1銅、硝酸第
1クロム、硝酸コバルト、硝酸マンガン、硝酸ニッケル
、硝酸鉛、硝酸ビスマス、モリブデン酸アンモニウムな
どの水溶性塩を挙げることができる。さらに(C)群の
金属もしくは金属酸化物としては、前駆体を用いること
が好ましく塩化ルテニウム、硝酸ロジウム、塩化パラジ
ウム、硝酸銀、塩化白金酸、塩化金酸などの水溶性塩を
挙げることができる。またこれらの成分以外にチタニア
、アルミナ、シリカなどの公知の担体成分、粘土などの
成形助剤成分、ガラスセンイなどの補強剤を添加しても
よい。しかしこれらの成分の総量は触媒成分中の50%
以下とすることが好ましい。
Group (b) metal oxides that can be used in the present invention include Co3O4, Cu2O, Cr2O3Mn2O3, Ni
0% PbO1Bi203, MoO2, and the precursors of group (b), which are preferred raw materials, include cuprous nitrate, chromium nitrate, cobalt nitrate, manganese nitrate, nickel nitrate, lead nitrate, bismuth nitrate, ammonium molybdate, etc. Examples include water-soluble salts of Furthermore, as the metal or metal oxide of group (C), it is preferable to use a precursor, and examples thereof include water-soluble salts such as ruthenium chloride, rhodium nitrate, palladium chloride, silver nitrate, chloroplatinic acid, and chloroauric acid. In addition to these components, known carrier components such as titania, alumina, and silica, molding aid components such as clay, and reinforcing agents such as glass fiber may be added. However, the total amount of these components is 50% of the catalyst components.
The following is preferable.

本発明にかかる触媒は、(a)群、(b)群及び(C)
群とからなるがこれらの好ましい組成比は原子比で(a
)群:(b)群:(C)群が90〜50:5〜50:0
.01〜10あり、より好ましくは90〜75:10〜
25:0.1〜5である。本発明者らはNOxのCOに
よる還元分解の素反応が 2NO+2e  +   2NO(1)2NO→  N
、+20    (2)20+2CO−+   Co2
+2e   (3)C02→  C02↑    (4
) からなり、(a)群は(1) (2)の反応に、(b)
群は(3)の反応に、(C)群は(4)の反応に関与し
ていると考えている。これらのそれぞれの反応速度への
寄与は定かではないが、これらの原子比において、最も
還元分解活性を示す結果となった。
The catalyst according to the present invention comprises group (a), group (b) and (C).
The preferred composition ratio of these groups is (a
) group: (b) group: (C) group is 90-50:5-50:0
.. 01-10, more preferably 90-75:10
25:0.1-5. The present inventors found that the elementary reaction of reductive decomposition of NOx by CO is 2NO+2e + 2NO(1)2NO→N
, +20 (2)20+2CO-+ Co2
+2e (3) C02→ C02↑ (4
), and group (a) responds to reactions (1) and (2), and group (b)
We believe that group (C) is involved in reaction (3) and group (C) is involved in reaction (4). Although the contribution of each of these to the reaction rate is unclear, the results showed the highest reductive decomposition activity at these atomic ratios.

本発明の触媒が高い還元分解活性を示す温度は300℃
〜800℃である。また好ましい温度400〜600℃
である。この温度において本発明触媒は、5V=500
〜50000において使用することができる。
The temperature at which the catalyst of the present invention exhibits high reductive decomposition activity is 300°C.
~800°C. Also preferred temperature is 400-600℃
It is. At this temperature, the catalyst of the present invention has a voltage of 5V=500
~50,000 can be used.

発器の効果 以上の様に本発明によれば(a)群(b)群及び(C)
群より選ばれた触媒成分を含有する触媒を用いることに
よって、排ガス温度が300℃〜800℃の温度域にお
いて窒素酸化物を還元剤COを添加し、還元分解除去す
ることが可能となったのである。
As described above, according to the present invention, group (a), group (b), and group (C)
By using a catalyst containing a catalyst component selected from the group, it has become possible to reduce and decompose nitrogen oxides in the exhaust gas temperature range of 300°C to 800°C by adding a reducing agent CO. be.

以下に実施例を挙げて本発明を説明するが、本発明はこ
れらの実施例により何ら限定されるものではない。
The present invention will be described below with reference to Examples, but the present invention is in no way limited by these Examples.

実施例1゜ 硝酸マグネシウム、硝酸コバルトを各々酸化物基準で9
0g、9g秤量しこれを1見のイオン交換水中に溶解し
た。この水溶液中に充分な撹拌を行ないながら、炭酸ソ
ーダ水溶液をpH7,0となるまで添加し、中和反応を
終了した。(中和時間1時間)その後30分熟成後ろ過
水洗を行ない100℃で18時間乾燥後500℃3時間
焼成した。この焼成物をスクリーンが0.5mmφであ
るサンプルミルにて粉砕した。この粉砕物を50g、水
200mU中に投入し充分撹拌を行なったスラリー中に
空隙率81%、ピッチ4mmのセラミックファイバー製
コルゲート状ハニカムを浸漬し、MgO−Co3O4を
該ハニカムに担持した。その担持率は159%であった
Example 1゜ Magnesium nitrate and cobalt nitrate were each 9% on an oxide basis.
0g and 9g were weighed and dissolved in 1 amount of ion-exchanged water. An aqueous sodium carbonate solution was added to this aqueous solution with sufficient stirring until the pH reached 7.0 to complete the neutralization reaction. (Neutralization time: 1 hour) Thereafter, the mixture was aged for 30 minutes, washed with water, dried at 100°C for 18 hours, and then calcined at 500°C for 3 hours. This fired product was pulverized using a sample mill with a screen of 0.5 mmφ. A corrugated honeycomb made of ceramic fibers with a porosity of 81% and a pitch of 4 mm was immersed in a slurry in which 50 g of this pulverized material was poured into 200 mU of water and sufficiently stirred, and MgO--Co3O4 was supported on the honeycomb. The loading rate was 159%.

これを常温通風乾燥後100℃18時間乾燥した。この
乾燥物を塩化金酸水溶液(Auとして33g/見)中に
浸漬し、常温通風乾燥後100℃18時間乾燥し、50
0℃3時間焼成した。
This was air-dried at room temperature and then dried at 100° C. for 18 hours. This dried product was immersed in a chloroauric acid aqueous solution (33 g/application as Au), dried with ventilation at room temperature, and then dried at 100°C for 18 hours.
It was baked at 0°C for 3 hours.

実施例2゜ 実施例1の方法において、硝酸マグネシウム、硝酸コバ
ルトを酸化物基準で各々75gと24g(実施例2−1
) 、50:49 (実施例2−2)とした。
Example 2 In the method of Example 1, magnesium nitrate and cobalt nitrate were added to 75 g and 24 g, respectively, on an oxide basis (Example 2-1).
), 50:49 (Example 2-2).

実施例3゜ 実施例1の方法において、塩化金酸水溶液濃度をAuと
して165g/込とした。
Example 3 In the method of Example 1, the concentration of the chloroauric acid aqueous solution was set to 165 g/containing Au.

実施例4゜ 実施例1の方法において、塩化金酸水溶iαに替えて塩
化白金酸水溶液(Ptとして33g/免)を用いた。
Example 4 In the method of Example 1, an aqueous chloroplatinic acid solution (33 g/min as Pt) was used in place of the aqueous chloroauric acid iα.

実施例5゜ 実施例1の方法において、塩化金酸水溶液に替えて塩化
ルテニウム水it& (Ruとして33g/免)を用い
た。
Example 5 In the method of Example 1, ruthenium chloride water it& (33 g/min as Ru) was used instead of the chloroauric acid aqueous solution.

実施例6゜ 実施例1の方法において塩化白金酸水溶液に替えて硝酸
銀水溶液(A g 20として71g/免)を用いた。
Example 6 In the method of Example 1, a silver nitrate aqueous solution (71 g/min as A g 20) was used in place of the chloroplatinic acid aqueous solution.

実施例7゜ 実施例1の方法において硝酸コバルトに替えて塩化第1
銅塩酸水溶液<ra化物として9g)を中和剤としてア
ンモニアに替えてNaOHを用い、また中和pHを3.
0とした。
Example 7゜In the method of Example 1, cobalt chloride was replaced with cobalt nitrate.
Copper hydrochloric acid aqueous solution <9 g as ra compound) was used as a neutralizing agent instead of ammonia with NaOH, and the neutralization pH was adjusted to 3.
It was set to 0.

実施例8゜ 実施例1の方法において硝酸コバルトに替えて硝酸第1
クロム水溶液(酸化物として9g)を用いp)(を5.
5とした。
Example 8゜In the method of Example 1, nitric acid nitrate was used instead of cobalt nitrate.
Using a chromium aqueous solution (9 g as oxide) p) (5.
I gave it a 5.

実施例肌 実施例4の方法において硝酸コバルトに替えて硝酸マン
ガンを用い、中和時に空気酸化を行ない中和pHを8.
5とした。
Example Skin In the method of Example 4, manganese nitrate was used instead of cobalt nitrate, air oxidation was performed during neutralization, and the neutralization pH was adjusted to 8.
I gave it a 5.

実施例10゜ 実施例4の方法において硝酸コバルトに替えて硝酸ニッ
ケルを用いた。
Example 10° Nickel nitrate was used in place of cobalt nitrate in the method of Example 4.

実施例11゜ 実施例4の方法において硝酸コバルトに替えて硝酸鉛を
用いた。
Example 11 In the method of Example 4, lead nitrate was used instead of cobalt nitrate.

実施例12゜ 実施例4の方法において硝酸コバルト水溶液に替えて硝
酸ビスマス硝酸水溶液を用いた。
Example 12 In the method of Example 4, an aqueous solution of bismuth nitrate and nitric acid was used in place of the aqueous cobalt nitrate solution.

実施例13゜ 実施例4の方法において硝酸コバルトに替えて臭化モリ
ブデンを用いた。
Example 13 In the method of Example 4, molybdenum bromide was used in place of cobalt nitrate.

実施例14゜ 実施例7の方法において塩化金酸水溶液に替えて硝酸ロ
ジウム水溶液を用いた。
Example 14 In the method of Example 7, a rhodium nitrate aqueous solution was used in place of the chloroauric acid aqueous solution.

実施例15゜ 実施例7の方法において塩化金酸水溶液に替えて塩化パ
セジウム水溶液を用いた。
Example 15 In the method of Example 7, an aqueous solution of passedium chloride was used in place of the aqueous chloroauric acid solution.

実施例16゜ 実施例4の方法において塩化白金酸水溶液濃度を16g
/見(実施例16−1)、663/見(実施例16−2
)とした。
Example 16゜In the method of Example 4, the concentration of the chloroplatinic acid aqueous solution was 16 g.
/view (Example 16-1), 663/view (Example 16-2)
).

実施例17゜ 実施例4の方法において硝酸コバルトに替えて硝酸コバ
ルトと硝酸クロムを酸化物基準で45gと45gとした
Example 17 In the method of Example 4, cobalt nitrate and chromium nitrate were used in place of cobalt nitrate in amounts of 45 g and 45 g on an oxide basis.

実施例18゜ 実施例1の方法において塩化金酸水溶液に替えてNaを
含有する塩化金酸水溶液(Auとして33g/見、Na
として3g/見)を用いた。
Example 18 In the method of Example 1, a chloroauric acid aqueous solution containing Na (33 g/view as Au, Na
3 g/view) was used.

実施例19゜ 実施例4によって得た触媒をN2−N2(1:l)の還
元性ガスで400℃1時間処理した。
Example 19 The catalyst obtained in Example 4 was treated with a reducing gas of N2-N2 (1:l) at 400 DEG C. for 1 hour.

実施例20゜ 実施例1の方法において硝酸マグネシウムに替えて硝酸
カルシウム(実施例2O−1)硝酸ストロンチウム(実
施例2O−2)硝酸バノウム(実施例2O−3)を用い
た。
Example 20° Calcium nitrate (Example 2O-1), strontium nitrate (Example 2O-2), and vanium nitrate (Example 2O-3) were used in place of magnesium nitrate in the method of Example 1.

実施例1〜19、参考例1により得られた触媒を用いて
以下の試験条件にて試験を行なった。
Tests were conducted using the catalysts obtained in Examples 1 to 19 and Reference Example 1 under the following test conditions.

(1)ガス組成 No      200ppm Co      200ppm 02      2 % H20lo  % N2      バランス (2)  SV    1000 (3)反応温度  300.400.500℃試験結果
を第1表に示した。
(1) Gas composition No. 200 ppm Co 200 ppm 02 2% H20lo % N2 Balance (2) SV 1000 (3) Reaction temperature 300.400.500°C The test results are shown in Table 1.

Claims (1)

【特許請求の範囲】 窒素酸化物を含有するガスをCOの共存下で接触して、
窒素酸化物を還元分解除去する触媒において (a)アルカリ金属及びもしくはアルカリ土類金属酸化
物 (b)Co_3O_4、Cu_2O、Cr_2O_3、
Mn_2O_3、NiO、PbO、Bi_2O_3、M
oO_2から選択される1種以上の金属酸化物及び (C)Ru、Rh、Pd、Ag、Pt、Auから選択さ
れる1種以上の金属もしくは、金属酸化物とからなるこ
とを特徴とするCoによる窒素酸化物還元分解触媒
[Claims] Contacting a gas containing nitrogen oxides in the coexistence of CO,
In the catalyst for reducing and decomposing nitrogen oxides, (a) alkali metal and/or alkaline earth metal oxides (b) Co_3O_4, Cu_2O, Cr_2O_3,
Mn_2O_3, NiO, PbO, Bi_2O_3, M
Co characterized by consisting of one or more metal oxides selected from oO_2 and (C) one or more metals or metal oxides selected from Ru, Rh, Pd, Ag, Pt, and Au. Nitrogen oxide reduction decomposition catalyst by
JP63277693A 1988-10-05 1988-11-02 Catalyst for removal of nitrogen oxide Pending JPH02122831A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63277693A JPH02122831A (en) 1988-11-02 1988-11-02 Catalyst for removal of nitrogen oxide
EP89202496A EP0362960A3 (en) 1988-10-05 1989-10-03 Use of a catalyst composition for denitrization and denitrizing catalysts
US07/417,422 US5128305A (en) 1988-10-05 1989-10-05 Catalyst for denitrization
US07/518,560 US5049364A (en) 1988-10-05 1990-06-06 Methods for denitrization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63277693A JPH02122831A (en) 1988-11-02 1988-11-02 Catalyst for removal of nitrogen oxide

Publications (1)

Publication Number Publication Date
JPH02122831A true JPH02122831A (en) 1990-05-10

Family

ID=17586989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63277693A Pending JPH02122831A (en) 1988-10-05 1988-11-02 Catalyst for removal of nitrogen oxide

Country Status (1)

Country Link
JP (1) JPH02122831A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4831193A (en) * 1971-08-27 1973-04-24
JPS4921379A (en) * 1972-06-20 1974-02-25
JPS49122893A (en) * 1973-03-29 1974-11-25
JPS508771A (en) * 1973-05-28 1975-01-29
JPS52148495A (en) * 1976-06-04 1977-12-09 Ube Ind Ltd No# reduction and purification catalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4831193A (en) * 1971-08-27 1973-04-24
JPS4921379A (en) * 1972-06-20 1974-02-25
JPS49122893A (en) * 1973-03-29 1974-11-25
JPS508771A (en) * 1973-05-28 1975-01-29
JPS52148495A (en) * 1976-06-04 1977-12-09 Ube Ind Ltd No# reduction and purification catalyst

Similar Documents

Publication Publication Date Title
CA1295598C (en) Process for removing nitrogen oxides from exhaust gases
CN111889101B (en) Modified composite oxide catalyst for synergistic purification of VOCs and NO and preparation method thereof
EP0208434A1 (en) Process for removing nitrogen oxides and carbon monoxide simultaneously
JPH02187148A (en) Catalyst for decomposing ozone
JP2007054714A (en) Decomposition catalyst of nitrous oxide and decomposition method of nitrous oxide using the catalyst
JP3221116B2 (en) Catalyst for decomposition of nitrous oxide
JPH0299142A (en) Nitrogen oxide decomposing catalyst
JP3254742B2 (en) Catalyst for decomposition of nitrous oxide
JPH02187130A (en) Method for nitrogen oxide removal
JPH02122831A (en) Catalyst for removal of nitrogen oxide
JP2921517B2 (en) Nitrogen oxide decomposition catalyst
JP2689147B2 (en) Nitrogen oxide removal catalyst
JPH02187131A (en) Method for removing nitrogen oxide
JP2001058130A (en) Catalyst for nitrogen oxide decomposition
JP2691750B2 (en) Nitrogen oxide decomposition catalyst
JP4427357B2 (en) Ammonia purification catalyst, and ammonia purification method and ammonia purification apparatus using the same
JPH1057811A (en) Nox gas oxidizing agent and production thereof
JP4016193B2 (en) Denitration catalyst
JPS5823136B2 (en) How to remove nitrogen oxides from exhaust gas
JPH10128105A (en) Nitrogen oxide adsorbent and removal of nitrogen oxide
JPH03131320A (en) Nitrogen oxide decomposing catalyst
JP2002320847A (en) Adsorbent for nitrogen oxide and/or sulfur oxide and method for removing nitrogen oxide and/or sulfur oxide
JP2007216082A (en) Catalyst for decomposing ammonia and method for treating ammonia
JPH04210241A (en) Catalyst for cleaning exhaust gas
JPH02144147A (en) Catalyst for removal of nitrogen oxide