JPH0299142A - Nitrogen oxide decomposing catalyst - Google Patents

Nitrogen oxide decomposing catalyst

Info

Publication number
JPH0299142A
JPH0299142A JP63251361A JP25136188A JPH0299142A JP H0299142 A JPH0299142 A JP H0299142A JP 63251361 A JP63251361 A JP 63251361A JP 25136188 A JP25136188 A JP 25136188A JP H0299142 A JPH0299142 A JP H0299142A
Authority
JP
Japan
Prior art keywords
oxide
metal
nitrate
catalyst
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63251361A
Other languages
Japanese (ja)
Other versions
JP2784444B2 (en
Inventor
Masafumi Yoshimoto
吉本 雅文
Tadao Nakatsuji
忠夫 仲辻
Kazuhiko Nagano
永野 一彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Chemical Industry Co Ltd
Original Assignee
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Chemical Industry Co Ltd filed Critical Sakai Chemical Industry Co Ltd
Priority to JP63251361A priority Critical patent/JP2784444B2/en
Priority to EP89202496A priority patent/EP0362960A3/en
Priority to US07/417,422 priority patent/US5128305A/en
Publication of JPH0299142A publication Critical patent/JPH0299142A/en
Priority to US07/518,560 priority patent/US5049364A/en
Application granted granted Critical
Publication of JP2784444B2 publication Critical patent/JP2784444B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a nitrogen oxide decomposing catalyst without adding a reducing agent by compounding alkali (earth) metal oxide, metal oxide such as Co3O4 or Cu2O and metal such as Ru or Rh or oxide thereof. CONSTITUTION:A nitrogen oxide decomposing catalyst contains alkali metal and/or alkaline earth metal oxide such as magnesium oxide or calcium oxide, metal oxide such as Co3O4, Cu2O or Cr2O3 and metal such as Ru, Rh or Pd or oxide thereof as essential components. The catalyst thus obtained decomposes nitrogen oxide contained in exhaust gas directly even in a relatively high temp. region of about 300-800 deg.C with high efficiency without adding a reducing agent such as ammonia.

Description

【発明の詳細な説明】 産業上の利用分鮮 本発明は、排ガス中に含まれる窒素酸化物を除去する方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for removing nitrogen oxides contained in exhaust gas.

従来の技術 従来排ガス中に含まれる窒素酸化物は、■窒素酸化物を
酸化しアルカリ吸収させる方法、■窒素酸化物をNH3
、N2、CO等の還元剤により、N2とする方法などに
より除去されてきた。これらの方法は■の場合排水処理
が必要となり、■の場合NH3等の還元剤が必要である
ため処理コストが高い、またこれらとSOxとの反応に
よる塩類生成による活性低下があるなどの問題を有して
きた。またそのため還元剤を添加することなく窒素酸化
物を直接分解することができる触媒が提案されているが
、これらは活性が低く実用に供し得ないという問題点を
有してきた。
Conventional technology Conventionally, nitrogen oxides contained in exhaust gas can be treated by: ■ oxidizing nitrogen oxides and absorbing alkali; ■ converting nitrogen oxides to NH3
, N2, CO, and other reducing agents. These methods require wastewater treatment in the case of ①, and in the case of ③, a reducing agent such as NH3 is required, resulting in high treatment costs, and there are problems such as a decrease in activity due to the formation of salts due to the reaction between these and SOx. I have had it. For this reason, catalysts that can directly decompose nitrogen oxides without adding a reducing agent have been proposed, but these have had the problem of low activity and cannot be put to practical use.

日 シイ :      +       、″本発明
は、上記の欠点を解決し、還元剤を添加することなく窒
素酸化物を高効率に直接分解することができる触媒にか
かるものである。
The present invention solves the above-mentioned drawbacks and relates to a catalyst that can directly decompose nitrogen oxides with high efficiency without adding a reducing agent.

I、叫   S   。I, scream S.

本発明にかかる触媒は、排ガス中に含有する窒素酸化物
を (a)アルカリ金属及びもしくはアルカリ土類金属酸化
物 (b)Co3O4、Cu2O,Cr、、03、Mn2O
3、NiO、PbO−Bi 203、MoO2から選択
される1種以上の金属酸化物及び(c)Ru、 Rh、
 Pd、 Ag、 P t、 Auから選択される1種
以上の金属もしくは、金属酸化物とからなる触媒と接触
させ、窒素酸化物なN2と02に分解することができる
触媒である。
The catalyst according to the present invention converts nitrogen oxides contained in exhaust gas into (a) alkali metal and/or alkaline earth metal oxides (b) Co3O4, Cu2O, Cr, 03, Mn2O
3, one or more metal oxides selected from NiO, PbO-Bi 203, MoO2, and (c) Ru, Rh,
It is a catalyst that can be brought into contact with a catalyst consisting of one or more metals selected from Pd, Ag, Pt, and Au or a metal oxide, and can be decomposed into nitrogen oxides such as N2 and O2.

本触媒は(a)(b)と(C)から選択される触媒成分
もしくはそれらの前駆体を用いて、公知の方法により調
整することができる。
The present catalyst can be prepared by a known method using a catalyst component selected from (a), (b) and (C) or a precursor thereof.

例えば (1)アルカリ土類金属酸化物(マグネシア、カルシア
、酸化ストロンチウムなど)と(b)群から選択される
酸化物を予め混合し、任意の成形方法(押出成形、打錠
成形、球状成形など)により成形しその後3O0℃〜8
00℃の温度条件で焼成し、これを(c)群から選択さ
れる金属及びもしくはアルカリ金属塩水溶液に浸漬し、
乾燥後3O0℃〜800℃の温度条件で焼成する。さら
に必要に応じて還元雰囲気中で焼成する。
For example, (1) an alkaline earth metal oxide (magnesia, calcia, strontium oxide, etc.) and an oxide selected from group (b) are mixed in advance, and any molding method (extrusion molding, tablet molding, spherical molding, etc.) is used. ) and then molded at 3O0℃~8
Calcined at a temperature of 00°C, immersed in an aqueous solution of a metal and/or alkali metal salt selected from group (c),
After drying, it is fired at a temperature of 300°C to 800°C. Further, if necessary, it is fired in a reducing atmosphere.

(2)アルカリ土類金属塩と(b)群から選択されろ金
属の塩を水などに溶解しこれにアルカリ(アンモニア、
水酸化ナトリウムなど)など沈澱剤を加え沈澱を生成し
、これを乾燥し、その後3O0℃〜800℃の温度条件
で焼成し粉砕し、任意の成形方法(押出成形、打錠成形
、球状成形など)により成形し、さらに必要に応じて3
O0℃〜800℃の温度条件で焼成し、これを(c)群
から選択される金属及びもしくはアルカリ金属塩水溶液
に浸漬し、乾燥後3O0℃〜800°Cの温度条件で焼
成する。さらに必要に応じて還元界’[p71気中て焼
成する。
(2) Dissolve an alkaline earth metal salt and a salt of a metal selected from group (b) in water, etc., and add alkali (ammonia,
A precipitant such as sodium hydroxide is added to form a precipitate, which is dried, then calcined and pulverized at a temperature of 300°C to 800°C. ), and further 3 as necessary.
It is fired at a temperature of 300°C to 800°C, immersed in an aqueous solution of metal and/or alkali metal salt selected from group (c), dried, and then fired at a temperature of 300°C to 800°C. Further, if necessary, the mixture is fired in a reducing atmosphere [p71].

(3)アルカリ金属塩、(b)群から選択される金属塩
及び(c)群から選択される金属塩を水などに溶解し、
これにアルカリ(アンモニア、水酸化ナトリウムなど)
なと沈澱剤を加え、沈澱を生成し、これを乾燥し、その
後3O0℃〜800℃の温度条件で焼成する。これを粉
砕し任意の成形方法(押出成形、打錠成形、球状成形な
と)により成形し、さらに必要に応じて3O0℃〜80
0℃の温度条件で焼成する。さらに場合によってはこれ
を還元雰囲気中で焼成してもよい。
(3) Dissolving an alkali metal salt, a metal salt selected from group (b), and a metal salt selected from group (c) in water or the like,
Add to this an alkali (ammonia, sodium hydroxide, etc.)
A precipitant is added to form a precipitate, which is dried and then calcined at a temperature of 300°C to 800°C. This is crushed and molded by any molding method (extrusion molding, tablet molding, spherical molding, etc.), and if necessary, the
Fired at a temperature of 0°C. Furthermore, depending on the case, this may be fired in a reducing atmosphere.

これらの方法は本発明触媒の調整方法を例示したもので
あり、これに特定されるものではなく、触媒成分が同じ
ものであれば同等の効果が得られる。
These methods are illustrative of methods for preparing the catalyst of the present invention, and are not limited thereto, and equivalent effects can be obtained if the catalyst components are the same.

本発明に用いることができる(a)群の金属酸化物は酸
化マグネシウム、酸化カルシウム、酸化ストロンチウム
であり、(a)群の前駆体は水酸化マグネシウム、水酸
化カルシウム、水酸化ストロンチウム、水酸化バリウム
などの水酸化物、硝酸マグネシウム、硝酸カルシウム、
硝酸ストロンチウム、硝酸バリウムなと水溶性塩などで
ある。なおこれらの沈澱剤としでは炭酸塩あるいは水酸
化ナトリウムなとのアルカリが好ましい。
The metal oxides of group (a) that can be used in the present invention are magnesium oxide, calcium oxide, and strontium oxide, and the precursors of group (a) are magnesium hydroxide, calcium hydroxide, strontium hydroxide, and barium hydroxide. hydroxides, magnesium nitrate, calcium nitrate, etc.
These include strontium nitrate, barium nitrate, and water-soluble salts. As the precipitant, carbonate or alkali such as sodium hydroxide is preferable.

また本発明に用いることができる(b)群の金属酸化物
はCo3Oa、Cu2O、Cr2O3Mn2O3、Ni
O、PbO,Bi、、03、MoO2であり、好ましい
原料である(b)群の前駆体としては硝酸第1銅、硝酸
第1クロム、硝酸コバルト、硝酸マンガン、硝酸ニッケ
ル、硝酸鉛、硝酸ビスマス、モリブデン酸アンモニウム
などの水溶性塩を挙げることができる。さらに(C)群
の金属もしくは金属酸化物としては、前駆体を用いるこ
とが好ましく塩化ルテニウム、硝酸ロジウム、塩化パラ
ジウム、硝酸銀、塩化白金酸、塩化金酸なとの水溶性塩
を挙げることができる。またこれらの成分以外にチタニ
ア、アルミナ、シリカなどの公知の担体成分、粘土なと
の成形助剤成分、ガラスセンイなどの補強剤を添加して
もよい。しかしこれらの成分の総量は触媒成分中の50
%以下とすることが好ましい。
Group (b) metal oxides that can be used in the present invention include Co3Oa, Cu2O, Cr2O3Mn2O3, Ni
O, PbO, Bi, 03, MoO2, and the precursors of group (b), which are preferred raw materials, include cuprous nitrate, chromium nitrate, cobalt nitrate, manganese nitrate, nickel nitrate, lead nitrate, and bismuth nitrate. , water-soluble salts such as ammonium molybdate. Furthermore, as the metal or metal oxide of group (C), it is preferable to use a precursor, and examples thereof include water-soluble salts such as ruthenium chloride, rhodium nitrate, palladium chloride, silver nitrate, chloroplatinic acid, and chloroauric acid. . In addition to these components, known carrier components such as titania, alumina, and silica, molding aid components such as clay, and reinforcing agents such as glass fibers may be added. However, the total amount of these components is 50% in the catalyst components.
% or less.

本発明にかかる触媒は、(a)群、(b)群及び(C)
群とからなるがこれらの好ましい組成比は原子比で(a
)群:(b)群:(C)群が90〜50:5〜50:0
.01〜10あり、より好ましくは90〜75:10〜
25:0.1〜5である。本発明者らはNOxの接触分
解の素反応が 2NO+2e  −+   2NO(1)2NO→  
N2+20   (2) 20    →  02+2e    (3)02  
  →  02↑      (4)からなり、(a)
群は(1) (2)の反応に、(b)群は(3)の反応
に、(c)群は(4)の反応に関与していると考えてい
る。これらのそれぞれの反応速度への寄与は定かてはな
いが、これらの原子比において、最も分解活性を示す結
果となった。
The catalyst according to the present invention comprises group (a), group (b) and (C).
The preferred composition ratio of these groups is (a
) group: (b) group: (C) group is 90-50:5-50:0
.. 01-10, more preferably 90-75:10
25:0.1-5. The present inventors found that the elementary reaction of catalytic decomposition of NOx is 2NO+2e −+ 2NO(1)2NO→
N2+20 (2) 20 → 02+2e (3)02
→ 02↑ Consists of (4), (a)
We believe that groups are involved in reactions (1) and (2), group (b) is involved in reaction (3), and group (c) is involved in reaction (4). Although the contribution of each of these to the reaction rate is unclear, the results showed the highest decomposition activity at these atomic ratios.

本発明の触媒が分解活性を示す温度は3O0℃〜800
℃である。また好ましい温度は400〜600℃である
。この温度において本発明触媒は、5V=500〜50
000において使用することができる。
The temperature at which the catalyst of the present invention exhibits decomposition activity is 300°C to 800°C.
It is ℃. Further, a preferable temperature is 400 to 600°C. At this temperature, the catalyst of the present invention has 5V=500-50
000 can be used.

発期Q効果 以上の様に本発明によれば(a)群(b)群及び(c)
群より選ばれた触媒成分を含有する触媒を用いることに
よって、排ガス温度が3O0℃〜800℃の温度域にお
いて窒素酸化物を還元剤を添加することなく分解除去す
ることが可能となったのである。
As described above, according to the present invention, group (a), group (b), and group (c)
By using a catalyst containing catalyst components selected from the group, it has become possible to decompose and remove nitrogen oxides in the exhaust gas temperature range of 300°C to 800°C without adding a reducing agent. .

以下に実施例とともに比較例を挙げて本発明を説明する
が、本発明はこれらの実施例により何ら限定されるもの
ではない。
The present invention will be explained below by giving Examples and Comparative Examples, but the present invention is not limited to these Examples in any way.

実施例1゜ 硝酸マグネシウム、硝酸コバルトを各々酸化物基準で9
0g、9g秤量しこれを1免のイオン交換水中に溶解し
た。この水溶液中に充分な撹拌を行ないながら、炭酸ソ
ーダ水溶液をpH7,0となるまで添加し、中和反応を
終了した。(中和時間1時間)その後3O分熟成後ろ過
水法を行ない100℃で18時間乾燥後500℃3時間
焼成した。この焼成物をスクリーンが0.5mrnφで
あるサンプルミルにて粉砕した。この粉砕物を50g、
水20OJ中に投入し充分撹拌を行なったスラリー中に
空隙率81%、ピッチ4mmのセラミックファイバー製
コルゲート状ハニカムを浸漬し、MgO−Co3O.を
該ハニカムに担持した。その担持率は159%であった
Example 1゜ Magnesium nitrate and cobalt nitrate were each 9% on an oxide basis.
0g and 9g were weighed and dissolved in 1 ml of ion exchange water. An aqueous sodium carbonate solution was added to this aqueous solution with sufficient stirring until the pH reached 7.0 to complete the neutralization reaction. (Neutralization time: 1 hour) Thereafter, the mixture was aged for 30 minutes, followed by a perhydration method, dried at 100°C for 18 hours, and then calcined at 500°C for 3 hours. This fired product was pulverized in a sample mill with a screen of 0.5 mrnφ. 50g of this crushed material,
A corrugated honeycomb made of ceramic fibers with a porosity of 81% and a pitch of 4 mm was immersed in a slurry that had been poured into 20 OJ of water and thoroughly stirred. was supported on the honeycomb. The loading rate was 159%.

これを常温通風乾燥後100℃18時間乾燥した。この
乾燥物を塩化金酸水溶液(Auとして33g/Q、)中
に浸漬し、常温通風乾燥後100℃18時間乾燥し、5
00℃3時間朱尭成した。
This was air-dried at room temperature and then dried at 100° C. for 18 hours. This dried product was immersed in a chloroauric acid aqueous solution (33 g/Q as Au), dried with ventilation at room temperature, and then dried at 100°C for 18 hours.
The mixture was incubated at 00°C for 3 hours.

実施例2゜ 実施例1の方法において、硝酸マグネシウム、硝酸コバ
ルトを酸化物基準で各々75gと24g(実施例2−1
)、50:49 (実施例2−2)とした。
Example 2 In the method of Example 1, magnesium nitrate and cobalt nitrate were added to 75 g and 24 g, respectively, on an oxide basis (Example 2-1).
), 50:49 (Example 2-2).

実施例3゜ 実施例1の方法において、塩化金酸水溶γαα変度Au
として165g/見とした。
Example 3゜In the method of Example 1, aqueous chloroauric acid γαα modified Au
It was set as 165g/view.

実施例4゜ 実施例1の方法において、塩化金酸水溶液に替えて塩化
白金酸水溶液(PLとして33g/Q、)を用いた。
Example 4 In the method of Example 1, a chloroplatinic acid aqueous solution (33 g/Q as PL) was used in place of the chloroauric acid aqueous solution.

実施例5゜ 実施例1の方法において、塩化金酸水溶液に替えて塩化
ルテニウム水溶液(Ruとして33g/fl)を用いた
Example 5 In the method of Example 1, a ruthenium chloride aqueous solution (33 g/fl as Ru) was used instead of the chloroauric acid aqueous solution.

実施例6゜ 実施例1の方法において塩化白金酸水溶液に替えて硝酸
銀水溶液(Ag20として71g/見)を用いた。
Example 6 In the method of Example 1, a silver nitrate aqueous solution (71 g/stu as Ag20) was used in place of the chloroplatinic acid aqueous solution.

実施例7゜ 実施例1の方法において硝酸コバルトに替えて塩化第1
鋼塩酸水溶液(酸化物として9g)を中和剤としてアン
モニアに替えてN a OHを用い、また中和pHを3
.0とした。
Example 7゜In the method of Example 1, cobalt chloride was replaced with cobalt nitrate.
A steel hydrochloric acid aqueous solution (9 g as oxide) was used as a neutralizing agent instead of ammonia, and NaOH was used, and the neutralization pH was adjusted to 3.
.. It was set to 0.

実施例8゜ 実施例1の方法において硝酸コバルトに替えて硝酸第1
クロム水溶液(酸化物として9g)を用いp)(を5.
5とした。
Example 8゜In the method of Example 1, nitric acid nitrate was used instead of cobalt nitrate.
Using a chromium aqueous solution (9 g as oxide) p) (5.
I gave it a 5.

実施例9゜ 実施例4の方法において硝酸コバルトに替えて硝酸マン
ガンを用い、中和時に空気酸化を行ない中和palを8
.5とした。
Example 9゜In the method of Example 4, manganese nitrate was used instead of cobalt nitrate, air oxidation was performed during neutralization, and the neutralized pal was 8
.. I gave it a 5.

実施例10゜ 実施例4の方法において硝酸コバルトに替えて硝酸ニッ
ケルを用いた。
Example 10° Nickel nitrate was used in place of cobalt nitrate in the method of Example 4.

実施例11゜ 実施例4の方法において硝酸コバルトに替えて硝酸鉛を
用いた。
Example 11 In the method of Example 4, lead nitrate was used instead of cobalt nitrate.

実施例12゜ 実施例4の方法において硝酸コバルト水溶液に替えて硝
酸ビスマス硝酸水溶液を用いた。
Example 12 In the method of Example 4, an aqueous solution of bismuth nitrate and nitric acid was used in place of the aqueous cobalt nitrate solution.

実施例13゜ 実施例4の方法において硝酸コバルトに替えて臭化モリ
ブデンを用いた。
Example 13 In the method of Example 4, molybdenum bromide was used in place of cobalt nitrate.

実施例14゜ 実施例7の方法において塩化金酸水溶液に替えて硝酸ロ
ジウム水溶液を用いた。
Example 14 In the method of Example 7, a rhodium nitrate aqueous solution was used in place of the chloroauric acid aqueous solution.

実施例15゜ 実施例7の方法において塩化金酸水溶液に替えて塩化パ
セジウム水溶液を用いた。
Example 15 In the method of Example 7, an aqueous solution of passedium chloride was used in place of the aqueous chloroauric acid solution.

実施例16゜ 実施例4の方法において塩化白金酸水溶液濃度を16g
/見(実施例16−IL 66g/Q、(実施例16−
2)とした。
Example 16゜In the method of Example 4, the concentration of the chloroplatinic acid aqueous solution was 16 g.
/ see (Example 16-IL 66g/Q, (Example 16-
2).

実施例17゜ 実施例4の方法において硝酸コバルトに替えて硝酸コバ
ルトと硝酸クロムを酸化物基準で45gと45gとした
Example 17 In the method of Example 4, cobalt nitrate and chromium nitrate were used in place of cobalt nitrate in amounts of 45 g and 45 g on an oxide basis.

実施例1B。Example 1B.

実施例1の方法において塩化金酸水)笛αに替えてNa
を含有する塩化金酸水溶液(Auとして33 g/Q、
Naとして3g/Q)を用いた。
In the method of Example 1, Na chloroauric acid water) was used instead of
(33 g/Q as Au,
3 g/Q) was used as Na.

参考例1゜ モーピル石油製ZSM−5,50gを0.INa度のC
uCl2溶液に浸漬し、還流器付三ツロフラスコ中で9
0℃〜100℃で12時間撹拌し、ろ過した。得られた
ケーキを用いて同様の操作を繰返し置換量を4.8%(
重、1!i)とした。以下実施例1と同様の操作により
触媒を得た。
Reference Example 1 0.50g of ZSM-5 manufactured by Mopil Petroleum. INa degree C
Immerse in uCl2 solution and in a Mitsuro flask with a reflux device.
The mixture was stirred at 0°C to 100°C for 12 hours and filtered. Using the obtained cake, the same operation was repeated until the amount of substitution was 4.8% (
Heavy, 1! i). A catalyst was obtained by the same operation as in Example 1.

実施例19゜ 実施例4によって得た触媒をN2H2(1:1)の還元
性ガスで400℃1時間処理した。
Example 19 The catalyst obtained in Example 4 was treated with a reducing gas of N2H2 (1:1) at 400°C for 1 hour.

実施例20゜ 実施例1の方法において硝酸マグネシウムに替えて硝酸
カルシウム(実施例2O−1)硝酸ストロンチウム(実
施例2O−2)硝酸バリウム(実施例2O−3)を用い
た。
Example 20° Calcium nitrate (Example 2O-1), strontium nitrate (Example 2O-2), and barium nitrate (Example 2O-3) were used in place of magnesium nitrate in the method of Example 1.

実施例1〜19、参考例1により得られた触媒を用いて
以下の試験条件にて試験を行なった。
Tests were conducted using the catalysts obtained in Examples 1 to 19 and Reference Example 1 under the following test conditions.

(1)ガス組成 No      200ppm 02      2 % H2010% N2      バランス (2)  SV    1000 (3)反応温度  3O0.400.500°C試験結
果を第1表に示した。
(1) Gas composition No. 200 ppm 02 2% H20 10% N2 Balance (2) SV 1000 (3) Reaction temperature 3O0.400.500°C The test results are shown in Table 1.

なお第1表中の値はN2への転換率を表している。Note that the values in Table 1 represent the conversion rate to N2.

Claims (1)

【特許請求の範囲】 窒素酸化物を含有するガスと接触して、窒素酸化物を分
解除去する触媒において (a)アルカリ金属及びもしくはアルカリ土類金属酸化
物 (b)Co_3O_4、Cu_2O、Cr_2O_3、
Mn_2O_3、NiO、PbO、Bi_2O_3、M
oO_2から選択される1種以上の金属酸化物及び (c)Ru、Rh、Pd、Ag、Pt、Auから選択さ
れる1種以上の金属もしくは、金属酸化物とからなるこ
とを特徴とする窒素酸化物分解触媒
[Scope of Claims] A catalyst that decomposes and removes nitrogen oxides by contacting with a gas containing nitrogen oxides (a) an alkali metal and/or alkaline earth metal oxide (b) Co_3O_4, Cu_2O, Cr_2O_3,
Mn_2O_3, NiO, PbO, Bi_2O_3, M
Nitrogen characterized by consisting of one or more metal oxides selected from oO_2 and (c) one or more metals or metal oxides selected from Ru, Rh, Pd, Ag, Pt, and Au. Oxide decomposition catalyst
JP63251361A 1988-10-05 1988-10-05 Nitrogen oxide decomposition catalyst Expired - Lifetime JP2784444B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63251361A JP2784444B2 (en) 1988-10-05 1988-10-05 Nitrogen oxide decomposition catalyst
EP89202496A EP0362960A3 (en) 1988-10-05 1989-10-03 Use of a catalyst composition for denitrization and denitrizing catalysts
US07/417,422 US5128305A (en) 1988-10-05 1989-10-05 Catalyst for denitrization
US07/518,560 US5049364A (en) 1988-10-05 1990-06-06 Methods for denitrization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63251361A JP2784444B2 (en) 1988-10-05 1988-10-05 Nitrogen oxide decomposition catalyst

Publications (2)

Publication Number Publication Date
JPH0299142A true JPH0299142A (en) 1990-04-11
JP2784444B2 JP2784444B2 (en) 1998-08-06

Family

ID=17221684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63251361A Expired - Lifetime JP2784444B2 (en) 1988-10-05 1988-10-05 Nitrogen oxide decomposition catalyst

Country Status (1)

Country Link
JP (1) JP2784444B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001506180A (en) * 1996-12-19 2001-05-15 ビーエーエスエフ アクチェンゲゼルシャフト Reduction of nitrogen oxides
US6630115B1 (en) 1998-12-11 2003-10-07 Hitachi, Ltd. Exhaust emission control process for internal combustion engines
KR100408880B1 (en) * 2001-02-03 2003-12-11 김문찬 De-NOx CATALYSTS AND METHOD BY DIRECT CATALYTIC REDUCTION
US7375054B2 (en) * 2003-08-28 2008-05-20 Mitsubishi Heavy Industries, Ltd. Exhaust gas treatment catalyst and exhaust gas treatment method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111082046B (en) * 2019-12-31 2021-07-16 中科廊坊过程工程研究院 Coated positive electrode material and preparation method and application thereof
CN111082065B (en) * 2019-12-31 2021-07-16 中科廊坊过程工程研究院 Modifier and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4876793A (en) * 1972-01-18 1973-10-16
JPS49101287A (en) * 1973-01-31 1974-09-25

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4876793A (en) * 1972-01-18 1973-10-16
JPS49101287A (en) * 1973-01-31 1974-09-25

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001506180A (en) * 1996-12-19 2001-05-15 ビーエーエスエフ アクチェンゲゼルシャフト Reduction of nitrogen oxides
US6630115B1 (en) 1998-12-11 2003-10-07 Hitachi, Ltd. Exhaust emission control process for internal combustion engines
US6841511B2 (en) 1998-12-11 2005-01-11 Hitachi, Ltd. Internal combustion engine exhaust gas purification apparatus, exhaust gas purification process and exhaust gas purification catalyst
KR100408880B1 (en) * 2001-02-03 2003-12-11 김문찬 De-NOx CATALYSTS AND METHOD BY DIRECT CATALYTIC REDUCTION
US7375054B2 (en) * 2003-08-28 2008-05-20 Mitsubishi Heavy Industries, Ltd. Exhaust gas treatment catalyst and exhaust gas treatment method

Also Published As

Publication number Publication date
JP2784444B2 (en) 1998-08-06

Similar Documents

Publication Publication Date Title
US5516741A (en) Reduced chlorine containing platinum catalysts
US5141906A (en) Catalyst for purifying exhaust gas
JPH02187148A (en) Catalyst for decomposing ozone
JPH0299142A (en) Nitrogen oxide decomposing catalyst
JP3254742B2 (en) Catalyst for decomposition of nitrous oxide
JP3219480B2 (en) Exhaust gas treatment method and catalyst
JP2921517B2 (en) Nitrogen oxide decomposition catalyst
JPH02187130A (en) Method for nitrogen oxide removal
JP2928852B2 (en) Catalyst for catalytic cracking of nitrogen oxides and catalytic cracking method
JP4254444B2 (en) Exhaust gas purification catalyst for internal combustion engine and method for producing the same
JP2689147B2 (en) Nitrogen oxide removal catalyst
JP2691750B2 (en) Nitrogen oxide decomposition catalyst
JPH02187131A (en) Method for removing nitrogen oxide
JP4016193B2 (en) Denitration catalyst
JPH02122831A (en) Catalyst for removal of nitrogen oxide
JPS6312348A (en) Catalyst for catalytic reduction of nitrogen oxide by ammonia
JPH038447A (en) Catalyst for decomposition of ozone
US3928534A (en) Catalyst useful at higher temperatures, especially for purification of exhaust gases from motor vehicles and industrial plants
JPH04210241A (en) Catalyst for cleaning exhaust gas
JPS5823136B2 (en) How to remove nitrogen oxides from exhaust gas
JPH0290947A (en) Manufacture of catalyst for exhaust gas purification
JPH0889758A (en) Decomposing method of ammonia
JP2002320847A (en) Adsorbent for nitrogen oxide and/or sulfur oxide and method for removing nitrogen oxide and/or sulfur oxide
JP4499512B2 (en) Method for treating exhaust gas containing odor components
JPH08173811A (en) Catalyst for purification of exhaust gas and its production