JPH02144147A - Catalyst for removal of nitrogen oxide - Google Patents

Catalyst for removal of nitrogen oxide

Info

Publication number
JPH02144147A
JPH02144147A JP63298800A JP29880088A JPH02144147A JP H02144147 A JPH02144147 A JP H02144147A JP 63298800 A JP63298800 A JP 63298800A JP 29880088 A JP29880088 A JP 29880088A JP H02144147 A JPH02144147 A JP H02144147A
Authority
JP
Japan
Prior art keywords
catalyst
group
hours
dried
metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63298800A
Other languages
Japanese (ja)
Inventor
Masafumi Yoshimoto
吉本 雅文
Tadao Nakatsuji
忠夫 仲辻
Kazuhiko Nagano
永野 一彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Chemical Industry Co Ltd
Original Assignee
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Chemical Industry Co Ltd filed Critical Sakai Chemical Industry Co Ltd
Priority to JP63298800A priority Critical patent/JPH02144147A/en
Publication of JPH02144147A publication Critical patent/JPH02144147A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To directly decompose and remove NOx with high efficiency without adding a reducing agent by using a specified catalyst contg. a component such as titanium oxide and a metal oxide such as ruthenium chloride (as precursor) as effective components. CONSTITUTION:NOx contained in exhaust gas are directly decomposed and removed by bringing the gas into contact with a catalyst contg. one or more kinds of oxides (a) selected among formulae I-III (where each of x, y and z is 0-1) and one or more kinds of metals (b) selected among Pt, Ru, Re, Rh, Pb, Ag and Au or one or more kinds of oxides (b) of such metals as effective components. It is preferable that the catalyst further contains as alkali metal or alkaline earth metal oxide (c). The catalyst has decomposition activity at 100-800 deg.C, especially 200-500 deg.C. The weight ratio of b:a:c in the catalyst is (0.1-5):(90-75):(10-25).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、排ガス中に含まれる窒素酸化物を除去する方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for removing nitrogen oxides contained in exhaust gas.

Cf、来の技術) 従来排ガス中に含まれる窒素酸化物は、■窒素酸化物を
酸化しアルカリ吸収させる方法 ■窒素酸化物をNH3
1N21 Co等の還元剤により、N2とする方法など
により除去されてきた。これらの方法は■の場合、排水
処理が必要となり、■の場合はNH3等の還元剤が必要
であるため処理コストが高く、特にN H3とSOxと
の反応による塩類生成による活性低下があるなどの問題
を有してきた。またそのため還元剤を添加することなく
窒素酸化物を直接分解することができる触媒が提案され
ているが、これらは活性が低く実用に供し得ないという
問題点を有してきた。
Cf, conventional technology) Nitrogen oxides contained in exhaust gas are conventionally treated by: ■ A method of oxidizing nitrogen oxides and absorbing alkali ■ Nitrogen oxides with NH3
It has been removed by reducing agents such as 1N21 Co to N2. These methods require wastewater treatment in case (■), and in case (■) a reducing agent such as NH3 is required, resulting in high treatment costs.In particular, there is a decrease in activity due to the formation of salts due to the reaction between NH3 and SOx. I have had problems with this. For this reason, catalysts that can directly decompose nitrogen oxides without adding a reducing agent have been proposed, but these have had the problem of low activity and cannot be put to practical use.

(発明が解決しようとする問題点) 本発明は、上記の欠点を解決上還元剤を添加することな
く窒素酸化物を高効率に直接分解することができる触媒
にかかるものである。
(Problems to be Solved by the Invention) The present invention relates to a catalyst that can directly decompose nitrogen oxides with high efficiency without adding a reducing agent in order to solve the above-mentioned drawbacks.

(問題点を解決するための手段) 本発明にかかる触媒は、排ガス中に含有する窒素酸化物
を (a ) T r 02−X、 A I 203−y 
+ N b Oよ−2から選択される1種以上(ただい
□、y、z =0゜01〜1.0) (b)Pt、Ru、Re、Rh、Pd、Ag、AUから
選択される1種以上の金属もしくは金属酸化物 あるいはさらに (C)アルカリ金属及びもしくはアルカリ土類金属酸化
物を含有する触媒と接触させ、窒素酸化物なN2と02
に分解することができる触媒である。
(Means for Solving the Problems) The catalyst according to the present invention converts nitrogen oxides contained in exhaust gas into (a) T r 02-X, A I 203-y
+ N b O yo -2 (Tai □, y, z = 0゜01~1.0) (b) One or more selected from Pt, Ru, Re, Rh, Pd, Ag, AU or (C) an alkali metal and/or alkaline earth metal oxide;
It is a catalyst that can decompose into

本触媒は(a)(b)と(C)から選択される触媒成分
もしくはそれらの前駆体を用いて、公知の方法により調
整することができる。
The present catalyst can be prepared by a known method using a catalyst component selected from (a), (b) and (C) or a precursor thereof.

例えば (1)(a)群から選択される酸化物あるいは(a)群
から選択される酸化物と(C)群から選択される酸化物
もしくはその前駆体を予め混合し、任意の成形方法によ
り成形しその後300℃〜800℃の温度条件で焼成し
、これを(b)群から選択される金属塩水溶液に浸漬し
乾燥後300℃〜800℃の温度条件て焼成する。そら
に必要に応じて還元雰囲気中く例えばN2)N2)N2
−N2)て焼成する。この時の還元温度は500℃以上
であることが好ましい。
For example, (1) an oxide selected from group (a) or an oxide selected from group (a) and an oxide selected from group (C) or a precursor thereof are mixed in advance, and then formed by an arbitrary molding method. It is shaped and then fired at a temperature of 300°C to 800°C, immersed in an aqueous solution of a metal salt selected from group (b), dried, and then fired at a temperature of 300°C to 800°C. For example, N2) N2) N2 in a reducing atmosphere as necessary.
-N2). The reduction temperature at this time is preferably 500°C or higher.

(2)  (a、)群から選択される金属の塩を水など
:’;g ?jJ?’lしこれにアルカリ(アンモニア
、水酸化すトリウ五など)など沈殿剤を加え沈殿を生成
し、これを乾燥し、その後300℃〜800℃の温度条
件で焼成し粉砕し、任意の成形方法(押出成形、打錠成
形、球状成形なと)により成形し、さらに必要に応じて
300℃〜800℃の温度条件で焼成し、これを(b)
群から選択される金属もしくは(b)群から選択されろ
金属と(C)群の金属塩水溶液に漫消し、乾燥後F■2
雰囲気下で300℃〜800℃の温度条件で焼成する。
(2) Salts of metals selected from group (a,), such as water:';g? jJ? Then, a precipitant such as an alkali (ammonia, trihydroxide, etc.) is added to this to form a precipitate, which is dried, then calcined and pulverized at a temperature of 300°C to 800°C, and then formed using any molding method. (b)
Dip in an aqueous solution of a metal selected from the group (b) or a metal salt of the group (C), and after drying F■2
Firing is performed in an atmosphere at a temperature of 300°C to 800°C.

なおこの時の好ましい還元温度は500°C以」二であ
る。
Note that the preferable reduction temperature at this time is 500°C or higher.

(3)(a)群から選択される金属jム及び(b)群か
ら選択される金属塩あるいは(a)群から選択される金
属塩、(b)群から選択される金属塩及び(c)群から
選択される金属塩を水などに;容解しこれにアルカリ(
アンモニア、水酸化ナトリウムなと)なと沈殿剤を加え
、沈殿を生成し、これを乾燥し、その後300℃〜80
0°Cの温度条件で焼成する。これを粉砕し任意の成形
方法(押出成形、打錠成形、球状成形なと)により成形
し、さらに300℃〜800 ’C(好ましくは500
℃以上)で還元雰囲気下(N2  I(2もしくは1■
2)てテ完成する。
(3) A metal selected from group (a) and a metal salt selected from group (b), or a metal salt selected from group (a), a metal salt selected from group (b), and (c ) group is dissolved in water etc., and then added with an alkali (
Add a precipitant such as ammonia, sodium hydroxide, etc. to form a precipitate, dry this, and then
Fired at a temperature of 0°C. This is crushed, molded by any molding method (extrusion molding, tablet molding, spherical molding, etc.), and further heated to 300°C to 800'C (preferably 500'C)
℃ or higher) under a reducing atmosphere (N2 I (2 or 1
2) Complete the project.

これらの方法は本発明触媒のUil’!方法を例示した
ものであり、これに特定されるものではない。
These methods are applicable to Uil'! of the catalyst of the present invention. This is an example of the method and is not exclusive.

しかし本発明において最も好ましい方法はTlO2)A
I 、03.Nb2O5の前駆体、例えばオルソチタン
酸、水酸化アルミニウムもLノ<は水酸化ニオブな比較
的低い温度で焼成し高比表面積のTiO2)A I 2
03もしくはNb、205を調製し、これに(a)群よ
り選択される金属塩溶液を含浸担持した後300°C〜
800℃にて焼成する。さらにこれをN2−N2もしく
はN2の還元雰囲気下で500℃で焼成することにより
、金属表面上に付着したFI2のTlO2)A1□O8
、Nb2O,のスピルオーバーによるTlO2)Al2
O3もしくはN b 2013の還元とその還元物と(
b)群金属とのStrongMetal−suppor
tnteract i Onを生成させることである。
However, the most preferred method in the present invention is TlO2)A
I, 03. Precursors of Nb2O5, such as orthotitanic acid and aluminum hydroxide, are also niobium hydroxide.They are fired at a relatively low temperature and have a high specific surface area, TiO2)A I2.
After preparing 03 or Nb, 205 and impregnating and supporting it with a metal salt solution selected from group (a), 300 ° C ~
Fire at 800°C. Furthermore, by firing this at 500°C in a reducing atmosphere of N2-N2 or N2, the FI2 TlO2)A1□O8 attached to the metal surface is
, Nb2O, due to spillover of TlO2)Al2
Reduction of O3 or N b 2013 and its reduced product (
b) StrongMetal-support with group metals
The purpose is to generate tnteract i On.

例えば(a)群金属がptの時、Tiの場合Ptn−(
Tr aO?)2n 、Nbの場合Ptn−(Nb20
、−いn、AIの場合Ptn−Al2O。nが生成して
いると考えられる。
For example, when the (a) group metal is pt, in the case of Ti, Ptn-(
Tr aO? )2n, for Nb, Ptn-(Nb20
, -n, for AI, Ptn-Al2O. It is thought that n is generated.

本発明に用いることができろ(b)群の金属もしくは金
属酸化物とり、では、前駆体を用いることが好ましく塩
化ルテニウム、塩化レニウム、硝酸ロジウム、塩化パラ
ジウム、硝酸銀、塩化白金酸、塩化金酸などの水溶性塩
を挙げることができろ。
Among the metals or metal oxides of group (b) that can be used in the present invention, it is preferable to use precursors such as ruthenium chloride, rhenium chloride, rhodium nitrate, palladium chloride, silver nitrate, chloroplatinic acid, chloroauric acid. Can you name any water-soluble salts such as?

また本発明に用いることができる(a)群の酸化物は、
酸化チタンの場合アナタース型酸化チタン、ルチル型、
ブルッカイ1型酸化チタンもしくはTiO,Ti2O3
なとの低次酸化物などてあリ、酸化ニオブの場合N b
 206もしくはNbO2)Nb2O3、NbOなどの
低次酸化物などである。酸化アルミの場合α、β、γ型
などのAl2O3などである。(a)群の前駆体は焼成
することにより前述した酸化物になるものであればいず
れのものでもよく、例えば水酸化物塩化物、硝酸塩など
を用いることができる。
Further, the oxides of group (a) that can be used in the present invention are:
In the case of titanium oxide, anatase type titanium oxide, rutile type,
Brookkai type 1 titanium oxide or TiO, Ti2O3
In the case of niobium oxide, Nb
206 or NbO2), lower-order oxides such as Nb2O3, and NbO. In the case of aluminum oxide, these include α, β, and γ types of Al2O3. The precursor of group (a) may be any one that becomes the above-mentioned oxide upon firing, and for example, hydroxide chlorides, nitrates, etc. can be used.

本発明に用いることができる(C)群の金属酸化物は酸
化マグネシウム、酸化カルシラJ1、酸化ストロンチウ
ムであり、(C)群の前駆体は水酸化マグネシラノ1、
水酸化カルシウム、水酸化ストロンチウム、水酸化バリ
ウムなとの水酸化物、硝酸マグネシウム、6百酸カルシ
ウム、硝酸ストロンチウム、硝酸バリウムなど水溶性塩
なと−Cある。なおこれらの沈殿剤としては炭酸塩ある
いは水酸化ナトリウムなとのアルカリが好ましい。また
これらの成分以外にチタニア、アルミナ、シリカなどの
公知の担体成分、粘土などの成形助剤成分、ガラスセン
イなどの補強剤を添加してもよい。しかしこれらの成分
の給量は触媒成分中の50%以下とすることが好ましい
The metal oxides of group (C) that can be used in the present invention are magnesium oxide, calcilla oxide J1, and strontium oxide, and the precursors of group (C) are magnesilano hydroxide 1,
-C includes hydroxides such as calcium hydroxide, strontium hydroxide, and barium hydroxide, and water-soluble salts such as magnesium nitrate, calcium hexahyacate, strontium nitrate, and barium nitrate. As these precipitating agents, carbonates or alkalis such as sodium hydroxide are preferred. In addition to these components, known carrier components such as titania, alumina, and silica, molding aid components such as clay, and reinforcing agents such as glass fiber may be added. However, it is preferable that the amount of these components added be 50% or less of the catalyst components.

本発明ζこかかる触媒は、(a)群及び(b)群もしく
は(a)群(b)群及び(C)群とからなることがこれ
らの好ましい組成化は重量比で(b)群:(a)群が0
.01〜10:99.99:90、より好ましくは0.
1〜5:99.9〜95である。また(b)群: (a
)群: (C)群からなる触媒は、好ましい組成化は重
量比で0.01〜10:99〜50:1〜50、より好
ましくは0.1〜5:90〜75:10〜25である。
The catalyst of the present invention may be composed of group (a) and group (b) or group (a), group (b), and group (C).The preferred composition of these is group (b) in weight ratio: (a) Group is 0
.. 01-10:99.99:90, more preferably 0.
1-5:99.9-95. Also, group (b): (a
) group: The catalyst consisting of group (C) preferably has a composition in a weight ratio of 0.01 to 10:99 to 50:1 to 50, more preferably 0.1 to 5:90 to 75:10 to 25. be.

本発明者らはNOxの接触分解の素反応が2NO+2e
  4 2NO−(1) 2NO−→ N2+20−     (2)20−  
  → 02+2e     (3)02     →
 02↑       (・1)もしくは酸素の共存下
では 0゜+2e  → 20”−(5) 2NO+20−→ 2NO丁      (6)2NO
丁   −+  N2+40      (7)40 
    − 202+4e     (8)0゜   
  → O7↑       (9)からなっていると
考えている。しかしこれら(a)群(b)群(C)群の
それぞれの反応への寄与は定かてはないが、これらの原
子比において、最も分解活性を示す結果となった。
The present inventors found that the elementary reaction of catalytic decomposition of NOx is 2NO+2e
4 2NO-(1) 2NO-→ N2+20- (2) 20-
→ 02+2e (3)02 →
02↑ (・1) or in the coexistence of oxygen, 0゜+2e → 20”-(5) 2NO+20-→ 2NO (6) 2NO
Ding −+ N2+40 (7) 40
−202+4e (8)0°
→ O7↑ I think it consists of (9). However, although the contribution of each of these groups (a), (b), and (C) to the reaction is unclear, the results showed that the decomposition activity was the highest at these atomic ratios.

本発明の触媒が分解活性を示す温度は100℃〜800
℃である。また好ましい温度は200℃〜500℃であ
る。この温度において本発明触媒は5V=500〜50
00におい゛C使用することがてきる。
The temperature at which the catalyst of the present invention exhibits decomposition activity is 100°C to 800°C.
It is ℃. Further, a preferable temperature is 200°C to 500°C. At this temperature, the catalyst of the present invention is 5V=500-50
Can be used in 00.

(発明の効果) 以上の様に本発明によれば(a)群及び(b)群あるい
は(a)群、(b)群及び(C)群より選ばれた触媒成
分を含有する触媒を用いることによって、排ガス温度が
100℃〜800℃の温度域において窒素酸化物を還元
剤を添加することなく分解除去することが可能となった
のである。
(Effects of the Invention) As described above, according to the present invention, a catalyst containing a catalyst component selected from group (a) and group (b) or group (a), group (b), and group (C) is used. This has made it possible to decompose and remove nitrogen oxides in the exhaust gas temperature range of 100°C to 800°C without adding a reducing agent.

以下に実施例とともに参考例を挙げて本発明を説明する
が、本発明はこれらの実施例により何ら限定されるもの
ではない。
The present invention will be explained below by giving reference examples together with Examples, but the present invention is not limited to these Examples in any way.

実施例1 四塩化チタン水溶参α(150g/込 as  Tl0
3)IQに充分に撹拌を行いつつNH3ガス吹き込み、
水酸化チタンの沈殿を生成させた。(最終PH=8.0
)ろ過後イオン交換水により充分水洗を行い、100°
Cて18時間乾燥後500℃、3時間焼成した。この焼
成物をスクリーンが0.5mmφτあるサンプルミルに
て粉砕した。得られた粉体はXRDによればアナタース
型酸化チタンであり、比表面積は62イ/gであった。
Example 1 Titanium tetrachloride water-soluble sulfur α (150g/included as Tl0
3) Blow NH3 gas into IQ while stirring thoroughly,
A titanium hydroxide precipitate was formed. (Final pH=8.0
) After filtration, rinse thoroughly with ion-exchanged water and heat to 100°.
After drying at 500° C. for 18 hours, it was fired at 500° C. for 3 hours. This fired product was ground in a sample mill with a screen of 0.5 mmφτ. According to XRD, the obtained powder was anatase type titanium oxide and had a specific surface area of 62 i/g.

この粉砕物を50g、水200+nV中に投入し充分撹
拌を行ったスラリー中に空隙率81%、ピッチ4、mm
のセラミックファイバー製コルゲート状ハニカムを浸漬
し、TlO2を該ハニカムに担持した。
50g of this pulverized material was poured into water 200+nV and thoroughly stirred into a slurry with a porosity of 81% and a pitch of 4 mm.
A corrugated honeycomb made of ceramic fiber was immersed, and TlO2 was supported on the honeycomb.

その担持率は152%てあ・〕た。これを常温通風乾燥
後100℃、18時間乾燥した。この乾燥物を塩化ルテ
ニウム水溶液(Ruとして10g/Q)中に浸漬し、常
温通風乾燥1ぐ100℃、18時間乾燥し、400℃、
3時間焼成した。
The interest rate was 152%. This was air-dried at room temperature and then dried at 100° C. for 18 hours. This dried product was immersed in a ruthenium chloride aqueous solution (10 g/Q as Ru), dried with ventilation at room temperature, 100°C for 18 hours, 400°C,
It was baked for 3 hours.

実施例2 実施例1と同様にしてTiO□担持コルゲートハニカム
を塩化パラジウム水tuff(Pdとして10g/見)
中に浸漬した。これを常温通風乾燥後180℃、18時
間乾燥し400℃、3時間焼成した。その後この焼成物
を還元炉にセットし貫通孔の中にH2を流通させ550
℃×2時間還元処理を行った。
Example 2 In the same manner as in Example 1, TiO
immersed in it. This was air-dried at room temperature, dried at 180°C for 18 hours, and fired at 400°C for 3 hours. After that, this fired product was set in a reduction furnace, and H2 was passed through the through hole for 550 min.
Reduction treatment was performed at °C for 2 hours.

以下実施例1と同様にした。H2を用いたTPR法によ
れば化学組成はT 、 I O1,−r5てあった。
The following procedure was carried out in the same manner as in Example 1. According to the TPR method using H2, the chemical composition was T, IO1, -r5.

実施例3 三菱金属製チタンブラック105(化学組成Ti0)5
0gを水50献中に投入し、充分撹拌を行ったスラリー
中に浸漬しTiOを担持したコルゲート状ハニカムを得
た。これを常温通風乾燥後100℃、18時間乾燥した
。この時担持率は133%であった。この乾燥物を塩化
ルテニウム水溶液(RI4として10g/見)中に浸漬
し常温通風乾燥後300℃×2時間焼成した。
Example 3 Mitsubishi Metals Titanium Black 105 (chemical composition Ti0) 5
A corrugated honeycomb carrying TiO was obtained by adding 0 g of TiO into 50 drops of water and immersing it in the thoroughly stirred slurry. This was air-dried at room temperature and then dried at 100° C. for 18 hours. At this time, the loading rate was 133%. This dried material was immersed in an aqueous ruthenium chloride solution (10 g/sume as RI4), dried with ventilation at room temperature, and then calcined at 300° C. for 2 hours.

実施例4 三菱金属製チタンブラック20M(化学組成Ti2(h
)50gを水50蔽に投入し充分撹拌を行ったスラリー
中に浸漬しTi2O3を担持したコルゲート状ハニカム
を得た。この時担持率は140%であった。以下実施例
3と同様にした。
Example 4 Mitsubishi Metals Titanium Black 20M (chemical composition Ti2 (h
) 50 g of Ti2O3 was added to 50 g of water and immersed in the slurry with thorough stirring to obtain a corrugated honeycomb supporting Ti2O3. At this time, the loading rate was 140%. The following procedure was carried out in the same manner as in Example 3.

実施例5 三井金属鉱業製水酸化ニオブ67gを水50m父に投入
し充分撹拌を行ったスラリー中に浸漬し、゛水酸化ニオ
ブを担持したコルゲート状ハニカムを得た、この時担持
率は175%であった。これを500℃、3時間焼成し
た。このコルゲート状ハニカムを塩化ルテニウム水溶液
(Ruとして10g/免)中に浸漬し、通風乾燥後10
0℃、18時間乾燥し500℃、3時間焼成した。
Example 5 67 g of niobium hydroxide manufactured by Mitsui Mining & Mining was poured into 50 m of water and immersed in a sufficiently stirred slurry to obtain a corrugated honeycomb carrying niobium hydroxide, at which time the loading rate was 175%. Met. This was baked at 500°C for 3 hours. This corrugated honeycomb was immersed in a ruthenium chloride aqueous solution (10 g/min as Ru), and after ventilation drying,
It was dried at 0°C for 18 hours and fired at 500°C for 3 hours.

実施例6 実施例5の方法において塩化ルテニウム水溶液にかえて
塩化ロジウム水溶i&(Rbとして10g/免)を用い
て触媒を得た。
Example 6 A catalyst was obtained by using the method of Example 5, but using aqueous rhodium chloride i& (10 g/min as Rb) instead of the aqueous ruthenium chloride solution.

実施例7 実施例5の方法において塩化ルテニウム水溶液にかえて
塩化銀水溶:α(Agとして10g/見)を用いて触媒
を得た。
Example 7 A catalyst was obtained by using the method of Example 5, but using an aqueous silver chloride solution: α (10 g/view as Ag) instead of an aqueous ruthenium chloride solution.

実施例8 実施例5の方法において塩1ヒルテニウム水溶液をRu
として30 g/Q含有するものを用いて触媒を得た。
Example 8 In the method of Example 5, Ru
A catalyst was obtained using a catalyst containing 30 g/Q.

実施例9 実施例5で用いた水酸化ニオブ67gに水酸化カリウム
を6g加え充分撹拌を行ったスラリー中に浸漬し、水酸
化ニオブ−K OHな担持したコルゲート状ハニカムを
得た。この時の担持率は164%であった。これを50
0℃、3時間焼成した。
Example 9 67 g of niobium hydroxide used in Example 5 was immersed in a slurry in which 6 g of potassium hydroxide was sufficiently stirred to obtain a corrugated honeycomb carrying niobium hydroxide-KOH. The loading rate at this time was 164%. 50 of this
It was baked at 0°C for 3 hours.

このコルゲート状ハニカムに塩化ルテニウム水溶液を噴
霧し、通風乾燥後100℃、18時間乾燥し500℃、
3時間焼成した。この時Ruの担持は触媒活性成分中0
.5%であった。
This corrugated honeycomb was sprayed with an aqueous ruthenium chloride solution, dried with ventilation, then dried at 100°C for 18 hours, and then dried at 500°C.
It was baked for 3 hours. At this time, the amount of Ru supported in the catalyst active component was 0.
.. It was 5%.

実施例10 実施例5で得た触媒を還元炉に充填し、貫通孔内にH2
を550℃の温度条件で2時間通じ、触媒を得た。この
時H2を用いたTPR法によればNb 204てあった
Example 10 The catalyst obtained in Example 5 was charged into a reduction furnace, and H2 was poured into the through hole.
The mixture was heated at 550° C. for 2 hours to obtain a catalyst. According to the TPR method using H2 at this time, Nb 204 was found.

実施例11 実施例5で用いた水酸化ニオブ67gに炭酸カルシウム
18gを加え充分撹拌を行ったスラリー中に浸漬し水酸
化ニオブ−炭酸カルシウムを担持したコルゲート状ハニ
カムを得た。この時担持率は149%であった。これを
500°C13時間焼成した。このコルゲート状ハニカ
ムに塩化ルテニウム水溶液を噴霧し、通風乾燥後100
℃、18時間乾燥し、500℃、3時間焼成した。
Example 11 18 g of calcium carbonate was added to 67 g of niobium hydroxide used in Example 5 and immersed in a slurry with sufficient stirring to obtain a corrugated honeycomb supporting niobium hydroxide-calcium carbonate. At this time, the loading rate was 149%. This was baked at 500°C for 13 hours. A ruthenium chloride aqueous solution was sprayed onto this corrugated honeycomb, and after ventilation drying,
It was dried at 500°C for 18 hours and fired at 500°C for 3 hours.

参考例1 モーピル石油製ZSM−5,50gを0.IN濃度のC
uCl2溶液に浸漬し、還流器付三ツロフラスコ中で9
0℃〜100℃で12時間撹拌し、ろ過した。得られた
ケーキを用いて同様の操作を繰り返し置換量を4.8%
(重量)とした。以下実施例1と同様の操作により触媒
を得た。
Reference Example 1 50g of ZSM-5 manufactured by Mopil Oil Co., Ltd. C of IN concentration
Immerse in uCl2 solution and in a Mitsuro flask with a reflux device.
The mixture was stirred at 0°C to 100°C for 12 hours and filtered. Repeat the same operation using the obtained cake until the substitution amount is 4.8%.
(weight). A catalyst was obtained by the same operation as in Example 1.

実施例1〜11参考例1により得られた触媒を用いて以
下の2つの試験条件にて試験を行った。
Examples 1 to 11 Using the catalyst obtained in Reference Example 1, tests were conducted under the following two test conditions.

(1)ガス刊成 ■ No      200ppm 02      2% N20    10% N2     バランス ■ No      200ppm H2010% N2     バランス (2)SV      1000 (3)反応温度   300.400.500℃試験結
果を第1表に示した。
(1) Gas composition ■ No 200ppm 02 2% N20 10% N2 Balance ■ No 200ppm H2010% N2 balance (2) SV 1000 (3) Reaction temperature 300.400.500°C The test results are shown in Table 1.

尚第1表中の値はN2への転換率を表している。The values in Table 1 represent the conversion rate to N2.

第1表Table 1

Claims (2)

【特許請求の範囲】[Claims] (1)窒素酸化物を含有する排ガスと接触して窒素酸化
物を分解する触媒において、 (a)TiO_2_−_x,Al_2O_3_−_y,
NbO_5_/_2_−_zから選択される1種以上(
ただしx,y,z=0〜1.0) (b)Pt、Ru、Re、Rh、Pd、AgAuから選
択される1種以上の金属もしく は金属酸化物分解触媒
(1) In a catalyst that decomposes nitrogen oxides by contacting exhaust gas containing nitrogen oxides, (a) TiO_2_-_x, Al_2O_3_-_y,
One or more types selected from NbO_5_/_2_-_z (
However, x, y, z = 0 to 1.0) (b) One or more metals or metal oxide decomposition catalyst selected from Pt, Ru, Re, Rh, Pd, and AgAu
(2)特許請求の範囲第(1)項の触媒において第三成
分としてさらにアルカリ金属及びもしくはアルカリ土類
金属酸化物を含有することを特徴とする窒素酸化物分解
触媒
(2) A nitrogen oxide decomposition catalyst characterized in that the catalyst according to claim (1) further contains an alkali metal and/or alkaline earth metal oxide as a third component.
JP63298800A 1988-11-25 1988-11-25 Catalyst for removal of nitrogen oxide Pending JPH02144147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63298800A JPH02144147A (en) 1988-11-25 1988-11-25 Catalyst for removal of nitrogen oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63298800A JPH02144147A (en) 1988-11-25 1988-11-25 Catalyst for removal of nitrogen oxide

Publications (1)

Publication Number Publication Date
JPH02144147A true JPH02144147A (en) 1990-06-01

Family

ID=17864385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63298800A Pending JPH02144147A (en) 1988-11-25 1988-11-25 Catalyst for removal of nitrogen oxide

Country Status (1)

Country Link
JP (1) JPH02144147A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5534237A (en) * 1991-07-23 1996-07-09 Kubushiki Kaisha Riken Method of cleaning an exhaust gas and exhaust gas cleaner therefor
KR100408880B1 (en) * 2001-02-03 2003-12-11 김문찬 De-NOx CATALYSTS AND METHOD BY DIRECT CATALYTIC REDUCTION
JP2010188266A (en) * 2009-02-17 2010-09-02 Yokohama National Univ METHOD FOR DECOMPOSING NOx BY LOWER TITANIUM OXIDE
CN111151243A (en) * 2018-11-08 2020-05-15 中国科学院大连化学物理研究所 Ruthenium-based catalyst, preparation method and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5534237A (en) * 1991-07-23 1996-07-09 Kubushiki Kaisha Riken Method of cleaning an exhaust gas and exhaust gas cleaner therefor
KR100408880B1 (en) * 2001-02-03 2003-12-11 김문찬 De-NOx CATALYSTS AND METHOD BY DIRECT CATALYTIC REDUCTION
JP2010188266A (en) * 2009-02-17 2010-09-02 Yokohama National Univ METHOD FOR DECOMPOSING NOx BY LOWER TITANIUM OXIDE
CN111151243A (en) * 2018-11-08 2020-05-15 中国科学院大连化学物理研究所 Ruthenium-based catalyst, preparation method and application thereof

Similar Documents

Publication Publication Date Title
WO2018047381A1 (en) Regeneration method for denitration catalyst
EP0545404B1 (en) Catalyst and a method of preparing the catalyst
JPH07163877A (en) Catalyst for treating exhaust gas containing dioxines, production thereof and treatment method
JP3221116B2 (en) Catalyst for decomposition of nitrous oxide
JPH02144147A (en) Catalyst for removal of nitrogen oxide
JP3254742B2 (en) Catalyst for decomposition of nitrous oxide
JP2916377B2 (en) Ammonia decomposition catalyst and method for decomposing ammonia using the catalyst
JP2689147B2 (en) Nitrogen oxide removal catalyst
JP3815813B2 (en) Nitric oxide oxidation catalyst in exhaust gas and method for removing nitrogen oxide in exhaust gas using the same
JP2691750B2 (en) Nitrogen oxide decomposition catalyst
KR100621946B1 (en) A method for improving dispersity of noble catalyst with h2o2 and catalyst compositions thereby
JP2921517B2 (en) Nitrogen oxide decomposition catalyst
JPH02187130A (en) Method for nitrogen oxide removal
JPH0299142A (en) Nitrogen oxide decomposing catalyst
JPH02187131A (en) Method for removing nitrogen oxide
JP3924418B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP3893014B2 (en) Exhaust gas treatment catalyst, its production method and exhaust gas treatment method
JP3495548B2 (en) Reduction method of sulfur trioxide
JP3131630B2 (en) Method for oxidizing and removing carbon fine particles in diesel engine exhaust gas and catalyst used therefor
JPH0427428A (en) Catalyst for contact reduction of nitrogen oxide
JPH08131832A (en) Ammonia decomposition catalyst and method for decomposing and removing ammonia
JPH02268810A (en) Method for removing nitrogen oxide
JP2004081995A (en) Denitration catalyst and denitration method using the same
JP4336121B2 (en) Catalyst and method for producing the same
JPS6129775B2 (en)