JPH1057811A - Nox gas oxidizing agent and production thereof - Google Patents

Nox gas oxidizing agent and production thereof

Info

Publication number
JPH1057811A
JPH1057811A JP8216422A JP21642296A JPH1057811A JP H1057811 A JPH1057811 A JP H1057811A JP 8216422 A JP8216422 A JP 8216422A JP 21642296 A JP21642296 A JP 21642296A JP H1057811 A JPH1057811 A JP H1057811A
Authority
JP
Japan
Prior art keywords
copper
manganese
oxidizing agent
precipitate
nox gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8216422A
Other languages
Japanese (ja)
Inventor
Ryohei Imamura
良平 今村
Masaaki Yasuda
誠明 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP8216422A priority Critical patent/JPH1057811A/en
Publication of JPH1057811A publication Critical patent/JPH1057811A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently oxidize and decompose nitrogen oxides even in low concentrations by producing a NOx gas oxidizing agent from a substance containing activated manganese dioxide having BET specific surface area within a specified range and bearing copper as an effective component. SOLUTION: A NOx gas oxidizing agent to efficiently remove NOx in low concentration in an exhaust gas emitted out of an internal combustion engine of an automobile, etc., by oxidation and decomposition is produced using activated manganese dioxide having 150-300m<2> /g BET specific surface area and bearing copper as an effective component. Such a NOx gas oxidizing agent is produced by following processes; a first process to precipitate a mixed salt crystal of manganese and copper by converting an aqueous solution of a mixed salt of manganese and copper to be mineral acid-acidic, a second process to produce manganese dioxide by adding potassium permanganate to the resultant strongly acidic slurry obtained through the first process and carrying out oxidation treatment, a third process to separate a precipitated substance from a mother solution, and a fourth process to neutralize the obtained precipitated substance with an alkali agent.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排ガス中の低濃度
のNOxを効果的に酸化分解して除去することのできる
NOxガス酸化剤およびその製造方法に関するものであ
る。更に詳しくは本発明は、銅を担持した活性二酸化マ
ンガンを有効成分とするNOxガス酸化剤及びその製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a NOx gas oxidizing agent capable of effectively oxidatively decomposing and removing low-concentration NOx in exhaust gas and a method for producing the same. More specifically, the present invention relates to a NOx gas oxidizing agent containing copper-supported active manganese dioxide as an active ingredient and a method for producing the same.

【0002】[0002]

【従来の技術】近時、自動車などの内燃機関、ボイラ
ー、工業プラントから排出される排ガス中には、有害な
窒素酸化物成分が含まれることから、これらの排ガス中
の窒素酸化物の除去が種々の方面から検討されている。
従来、排ガス中に含まれる窒素酸化物は、NH3、H2
CO等の還元剤を用いてN2に還元する方法、あるいは
該窒素化合物を酸化した後、アルカリに吸収させる方法
等により行われてきた。しかしながら、前記の還元剤を
用いる方法は、排ガス中のSOxと反応して塩類を生成
し、その結果還元活性が低下し、或いは還元分解濃度が
高くなるなどという欠点があった。
2. Description of the Related Art Recently, since harmful nitrogen oxide components are contained in exhaust gas discharged from internal combustion engines such as automobiles, boilers and industrial plants, it is necessary to remove nitrogen oxides from these exhaust gas. It is being studied from various aspects.
Conventionally, nitrogen oxides contained in exhaust gas include NH 3 , H 2 ,
It has been carried out by a method of reducing to N 2 using a reducing agent such as CO, or a method of oxidizing the nitrogen compound and then absorbing the compound into an alkali. However, the above-mentioned method using a reducing agent has a disadvantage that it reacts with SOx in exhaust gas to generate salts, and as a result, reduction activity is reduced or reductive decomposition concentration is increased.

【0003】還元用触媒を用いる方法としては、例え
ば、Mg/Si(原子比)が2/1〜1/4であるシリ
カ−マグネシア複合酸化物に銅、ニッケル、コバルト、
マンガン又は鉄を担持した触媒を用いる方法(特開平5
−161846号公報)、チタン酸化物、バナジウム酸
化物およびマンガン、コバルト等の酸化物を特定割合配
合した触媒を用いる方法(特開昭57−156040号
公報)等が知られているが、しかし、従来、知られてい
るこの種の還元触媒は、窒素酸化物分解活性が低いため
に、実用性が乏しいという欠点がある。
[0003] As a method of using a reducing catalyst, for example, copper, nickel, cobalt, silica-magnesia composite oxide having Mg / Si (atomic ratio) of 2/1 to 1/4 is used.
A method using a catalyst supporting manganese or iron (Japanese Unexamined Patent Publication No.
JP-A-161846), a method using a catalyst in which titanium oxide, vanadium oxide and oxides such as manganese and cobalt are blended in a specific ratio (Japanese Patent Laid-Open No. 57-156040) are known. Conventionally, this kind of known reduction catalyst has a drawback that it is not practical because of its low activity of decomposing nitrogen oxides.

【0004】また一方、窒素酸化物を酸化する方法は、
酸化する一酸化窒素の濃度が低い場合には、酸化反応が
著しく遅くなり、そのため反応器の容積を大きくした
り、酸化工程の繰り返し回数を多くしなければならない
という欠点があった。酸化触媒を用いる方法としては、
二酸化マンガン及び酸化鉄からなる触媒を用いる方法
(特開昭49−45894号公報)、二酸化マンガン及
び酸化鉛からなる触媒を用いる方法(特開昭50−62
859号公報)等が知られている。しかしながら、触媒
としての能力が低く、また、反応を100℃以上の高温
で行わなければならないという欠点があった。このよう
に、NOxの分解はこれまで数多くの提案があるけれど
も、いずれも実用性に欠け、特に常温常圧でのNOxの
処理は非常に困難なことである。
On the other hand, a method for oxidizing nitrogen oxides is as follows.
When the concentration of nitric oxide to be oxidized is low, the oxidation reaction is remarkably slowed down, so that there is a disadvantage that the volume of the reactor must be increased and the number of times of repeating the oxidation step must be increased. As a method using an oxidation catalyst,
A method using a catalyst composed of manganese dioxide and iron oxide (JP-A-49-45894) and a method using a catalyst composed of manganese dioxide and lead oxide (JP-A-50-62)
No. 859) is known. However, there are drawbacks that the ability as a catalyst is low and that the reaction must be performed at a high temperature of 100 ° C. or higher. As described above, although there have been many proposals for decomposition of NOx, none of them has practicality, and it is very difficult to treat NOx at normal temperature and normal pressure.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記の課題
に鑑み、NOxガス酸化剤について鋭意研究を重ねた結
果、以外にも特定比表面積を有する活性二酸化マンガン
に銅を担持したものが比較的低温域でNOxを効率よく
酸化分解することができることを知見し本発明を完成さ
せた。即ち、本発明は、低濃度の窒素酸化物に対しても
効率よく、酸化分解できるNOxガス酸化剤及びその製
造方法を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above problems, the present invention has made extensive studies on NOx gas oxidizing agents. The inventors have found that NOx can be efficiently oxidatively decomposed in a relatively low temperature range, and have completed the present invention. That is, an object of the present invention is to provide a NOx gas oxidizing agent which can efficiently oxidize and decompose even low-concentration nitrogen oxides and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】本発明が提供しようとす
るNOxガス酸化剤は、150m2/g〜300m2/g
のBET比表面積を持ち、かつ銅を担持した活性二酸化
マンガンを有効成分とすることを構成上の特徴とする。
また、その製造方法は、マンガン塩および銅塩の混合水
溶液を鉱酸酸性にしてマンガンおよび銅の混合塩結晶を
析出させる第1工程、この第1工程から得られる強酸性
のスラリー系に過マンガン酸カリウムを添加し酸化処理
して二酸化マンガンを生成させる第2工程、第2工程の
沈澱物を母液と分離する第3工程、および得られた沈澱
物をアルカリ剤で中和処理する第4工程からなることを
構成上の特徴とする。
NOx gas oxidant SUMMARY OF to the present invention is to provide, 150m 2 / g~300m 2 / g
It has a BET specific surface area, and comprises active manganese dioxide carrying copper as an active ingredient.
Further, the production method includes a first step in which a mixed aqueous solution of a manganese salt and a copper salt is acidified with a mineral acid to precipitate crystals of a mixed salt of manganese and copper, and a permanganate is added to the strongly acidic slurry system obtained from the first step. A second step of adding potassium acid and oxidizing to form manganese dioxide, a third step of separating the precipitate of the second step from the mother liquor, and a fourth step of neutralizing the obtained precipitate with an alkali agent Is a structural feature.

【0007】[0007]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明に係るNOxガス酸化剤は上記した特徴を有す
る。特に有効成分とする活性二酸化マンガンは、BET
比表面積が、通常150〜300m2/g、好ましくは
170〜280m2/gのものであり、X線回折に基づ
く分析では、実質的に非晶質のものである。比表面積を
限定した理由は、150m2/gより小さくなると、N
Oxとの接触面積が小さくなり、効果的な酸化分解が行
えない傾向があるためである。一方、300m2/gよ
り大きくなると、工業的に製造が困難となるからであ
る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The NOx gas oxidizer according to the present invention has the above-mentioned features. Particularly, active manganese dioxide as an active ingredient is BET
It has a specific surface area of usually 150 to 300 m 2 / g, preferably 170 to 280 m 2 / g, and is substantially amorphous by analysis based on X-ray diffraction. The reason for limiting the specific surface area is that if it becomes smaller than 150 m 2 / g, N
This is because the contact area with Ox tends to be small and effective oxidative decomposition cannot be performed. On the other hand, if it is larger than 300 m 2 / g, industrial production becomes difficult.

【0008】この活性二酸化マンガンに対する銅の担持
量は、Mn/Cuのモル比で0.9〜9.0、好ましくは
1.5〜7.5の範囲にある。この理由は、モル比が0.
9より小さくなると、効果的に窒素酸化物の酸化が行え
ないからである。一方、9.0より大きくなると、成型
等の問題もあって好ましくない。このように、本発明に
係る活性二酸化マンガンは、銅を担持しているところ
に、他の特徴がある。
The amount of copper supported on the activated manganese dioxide is in the range of 0.9 to 9.0, preferably 1.5 to 7.5, in terms of Mn / Cu molar ratio. The reason for this is that the molar ratio is
If the ratio is less than 9, oxidation of nitrogen oxides cannot be performed effectively. On the other hand, if it is larger than 9.0, it is not preferable because of problems such as molding. As described above, the active manganese dioxide according to the present invention has another feature in that copper is supported.

【0009】本発明に係るNOxガス酸化剤の製造方法
は、例えば二酸化マンガンと酸化銅とを混合した後、焼
成して得る方法、マンガン及び銅を少なくとも含む金属
硝酸塩混合溶液を中和して金属水酸化物を共沈させ、次
いで酸化処理して製造する方法等が挙げられるが、本発
明では、より品質の安定したものを工業的に有利に得る
ことが出来る下記製造方法により行うことが最も好まし
い。すなわち、マンガンおよび銅の混合塩水溶液を鉱酸
酸性にしてマンガン及び銅の混合塩結晶を析出させる第
1工程、この第1工程から得られる強酸化のスラリー系
に過マンガン酸カリウムを添加し酸化処理して二酸化マ
ンガンを生成させる第2工程、この第2工程の沈澱物を
母液と分離する第3工程、得られた沈澱物をアルカリ剤
で中和処理する第4工程からなるものである。
The method for producing a NOx gas oxidizing agent according to the present invention is, for example, a method of mixing manganese dioxide and copper oxide and then calcining the mixture, neutralizing a metal nitrate mixed solution containing at least manganese and copper, A method in which hydroxide is coprecipitated and then oxidized, for example, may be mentioned. In the present invention, it is most preferable to carry out the production method described below, which can industrially obtain a product having more stable quality. preferable. That is, a first step in which a mixed salt aqueous solution of manganese and copper is acidified with a mineral acid to precipitate mixed salt crystals of manganese and copper. Potassium permanganate is added to the strongly oxidized slurry system obtained from the first step to oxidize. It comprises a second step of forming manganese dioxide by treatment, a third step of separating the precipitate of the second step from the mother liquor, and a fourth step of neutralizing the obtained precipitate with an alkaline agent.

【0010】第1工程は、前記のように、マンガンおよ
び銅の混合塩結晶の析出工程である。出発原料であるマ
ンガンおよび銅塩は、いずれも可溶性塩であればよい
が、代表的には、硫酸塩や硝酸塩が挙げられ、これらの
塩は無水物又は含水塩の何れであってもよい。一般的
に、硫酸塩は、残存する硫黄分が触媒毒となる傾向があ
るので、硝酸塩の方が好ましい。また、他の原料である
鉱酸は、硫酸及び硝酸が代表的に用いられる。従って、
この工程では、後記の如く母液の循環使用を考慮すれ
ば、硫酸塩−硫酸又は硝酸塩−硝酸系で行うことが特に
望ましい。なお、使用目的によって、或いは酸化分解能
をより向上させるため、必要に応じて、銅の他、ニッケ
ル、コバルト、亜鉛又は銀を併用担持しても差し支えな
い。この場合、それらの可溶性塩を適宜、銅塩と共に使
用することにより担持させることができる。
The first step is, as described above, a step of depositing a mixed salt crystal of manganese and copper. Manganese and copper salts, which are starting materials, may be any soluble salts, but typically include sulfates and nitrates, and these salts may be either anhydrous or hydrated. Generally, nitrates are preferred for sulfates because the remaining sulfur content tends to be a catalyst poison. Sulfuric acid and nitric acid are typically used as the mineral acid as another raw material. Therefore,
In this step, it is particularly desirable to carry out the process using a sulfate-sulfuric acid or nitrate-nitric acid system in consideration of the circulating use of the mother liquor as described later. Depending on the purpose of use or in order to further improve the oxidizing ability, nickel, cobalt, zinc or silver may be supported in addition to copper, if necessary. In this case, these soluble salts can be supported by appropriately using them together with copper salts.

【0011】かかるマンガンおよび銅の混合塩水溶液は
鉱酸と作用して鉱酸酸性とすることによりマンガンや銅
の塩の溶解度が酸濃度に従って小さくなり、それらの混
合塩が析出する。鉱酸酸性とする場合、金属混合塩水溶
液に鉱酸を添加する又はその逆の添加であってもよい。
このように、この工程では、混合塩を溶液から鉱酸によ
り晶析させることが重要であり、原料水溶液中の金属塩
の実質的な量を析出させる方が好ましいが、必ずしも全
量を析出させる必要はない。
The aqueous solution of a mixed salt of manganese and copper reacts with a mineral acid to make it acidic with a mineral acid, whereby the solubility of the salt of manganese or copper decreases according to the acid concentration, and the mixed salt thereof is precipitated. In the case where the acid is a mineral acid, a mineral acid may be added to the aqueous metal mixed salt solution or vice versa.
As described above, in this step, it is important that the mixed salt is crystallized from the solution with the mineral acid, and it is preferable to precipitate a substantial amount of the metal salt in the raw material aqueous solution, but it is not necessary to precipitate the entire amount. There is no.

【0012】ここで、晶析する混合塩というのは、必ず
しも化学的に厳密なものとして定義しているのではな
く、広く、マンガンおよび銅塩との混合溶液が鉱酸の作
用により、溶解度の低下により析出する結晶として定義
し、その結晶がマンガンと銅の複塩又は固溶体としての
混晶であるかは問題でない。従って、この工程での混合
塩結晶は、恐らく、少なくとも一部は相互に固溶した複
塩と推定されるが、かかる結晶は、微細であり、この結
晶状態で次の工程で過マンガン酸カリウムと作用して二
酸化マンガンを生成させる。即ち、反応機構の詳細は不
明であるが、マンガンと銅の混晶粒子に過マンガン酸カ
リウムを作用させた方が酸化分解能を向上させることが
できる。
Here, the term “mixed salt to be crystallized” is not necessarily defined as being strictly chemically, but is widely defined as a mixture of manganese and copper salts having a solubility of manganese due to the action of mineral acid. It is defined as a crystal precipitated by the reduction, and it does not matter whether the crystal is a mixed crystal as a double salt or solid solution of manganese and copper. Therefore, the mixed salt crystals in this step are probably presumed to be at least partially a double salt dissolved in each other, but such crystals are fine, and in this crystalline state, potassium permanganate is used in the next step. To produce manganese dioxide. That is, although the details of the reaction mechanism are unknown, the oxidation resolution can be improved by allowing potassium permanganate to act on the mixed crystal particles of manganese and copper.

【0013】この出発原料における銅の量は、Mn/C
uのモル比1.4〜14.0、好ましくは2〜10であ
る。なお、この第1工程において、ニッケル、コバル
ト、亜鉛又は銀塩も、必要に応じ少量混合できることは
前記のとおりである。次いで、行う第2工程は、第1工
程で得られる強酸性のスラリー系に、過マンガン酸カリ
ウムを添加して酸化還元反応を行わせて二酸化マンガン
を生成させる工程である。
The amount of copper in this starting material is Mn / C
The molar ratio of u is from 1.4 to 14.0, preferably from 2 to 10. As described above, in the first step, a small amount of nickel, cobalt, zinc or silver salt can also be mixed as required. Next, the second step to be performed is a step of adding potassium permanganate to the strongly acidic slurry system obtained in the first step to cause an oxidation-reduction reaction to generate manganese dioxide.

【0014】すなわち、第1工程により、マンガンと銅
との混合結晶が微細に強酸性液中に分散した強酸性スラ
リーが得られるが、これに、過マンガン酸カリウムを作
用させることにより、酸化還元反応を伴って、マンガン
塩は黒褐色の二酸化マンガンに転換して沈澱を生成す
る。この工程における酸化反応は、常温又は加温の何れ
でもよいが、反応速度を考慮すれば、50〜60℃の温
度で反応を行うことが望ましい。また、酸化還元反応を
充分に行なわせるために、過マンガン酸カリウムの添加
後は、撹拌を続けながら熟成する。
That is, in the first step, a strongly acidic slurry in which mixed crystals of manganese and copper are finely dispersed in a strongly acidic solution is obtained. With the reaction, the manganese salt is converted to black-brown manganese dioxide to form a precipitate. The oxidation reaction in this step may be performed at room temperature or at elevated temperature, but it is desirable to carry out the reaction at a temperature of 50 to 60 ° C. in consideration of the reaction rate. After the addition of potassium permanganate, the mixture is aged while continuing to stir, so that the oxidation-reduction reaction can be sufficiently performed.

【0015】反応の詳細は不明であるが、恐らく、生成
する二酸化マンガンに一部銅が固溶し、他の銅塩は、殆
ど微細な銅塩の結晶状態で活性な二酸化マンガンに吸着
して共沈するものと思われる。なお、過マンガン酸カリ
ウムの添加量は、マンガン塩が過マンガン酸カリウムと
反応して二酸化マンガンを生成する理論量前後であり、
好ましくはやや小過剰がよく、また、添加する場合、結
晶又は水溶液のいずれであってもよい。
Although the details of the reaction are unknown, it is conceivable that copper partially forms a solid solution in the produced manganese dioxide, and other copper salts are adsorbed on the active manganese dioxide in a crystalline state of almost fine copper salts. It seems to co-precipitate. The amount of potassium permanganate added is around the theoretical amount at which the manganese salt reacts with potassium permanganate to produce manganese dioxide,
Preferably, a slight excess is preferable, and when added, either a crystal or an aqueous solution may be used.

【0016】次いで行う第3工程は、前工程で生成する
二酸化マンガン含有の沈澱物を母液と分離する工程であ
る。この理由は、銅塩の溶解度を小さくして出来るだけ
母液中に銅の混入を避け、銅の歩留りを高くすると共に
必要に応じて回収母液を鉱酸源として第1工程へ循環使
用するためである。このように、分離された母液は、主
として鉱酸であるが、他に前工程により副生するカリウ
ム塩および溶解度分の銅塩により組成された強酸性溶液
となっている。従って、この母液は、金属塩の溶解又は
析出のための鉱酸源として循環使用する方が工業的に有
利であるが、その際、分離するときの温度および母液を
必要に必要に応じ濃縮又は希釈するなどその比重等を管
理することによって、その組成をほぼ一定組成に制御し
て循環使用させることができる。また母液の循環使用に
より、塩類濃度が高くなつた場合には、必要に応じカリ
ウム塩を晶析分離して使用することはいうまでもない。
Next, the third step is a step of separating the manganese dioxide-containing precipitate produced in the previous step from the mother liquor. The reason for this is to reduce the solubility of the copper salt to avoid the incorporation of copper in the mother liquor as much as possible, to increase the copper yield, and to recycle the recovered mother liquor as a mineral acid source to the first step as necessary. is there. The mother liquor thus separated is mainly a mineral acid, but is also a strongly acidic solution composed of a potassium salt by-produced in the previous step and a copper salt for the solubility. Therefore, this mother liquor is industrially advantageous to be circulated and used as a mineral acid source for dissolution or precipitation of a metal salt. At this time, the temperature at the time of separation and the mother liquor are concentrated or concentrated as necessary. By controlling the specific gravity or the like by dilution, the composition can be controlled to a substantially constant composition and recycled. In addition, when the salt concentration is increased by circulating the mother liquor, it is needless to say that the potassium salt is crystallized and used as necessary.

【0017】他方、沈澱物は、活性な二酸化マンガンを
主体として、これに、銅塩が吸着したものであるが、母
液もかなり吸着した含水量の高いものである。なお、分
離操作は常法の手段、例えば、遠心分離、濾過又はデカ
ンテーション等適宜所望の方式にて行えばよい。
On the other hand, the precipitate is mainly composed of active manganese dioxide, to which a copper salt is adsorbed, and the mother liquor is also considerably adsorbed, and has a high water content. The separation operation may be performed by a conventional method, for example, a desired method such as centrifugation, filtration or decantation.

【0018】次いで行う第4工程は、分離回収した沈澱
物をアルカリ剤で中和処理する工程である。すなわち、
沈殿物を水に分散させ、苛性アルカリ又はアンモニア水
で撹拌状態にて常温又は加温で中和処理する。この処理
は、付着の酸性分を中和することは勿論であるが、銅塩
を含水酸化物に転換させ、活性な二酸化マンガンへの銅
の担持が確実なものにするためにあり、スラリー系のp
Hが9〜10の範囲になるまで行うのがよい。中和処理
後は、常法により、分離および洗浄して銅担持の二酸化
マンガンを得る。
Next, the fourth step is a step of neutralizing the separated and recovered precipitate with an alkaline agent. That is,
The precipitate is dispersed in water and neutralized at room temperature or with stirring in a caustic or aqueous ammonia solution. This treatment, of course, neutralizes the acidic components of the adhesion, but converts the copper salt to a hydrated oxide and ensures that copper is supported on active manganese dioxide. P
It is preferable to carry out until H is in the range of 9 to 10. After the neutralization treatment, separation and washing are performed by a conventional method to obtain copper-supported manganese dioxide.

【0019】かくして製造した銅を担持した活性二酸化
マンガンは、要すれば乾燥した後、所望の結合剤と混練
および成型、乾燥することにより、NOxガス酸化剤と
して所望する用途に利用することができる。結合剤とし
ては、例えば、粘土、セメント、シリカゾル、アルミナ
ゾル、珪酸ソーダ、水溶性高分子などが挙げられる。も
ちろん、所望の担体に活性二酸化マンガンを担持して用
いることもできる。このような担体としては、アルミ
ナ、シリカ、カルシア、マグネシア、酸化鉄、ジルコニ
ア、二酸化チタン、スピネル系の複合酸化物等の金属酸
化物、金属シリケート、ゼオライトの如きアルミノシリ
ケート、活性炭等が挙げられる。
The activated manganese dioxide carrying copper thus produced can be used for a desired use as a NOx gas oxidizing agent by drying, if necessary, kneading with a desired binder, molding and drying. . Examples of the binder include clay, cement, silica sol, alumina sol, sodium silicate, and a water-soluble polymer. Of course, active manganese dioxide can be supported on a desired carrier and used. Examples of such a carrier include alumina, silica, calcia, magnesia, iron oxide, zirconia, titanium dioxide, metal oxides such as spinel-based composite oxides, metal silicates, aluminosilicates such as zeolite, and activated carbon.

【0020】本発明が対象とするNOxは、硝酸製造工
場、金属表面処理工場、金属溶解過程を伴う工場等で排
出されるもの、道路トンネル、シェルター付道路、大深
度地下空間、道路交差点などにおける換気ガス、大気ま
たは家庭内で使用される燃焼機器から排出されるNOの
如き低級の窒素酸化物である。本発明のNOxガス酸化
剤で適用できる排出ガス中のNOxの濃度は、NOxの発
生源によっても異なるが、多くの場合、5〜10,00
0ppm、好ましくは10〜500ppm程度である。
NOx to which the present invention is applied is discharged from a nitric acid production plant, a metal surface treatment plant, a plant with a metal melting process, etc., a road tunnel, a road with a shelter, a deep underground space, a road intersection, and the like. It is a low-grade nitrogen oxide such as NO emitted from ventilation gas, air or combustion equipment used in the home. The concentration of NOx in the exhaust gas that can be used with the NOx gas oxidizing agent of the present invention varies depending on the source of NOx, but in many cases is 5 to 10,000.
0 ppm, preferably about 10 to 500 ppm.

【0021】本発明に係るNOxガス酸化剤の反応温度
は、通常30〜200℃、好ましくは40〜150℃で
ある。接触時間は、使用する触媒の組成により異なる
が、通常0.036〜3.6秒、好ましくは0.072〜
0.72秒と非常に短時間でよい。上記の条件で酸化分
解された窒素酸化物は、活性炭、ゼオライトの如き吸着
剤に吸着させるか、又はアルカリ水溶液に溶解させれば
よい。本発明では、この内、特にアルカリ金属又は/及
びアルカリ土類金属を担持した活性炭により、NOxガ
スを吸着除去することが望ましい。アルカリ金属又は/
及びアルカリ土類金属の担持量は、金属として、通常
0.1〜30重量%、好ましくは3〜25重量%であ
る。
[0021] The reaction temperature of the NOx gas oxidizing agent according to the present invention is usually 30 to 200 ° C, preferably 40 to 150 ° C. The contact time varies depending on the composition of the catalyst used, but is usually 0.036 to 3.6 seconds, preferably 0.072 to 3.6 seconds.
A very short time of 0.72 seconds is sufficient. The nitrogen oxide oxidatively decomposed under the above conditions may be adsorbed on an adsorbent such as activated carbon or zeolite, or may be dissolved in an aqueous alkaline solution. In the present invention, it is desirable that the NOx gas be adsorbed and removed by the activated carbon supporting the alkali metal and / or the alkaline earth metal. Alkali metal or /
The loading amount of the alkaline earth metal is usually 0.1 to 30% by weight, preferably 3 to 25% by weight as the metal.

【0022】[0022]

【実施例】以下、実施例により本発明を詳細に説明する
が、本発明はこれらに限定されるものではない。 実施例1 硫酸マンガン(MnSO4・H2O)315gおよび硫酸
銅(CuSO4・5H2O)286gを50%硫酸193
0gに添加して混合金属塩水溶液を調製する。次いで、
この水溶液に濃硫酸(98%H2SO4)208mlを添
加して温度50〜60℃で1時間撹拌を続けて微細なマ
ンガンと銅の混合硫酸塩結晶を析出させる。次いで、過
マンガン酸カリウムの粉末225gを除々に撹拌状態の
スラリーに添加して、50〜60℃で約2時間保持を続
けて酸化反応を終了する。次いで、酸化処理したスラリ
ーに分離操作を容易にするために少量の水を添加添加し
た後、濾別し、母液と沈澱物とを分離する。沈澱物を水
に再分散させた後、苛性ソーダ溶液(48%NaOH)
で撹拌下pH9〜10になるまで中和した後、常法によ
り分離、水洗いおよび乾燥して銅担持の二酸化マンガン
を得た。
The present invention will be described below in detail with reference to examples, but the present invention is not limited to these examples. Example 1 315 g of manganese sulfate (MnSO 4 .H 2 O) and 286 g of copper sulfate (CuSO 4 .5H 2 O) were added to 50% sulfuric acid 193.
0 g to prepare a mixed metal salt aqueous solution. Then
208 ml of concentrated sulfuric acid (98% H 2 SO 4 ) is added to this aqueous solution, and stirring is continued at a temperature of 50 to 60 ° C. for 1 hour to precipitate fine mixed sulfate crystals of manganese and copper. Next, 225 g of potassium permanganate powder is gradually added to the stirred slurry, and the temperature is kept at 50 to 60 ° C. for about 2 hours to finish the oxidation reaction. Next, a small amount of water is added to the oxidized slurry to facilitate the separation operation, followed by filtration to separate the mother liquor from the precipitate. After re-dispersing the precipitate in water, a sodium hydroxide solution (48% NaOH)
Then, the mixture was neutralized to pH 9 to 10 with stirring, and separated by a conventional method, washed with water and dried to obtain copper-supported manganese dioxide.

【0023】実施例2 硫酸マンガン(MnSO4・H2O)315gおよび硫酸
銅(CuSO4・5H2O)286gの結晶を、実施例1
で分離回収した母液(H2SO4:50%、Mn:0.1
7%、Cu:0.22%、K:0.66%、比重:1.3
97)1387mLに溶解した後、濃硫酸(H2SO4
98%)208mLを添加して撹拌を約1時間続け微細
な硫酸マンガンと硫酸銅の混合結晶を晶析する。次い
で、硫酸酸性のスラリーを50〜60℃の温度におい
て、過マンガン酸カリウム結晶225gを除々に添加し
て酸化反応を生ぜしめ、約2時間撹拌を続ける。次い
で、水358mLを添加して常温にて固液分離し沈澱物
と母液をそれぞれ回収した。次いで、得られた沈澱物を
水に再分散させた後、28%アンモニア水でpH9.3
に至るまで中和処理した後、以下常法により、分離、水
洗いおよび乾燥して銅担持の二酸化マンガンを得た。
Example 2 Crystals of 315 g of manganese sulfate (MnSO 4 .H 2 O) and 286 g of copper sulfate (CuSO 4 .5H 2 O) were used in Example 1.
Mother liquor (H 2 SO 4 : 50%, Mn: 0.1)
7%, Cu: 0.22%, K: 0.66%, specific gravity: 1.3
97) was dissolved in 1387 mL, and concentrated sulfuric acid (H 2 SO 4 :
(98%) 208 mL is added and stirring is continued for about 1 hour to crystallize fine mixed crystals of manganese sulfate and copper sulfate. Then, 225 g of potassium permanganate crystals are gradually added to the sulfuric acid slurry at a temperature of 50 to 60 ° C. to cause an oxidation reaction, and stirring is continued for about 2 hours. Next, 358 mL of water was added, and solid-liquid separation was performed at room temperature to collect a precipitate and a mother liquor, respectively. Next, the obtained precipitate was redispersed in water, and the pH was adjusted to 9.3 with 28% aqueous ammonia.
, And then separated, washed with water and dried by a conventional method to obtain copper-supported manganese dioxide.

【0024】実施例3 水120mLに硫酸マンガン(MnSO4・H2O)11
9g及び硫酸銅(CuSO4・H2O)108gを加えて
調製した金属塩混合水溶液を45℃に加温する。これに
実施例2で回収し調製した母液(H2SO4:55%、M
n:0.16%、Cu:0.20%、K:0.65%、比
重:1.455)1340mLを添加し、更に濃硫酸
(98%H2SO4)90mLを添加して約1時間撹拌
し、金属塩の混晶を析出させる。次いで得られたスラリ
ーを温度55℃において過マンガン酸カリウムの結晶粉
末85gを徐々に添加し、添加後約2時間撹拌下で酸化
反応を生ぜしめ熟成する。熟成後、沈澱物と濾液とを濾
過・分離する。以下、実施例1と同様の操作を行い銅担
持の二酸化マンガンを得た。
Example 3 Manganese sulfate (MnSO 4 .H 2 O) 11 in 120 mL of water
9 g and 108 g of copper sulfate (CuSO 4 .H 2 O) were added to the mixture, and the mixed aqueous solution of metal salts was heated to 45 ° C. The mother liquor recovered and prepared in Example 2 (H 2 SO 4 : 55%, M
n: 0.16%, Cu: 0.20%, K: 0.65%, specific gravity: 1.455), 1340 mL, and 90 mL of concentrated sulfuric acid (98% H 2 SO 4 ) are added to about 1%. The mixture is stirred for a time to precipitate a mixed crystal of the metal salt. Next, 85 g of potassium permanganate crystal powder is gradually added to the obtained slurry at a temperature of 55 ° C., and after the addition, an oxidation reaction is caused under stirring for about 2 hours to ripen. After aging, the precipitate and the filtrate are filtered and separated. Thereafter, the same operation as in Example 1 was performed to obtain copper-supported manganese dioxide.

【0025】実施例4 実施例3で回収した母液(H2SO4:55%、Mn:
0.16%、Cu:0.2%、K:0.65%、比重:1.
455)1340mLに、硫酸マンガン315g(1.
86モル)、硫酸銅214g(0.86モル)及び硫酸
ニッケル(NiSO4・6H2O)250g(0.95モ
ル)を加えて温度を40〜50℃にして金属塩混合液を
調製する。これに、濃硫酸(98%H2SO4)229m
Lを添加し、温度50〜60℃で約1時間熟成して、金
属塩の混晶を析出させる。次いで得られた強酸性スラリ
ーに過マンガン酸カリウムの結晶粉末225gを徐々に
添加し、その後50〜60℃で約2時間撹拌を続けて酸
化反応を終了させる。次いで、このスラリーに水を35
8mL加えた後、濾過して沈澱物と濾過液を分離する。
以下、実施例1と同様な操作で銅担持の二酸化マンガン
を得た。
Example 4 The mother liquor recovered in Example 3 (H 2 SO 4 : 55%, Mn:
0.16%, Cu: 0.2%, K: 0.65%, specific gravity: 1.
455) 315 g of manganese sulfate (1.
86 mol), to prepare a metal salt mixture is the temperature at 40 to 50 ° C. by adding copper sulfate 214 g (0.86 mol) and nickel sulfate (NiSO 4 · 6H 2 O) 250g (0.95 mol). 229m of concentrated sulfuric acid (98% H 2 SO 4 )
L is added, and the mixture is aged at a temperature of 50 to 60 ° C. for about 1 hour to precipitate a mixed crystal of a metal salt. Next, 225 g of potassium permanganate crystal powder is gradually added to the obtained strongly acidic slurry, and then the stirring is continued at 50 to 60 ° C. for about 2 hours to complete the oxidation reaction. Then, 35 parts of water were added to the slurry.
After adding 8 mL, the mixture is filtered to separate the precipitate from the filtrate.
Thereafter, copper-supported manganese dioxide was obtained in the same manner as in Example 1.

【0026】比較例1 硫酸マンガン(MnSO4・H2O)315gおよび硫酸
銅(CuSO4・5H2O)286gを50%硫酸193
0gに添加して混合金属塩水溶液を調製する。次いで、
この水溶液に濃硫酸(98%H2SO4)208mLを添
加して、温度50〜60℃で1時間撹拌を続けて、マン
ガンと銅の混合硫酸塩結晶を析出させる。次いで炭素を
陽極として2時間電解を行い、陽極に二酸化マンガンと
酸化銅を析出させる。その後、母液と析出物とを分離
し、更に、水に再分散させ、苛性ソーダ溶液(48%N
aOH)で撹拌下pH9〜10になるまで中和した後、
常法により分離、水洗い及び乾燥して銅担持の二酸化マ
ンガンを得た。
Comparative Example 1 315 g of manganese sulfate (MnSO 4 .H 2 O) and 286 g of copper sulfate (CuSO 4 .5H 2 O) were added to 50% sulfuric acid 193
0 g to prepare a mixed metal salt aqueous solution. Then
208 mL of concentrated sulfuric acid (98% H 2 SO 4 ) is added to this aqueous solution, and stirring is continued at a temperature of 50 to 60 ° C. for 1 hour to precipitate mixed sulfate crystals of manganese and copper. Next, electrolysis is performed for 2 hours using carbon as an anode, and manganese dioxide and copper oxide are deposited on the anode. Thereafter, the mother liquor and the precipitate were separated, further redispersed in water, and a sodium hydroxide solution (48% N
aOH) and neutralized to pH 9-10 with stirring.
Separation, washing and drying were carried out by conventional methods to obtain copper-supported manganese dioxide.

【0027】比較例2 硫酸マンガン(MnSO4・H2O)315gを50%硫
酸1430gに添加して金属塩水溶液を調製する。次い
で、この水溶液に濃硫酸(98%H2SO4)208mL
を添加して、温度50〜60℃で1時間撹拌を続けてマ
ンガンの硫酸塩結晶を析出させる。次いで、過マンガン
酸カリウムの粉末178gを除々に撹拌状態のスラリー
に添加して約2時間保持して酸化反応を終了した。次い
で、酸化処理したスラリーに分離操作を容易にするため
に少量の水を添加した後、母液と析出物とを分離した。
更に、水に再分散させ、苛性ソーダ溶液(48%NaO
H)で、撹拌下pH9〜10になるまで中和した後、常
法により分離、水洗い及び乾燥して二酸化マンガンを得
た。なお、上記に実施例1〜4及び比較例1〜2で得ら
れたNOxガス酸化剤は、表1の物性を有していた。
Comparative Example 2 A metal salt aqueous solution was prepared by adding 315 g of manganese sulfate (MnSO 4 .H 2 O) to 1430 g of 50% sulfuric acid. Next, 208 mL of concentrated sulfuric acid (98% H 2 SO 4 ) was added to this aqueous solution.
And stirring is continued at a temperature of 50 to 60 ° C. for 1 hour to precipitate manganese sulfate crystals. Next, 178 g of potassium permanganate powder was gradually added to the stirred slurry, and the mixture was maintained for about 2 hours to complete the oxidation reaction. Next, a small amount of water was added to the oxidized slurry to facilitate the separation operation, and then the mother liquor and the precipitate were separated.
Further, the mixture was redispersed in water, and a sodium hydroxide solution (48% NaO
H), the mixture was neutralized to pH 9 to 10 with stirring, and then separated, washed and dried by a conventional method to obtain manganese dioxide. The NOx gas oxidizing agents obtained in Examples 1 to 4 and Comparative Examples 1 and 2 had the physical properties shown in Table 1.

【0028】[0028]

【表1】 [Table 1]

【0029】実施例1〜4及び比較例1〜2で得られた
各試料10g(120℃、4時間乾燥物基準)にバイン
ダーとしてベントナイト0.5gを適量の水と共に混練
した後、ペレッターで成型し、次いで、約200℃で乾
燥したものを試料(直径3mm×長さ4〜8mm)とし
て用いた。
After kneading 0.5 g of bentonite as a binder with an appropriate amount of water, 10 g of each of the samples obtained in Examples 1 to 4 and Comparative Examples 1 and 2 (on a dry basis at 120 ° C. for 4 hours) was molded with a pelletizer. Then, what was dried at about 200 ° C. was used as a sample (diameter 3 mm × length 4 to 8 mm).

【0030】<NOガス酸化試験>リボンヒーターを巻
いた内径25mm、長さ300mmのカラムに各試料を
126mm充填した。次いで、高濃度標準NOガスを常
温にて大気で希釈して30ppmNOガスを調製してカ
ラムに流入した。その後60分流入を継続し、出口のN
O、NO2濃度を測定した。更に、リボンヒーターの設
定温度を40℃で60分、50℃で60分とし、同様に
出口のNOx濃度を測定した。測定条件をまとめると表
2のとおりである。測定結果を図1〜図6に示した。
<NO Gas Oxidation Test> Each sample was packed 126 mm into a column having an inner diameter of 25 mm and a length of 300 mm around which a ribbon heater was wound. Next, the high-concentration standard NO gas was diluted with air at normal temperature to prepare 30 ppm NO gas, which was then introduced into the column. After that, the inflow continued for 60 minutes, and N
O and NO 2 concentrations were measured. Further, the set temperature of the ribbon heater was set at 40 ° C. for 60 minutes and at 50 ° C. for 60 minutes, and the NOx concentration at the outlet was measured in the same manner. Table 2 summarizes the measurement conditions. The measurement results are shown in FIGS.

【0031】[0031]

【表2】 測定条件 空間速度 ; 15,000/時 入り口NO濃度: 30ppm 湿度 : 50%一定 リボンヒーター設定温度: 常温60分→40℃・60分→50℃・60分 流量 : 15L/分 測定方法 : ガス検知管法[Table 2] Measurement conditions Space velocity; 15,000 / hour Entrance NO concentration: 30 ppm Humidity: 50% constant Ribbon heater set temperature: Normal temperature 60 minutes → 40 ° C / 60 minutes → 50 ° C / 60 minutes Flow rate: 15 L / min Measurement Method: Gas detection tube method

【0032】[0032]

【発明の効果】本発明のNOxガス酸化剤によれば、5
0℃前後といった比較的低温域で光化学スモッグの原因
となるNOxを効率よく酸化分解することができるの
で、NOxガス酸化剤として、利用価値は極めて大であ
る。
According to the NOx gas oxidizing agent of the present invention, 5%
Since NOx, which causes photochemical smog, can be efficiently oxidatively decomposed in a relatively low temperature range of about 0 ° C., it is extremely useful as a NOx gas oxidizing agent.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で得られたNOxガス酸化剤のNO酸
化試験結果
FIG. 1 is a NO oxidation test result of a NOx gas oxidizing agent obtained in Example 1.

【図2】実施例2で得られたNOxガス酸化剤のNO酸
化試験結果
FIG. 2 shows the results of a NO oxidation test of a NOx gas oxidizing agent obtained in Example 2.

【図3】実施例3で得られたNOxガス酸化剤のNO酸
化試験結果
FIG. 3 shows the results of a NO oxidation test of a NOx gas oxidizing agent obtained in Example 3.

【図4】実施例4で得られたNOxガス酸化剤のNO酸
化試験結果
FIG. 4 shows the results of a NO oxidation test of a NOx gas oxidizing agent obtained in Example 4.

【図5】比較例1で得られたNOxガス酸化剤のNO酸
化試験結果
FIG. 5 is a NO oxidation test result of a NOx gas oxidizing agent obtained in Comparative Example 1.

【図6】比較例2で得られたNOxガス酸化剤のNO酸
化試験結果
FIG. 6 shows the results of a NO oxidation test of a NOx gas oxidizing agent obtained in Comparative Example 2.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 150m2/g〜300m2/gのBET
比表面積を持ち、かつ銅を担持した活性二酸化マンガン
を有効成分とすることを特徴とするNOxガス酸化剤。
BET method according to claim 1] 150m 2 / g~300m 2 / g
A NOx gas oxidizing agent having a specific surface area and comprising active manganese dioxide carrying copper as an active ingredient.
【請求項2】 銅を担持した活性二酸化マンガンは、マ
ンガンと銅のモル比(Mn/Cu)が0.9〜9.0であ
る請求項1記載のNOxガス酸化剤。
2. The NOx gas oxidizing agent according to claim 1, wherein the activated manganese dioxide supporting copper has a molar ratio of manganese to copper (Mn / Cu) of 0.9 to 9.0.
【請求項3】 マンガン塩および銅塩の混合水溶液を鉱
酸酸性にしてマンガンおよび銅の混合塩結晶を析出させ
る第1工程、この第1工程から得られる強酸性のスラリ
ー系に過マンガン酸カリウムを添加し酸化処理して二酸
化マンガンを生成させる第2工程、この第2工程の沈澱
物を母液と分離する第3工程および得られた沈澱物をア
ルカリ剤で中和処理する第4工程からなることを特徴と
するNOxガス酸化剤の製造方法。
3. A first step in which a mixed aqueous solution of a manganese salt and a copper salt is acidified with a mineral acid to precipitate mixed salt crystals of manganese and copper, and potassium permanganate is added to the strongly acidic slurry obtained in the first step. And a oxidizing treatment to produce manganese dioxide, a third step of separating the precipitate of the second step from the mother liquor, and a fourth step of neutralizing the obtained precipitate with an alkali agent. A method for producing a NOx gas oxidizing agent.
【請求項4】 マンガン塩および銅塩の混合水溶液にお
けるMn/Cuのモル比が1.4〜14.0の範囲である
請求項3記載のNOxガス酸化剤の製造方法。
4. The method according to claim 3, wherein the molar ratio of Mn / Cu in the mixed aqueous solution of the manganese salt and the copper salt is in the range of 1.4 to 14.0.
【請求項5】 強酸性のスラリー系が金属硫酸塩−硫酸
系のスラリーである請求項4記載のNOxガス酸化剤の
製造方法。
5. The method according to claim 4, wherein the strongly acidic slurry is a metal sulfate-sulfuric acid slurry.
【請求項6】 沈澱物を分離した母液を、マンガン塩お
よび銅塩の溶解又は析出のための鉱酸源として循環使用
する請求項3又は5記載のNOxガス酸化剤の製造方
法。
6. The process for producing a NOx gas oxidizing agent according to claim 3, wherein the mother liquor from which the precipitate has been separated is recycled as a mineral acid source for dissolving or depositing manganese salts and copper salts.
JP8216422A 1996-08-16 1996-08-16 Nox gas oxidizing agent and production thereof Pending JPH1057811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8216422A JPH1057811A (en) 1996-08-16 1996-08-16 Nox gas oxidizing agent and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8216422A JPH1057811A (en) 1996-08-16 1996-08-16 Nox gas oxidizing agent and production thereof

Publications (1)

Publication Number Publication Date
JPH1057811A true JPH1057811A (en) 1998-03-03

Family

ID=16688323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8216422A Pending JPH1057811A (en) 1996-08-16 1996-08-16 Nox gas oxidizing agent and production thereof

Country Status (1)

Country Link
JP (1) JPH1057811A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6455463B1 (en) 2001-03-13 2002-09-24 Delphi Technologies, Inc. Alkaline earth/transition metal lean NOx catalyst
US6576587B2 (en) 2001-03-13 2003-06-10 Delphi Technologies, Inc. High surface area lean NOx catalyst
US6624113B2 (en) 2001-03-13 2003-09-23 Delphi Technologies, Inc. Alkali metal/alkaline earth lean NOx catalyst
US6670296B2 (en) 2001-01-11 2003-12-30 Delphi Technologies, Inc. Alumina/zeolite lean NOx catalyst
US6864213B2 (en) 2001-03-13 2005-03-08 Delphi Technologies, Inc. Alkaline earth / rare earth lean NOx catalyst
KR100655133B1 (en) * 2005-03-02 2006-12-08 아주대학교산학협력단 METAL OXIDE CATALYST FOR REMOVING NOx AND METHOD OF PREPARING THE SAME
KR100840721B1 (en) 2007-04-02 2008-06-23 아주대학교산학협력단 Preparing method of catalyst for removing nox and catalyst for removing nox prepared thereform

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6670296B2 (en) 2001-01-11 2003-12-30 Delphi Technologies, Inc. Alumina/zeolite lean NOx catalyst
US6455463B1 (en) 2001-03-13 2002-09-24 Delphi Technologies, Inc. Alkaline earth/transition metal lean NOx catalyst
US6576587B2 (en) 2001-03-13 2003-06-10 Delphi Technologies, Inc. High surface area lean NOx catalyst
US6624113B2 (en) 2001-03-13 2003-09-23 Delphi Technologies, Inc. Alkali metal/alkaline earth lean NOx catalyst
US6864213B2 (en) 2001-03-13 2005-03-08 Delphi Technologies, Inc. Alkaline earth / rare earth lean NOx catalyst
KR100655133B1 (en) * 2005-03-02 2006-12-08 아주대학교산학협력단 METAL OXIDE CATALYST FOR REMOVING NOx AND METHOD OF PREPARING THE SAME
KR100840721B1 (en) 2007-04-02 2008-06-23 아주대학교산학협력단 Preparing method of catalyst for removing nox and catalyst for removing nox prepared thereform

Similar Documents

Publication Publication Date Title
US4952545A (en) Process for removing nitrogen oxides from exhaust gases
US4003978A (en) Method for treating ammonia-containing gases
EP0060742B1 (en) Catalyst and process for the oxidation of hydrogen sulfide and or organic sulfur compounds into sulfur dioxide
CA1267882A (en) Catalyst for decreasing the content of nitrogen oxides in flue gases
JPH11169714A (en) Catalyst for steam reforming of methanol
US5653953A (en) Process for recovering elemental sulfur by selective oxidation of hydrogen sulfide
US9782722B2 (en) Nitrous oxide decomposition catalyst
JP4364798B2 (en) Method for producing manganese compound and method for using the same
JPH1057811A (en) Nox gas oxidizing agent and production thereof
JPH06122519A (en) Hydrated amorphous ferric oxide particle powder and its production
EP0141515B1 (en) Catalyst
US4290923A (en) Rare-earth-manganese oxidation catalysts and process of producing same
US4101635A (en) Method for regenerating and recycling catalyst for oxidation of sulfur dioxide
CN112093824B (en) Method for regulating and controlling crystal form of iron oxide, iron-based composite oxide prepared by method and application of iron-based composite oxide
KR102558233B1 (en) Acid exhaust gas treatment agent, acid exhaust gas treatment method, and acid exhaust gas treatment facility
JPH0239297B2 (en)
JPH0299142A (en) Nitrogen oxide decomposing catalyst
JPH08173796A (en) Nitrogen oxide oxidizing adsorbent and nitrogen oxide removing method
JPH02187130A (en) Method for nitrogen oxide removal
JPH07118019A (en) Production of manganese dioxide
CN115501877B (en) Layered composite cobalt cerium catalyst for catalyzing selective oxidation of ammonia nitrogen in water by ozone and preparation method and application thereof
TWI809255B (en) Acid exhaust treatment agent, acid exhaust treatment method and acid exhaust treatment equipment
JP3582141B2 (en) Nitrogen oxide removal method
JPH0512981B2 (en)
JPS6335298B2 (en)