JPH02102110A - Surface-treatment of ultrafine particle of aluminum nitride - Google Patents

Surface-treatment of ultrafine particle of aluminum nitride

Info

Publication number
JPH02102110A
JPH02102110A JP25097088A JP25097088A JPH02102110A JP H02102110 A JPH02102110 A JP H02102110A JP 25097088 A JP25097088 A JP 25097088A JP 25097088 A JP25097088 A JP 25097088A JP H02102110 A JPH02102110 A JP H02102110A
Authority
JP
Japan
Prior art keywords
ultrafine
particle
aln
ultrafine particles
aluminum nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25097088A
Other languages
Japanese (ja)
Inventor
Kazuhiro Baba
和宏 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP25097088A priority Critical patent/JPH02102110A/en
Publication of JPH02102110A publication Critical patent/JPH02102110A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a surface-treated ultrafine particle of AlN having low oxygen content and resistant to the increase of oxygen content with time by reacting Al with NH3 gas by high-frequency hot plasma process and heat- treating the obtained ultrafine particle of AlN in an inert gas or in vacuum prior to the contact of the particle with air. CONSTITUTION:Ultrafine particles of AlN produced by the above reaction are heat-treated in an inert gas or in vacuum at 100-800 deg.C before contacting the particle with air. The treatment is effective in eliminating adsorbed NH3 gas, surface charge and crystal defect existing on the surface of the fine particle and causing the increase of impurity oxygen contained in the ultrafine AlN particle. Accordingly, ultrafine AlN particle having high stability of the surface with time and low impurity oxygen content can be produced by this process.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は窒化アルミニウム超微粒子の表面処理方法に関
し、ざらに詳しくはr!i索含有量が少なく、しかもそ
の経時変化量も少ない窒化アルミニウム超微粒子の表面
処理方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for surface treatment of ultrafine aluminum nitride particles. The present invention relates to a method for surface treatment of ultrafine aluminum nitride particles that have a low i-core content and a small amount of change over time.

し従来の技術] 窒化アルミニウム(AIN)は高熱伝導性、高絶縁性お
よび高化学的安定性を示すことなどから、半導体デバイ
ス用の成熱基板材料や単結晶引上げ用のルツボ材料のよ
うに幅広い用途が期待されている材料の1つである。
[Conventional technology] Aluminum nitride (AIN) exhibits high thermal conductivity, high insulation properties, and high chemical stability, so it is widely used as a material for heat-forming substrates for semiconductor devices and as a crucible material for pulling single crystals. It is one of the materials expected to be used.

ところで、AINをはじめとして非酸化物は一般的に難
焼結性物質が多い。従来、AIN焼結体の製造方法とし
ては、一般に高温、高圧下で焼結する方法(ホットプレ
ス法)、もしくは焼結助剤を加えて常圧で焼結する方法
(常圧法)が用いられる。しかしながらこれらの方法を
用いても、焼結温度が1600℃以上でなければ相対密
度で90%以上の緻密な焼結体は得られなかった。
By the way, many non-oxides, including AIN, are generally difficult to sinter. Conventionally, methods for producing AIN sintered bodies generally include sintering at high temperature and high pressure (hot press method), or adding a sintering aid and sintering at normal pressure (normal pressure method). . However, even with these methods, a dense sintered body with a relative density of 90% or more could not be obtained unless the sintering temperature was 1600° C. or higher.

これに対し、本発明者らが合成に成功した高周波熱プラ
ズマ法を用いて金属アルミニウムをアンモニアガスで直
接窒化づることにより得られる、高純度でその平均粒径
が0.1庫以下のAj!N超微粒子は、焼結助剤を用い
ることなく、常圧法により1600℃以下の焼結温度で
緻密な焼結体を得ることが可能である。ところがその熱
伝導率は40W/m−に以下であり、八!Nの理論上の
熱伝導率である320W/m” Kに比へ著しく低いも
のであった。
On the other hand, Aj!, which has high purity and an average particle size of 0.1 mm or less, is obtained by directly nitriding metal aluminum with ammonia gas using the high-frequency thermal plasma method that the present inventors have successfully synthesized. With N ultrafine particles, it is possible to obtain a dense sintered body at a sintering temperature of 1600° C. or lower by a normal pressure method without using a sintering aid. However, its thermal conductivity is less than 40 W/m-, which is 8! This was significantly lower than the theoretical thermal conductivity of N, 320 W/m''K.

[発明が解決しようとする課題] AINの熱伝導率を著しく低下させる原因として、A2
N粉末中の不純物酸素が知られている。
[Problem to be solved by the invention] As a cause of a significant decrease in the thermal conductivity of AIN, A2
Impurity oxygen in N powder is known.

すなわら、へβN粉末中の酸素が焼結中にAINと反応
し、酸窒化物として焼結体中の粒界に析出するために、
熱伝導の媒体であるフォノンの散乱が大きくなり、熱伝
導率が低下するというものである。従って熱伝導率の優
れた焼結体を1qるためには、A!N粉末中束中素量を
できるだけ低く抑える必要がある。
In other words, oxygen in the βN powder reacts with AIN during sintering and precipitates as oxynitrides at grain boundaries in the sintered body.
The scattering of phonons, which are a medium for thermal conduction, increases, resulting in a decrease in thermal conductivity. Therefore, in order to produce 1q of sintered material with excellent thermal conductivity, A! It is necessary to keep the elementary amount of N powder in the bundle as low as possible.

ところが高周波熱プラズマ法を用いて合成された平均粒
径が0.1期以下の超微粒子AβNにおいては、へんら
の処理を行わずに人気中に放置しておいた場合、合成直
後ではその酸素量は1.0wt%と少ないが、時間の経
過とともに増加し、最終的には5wt%以上、多い場合
には10 wt%以上にも達する。このように多量の不
純物酸素を含むAβN粉末を用いた場合、先に述べたよ
うな理由からその焼結体の熱伝導率は小さく、従ってそ
の酸素量としては5wt%以下、望ましくは3wt%以
下にする必要がある。即ら、この程度の酸素を含んだA
NN¥!/J末でおれば、従来から知られているように
、周期律表における2a族や3a族元索の化合物を添加
して焼結することによって高熱伝導率を有するAβN焼
結体を製造することが可能となる。
However, if ultrafine particles of AβN with an average particle size of 0.1 or less synthesized using the high-frequency thermal plasma method are left untreated without being heated, the oxygen will disappear immediately after synthesis. Although the amount is small at 1.0 wt%, it increases over time and eventually reaches 5 wt% or more, and in some cases reaches 10 wt% or more. When AβN powder containing such a large amount of impurity oxygen is used, the thermal conductivity of the sintered body is low for the reasons mentioned above, and therefore the oxygen content is 5 wt% or less, preferably 3 wt% or less. It is necessary to That is, A containing this amount of oxygen
NN¥! /J end, as is conventionally known, an AβN sintered body having high thermal conductivity is produced by adding and sintering a compound belonging to group 2a or group 3a in the periodic table. becomes possible.

本発明は以上述べたような従来の事情に対処してなされ
たもので、AffiN超微粒子超微粒素中有量が少なく
、また時間の経過と共に酸素含有量が増大することもな
いA!N超微粒子の表面処理方法を提供することを目的
とする。
The present invention has been made in response to the conventional circumstances as described above, and the amount of AffiN ultrafine particles in the ultrafine particles is small, and the oxygen content does not increase with the passage of time. The present invention aims to provide a method for surface treatment of N ultrafine particles.

[課題を解決するための手段] 本発明は、高周波熱プラズマ法を用い、金属アルミニウ
ムとアンモニアガスとを反応させて窒化アルミニウム超
微粒子を合成するに際し、生成した窒化アルミニウム超
微粒子を大気に接触させるに先立って、不活性ガス中も
しくは真空中で、100〜800℃の温度範囲内で熱処
理を行うことを特徴とする窒化アルミニウム超微粒子の
表面処理方法である。
[Means for Solving the Problems] The present invention uses a high-frequency thermal plasma method to react aluminum metal and ammonia gas to synthesize ultrafine aluminum nitride particles, and brings the generated ultrafine aluminum nitride particles into contact with the atmosphere. This is a surface treatment method for ultrafine aluminum nitride particles, which is characterized in that, prior to this, heat treatment is performed in an inert gas or vacuum within a temperature range of 100 to 800°C.

[作用] 本発明者らの研究によれば、高周波熱プラズマ法を用い
て金属アルミニウムとアンモニアガスより合成されたI
N超微粒子の表面には水rM基(OH基)および吸着水
が多量に存在していることがわかった。従来より知られ
ている合成方法(例えば特開昭60−60910号公報
)によるA!N粉末の表面は、一般に酸化アルミニウム
(Aj! 203 )で覆われており、高周波熱プラズ
マ法による粉末と比べて、明らかにその表面状態は異な
っている。この原因としては以下の3点が考えられる。
[Function] According to the research of the present inventors, I synthesized from metal aluminum and ammonia gas using the high-frequency thermal plasma method
It was found that a large amount of water rM groups (OH groups) and adsorbed water were present on the surface of the N ultrafine particles. A! by a conventionally known synthesis method (for example, Japanese Patent Application Laid-Open No. 60-60910). The surface of N powder is generally covered with aluminum oxide (Aj! 203), and its surface condition is clearly different from that of powder produced by high-frequency thermal plasma method. There are three possible reasons for this:

■高周波熱プラズマ法によるAj2N超微粒子の場合、
原料として水分と非常に反応性の高いアンモニアガスを
使用しており、生成直後の超微粒子の表面にはアン−し
ニアが吸着している。
■In the case of Aj2N ultrafine particles produced by high-frequency thermal plasma method,
Ammonia gas, which is highly reactive with moisture, is used as a raw material, and ammonia is adsorbed on the surface of the ultrafine particles immediately after they are produced.

■AZN超微粒子はプラズマ中の高電界の中を通るため
、超微粒子表面には電荷が存在している。
■Since AZN ultrafine particles pass through a high electric field in plasma, charges exist on the surface of the ultrafine particles.

■プラズマの高温中で生成したAINはプラズマの外部
で急冷されるため、超微粒子の表面には結晶欠陥が多数
存在する。
(2) Since AIN generated in the high temperature of the plasma is rapidly cooled outside the plasma, many crystal defects exist on the surface of the ultrafine particles.

以上の要囚のために、生成した超微粒子を何等の処理を
行わずに大気に接触させた場合、AIN超微粒子の表面
と人気中の水分との間で次のような化学反応が生じ、酸
素量が時間とともに増加するものと考えられる。
Due to the above requirements, if the generated ultrafine particles are brought into contact with the atmosphere without any treatment, the following chemical reaction will occur between the surface of the AIN ultrafine particles and the popular moisture. It is thought that the amount of oxygen increases with time.

ARN+3H20=Aj! (OH)3 十NH3本発
明においては、生成した△!N超微粒子を大気に接触さ
せるに先立って所定の熱処理を行うことにより、AβN
超微粒子に含まれる不純物酸素の増加の要囚となる超微
粒子表面に存在する吸着アンモニアガス、表面電荷およ
び結晶欠陥を除去する。この結果、経時変化の少ない安
定な表面を有する不純物酸素量の少ないA!N超微粒子
が得られる。
ARN+3H20=Aj! (OH)3 10NH3 In the present invention, the generated △! By performing a prescribed heat treatment before bringing the N ultrafine particles into contact with the atmosphere, AβN
Removes adsorbed ammonia gas, surface charges, and crystal defects present on the surface of ultrafine particles, which are key factors for increasing impurity oxygen contained in ultrafine particles. As a result, A! has a stable surface with little change over time and a low amount of impurity oxygen! N ultrafine particles are obtained.

[実施例] 次に、本発明の実施例について説明する。[Example] Next, examples of the present invention will be described.

実施例1,2 高周波熱プラズマ法を用い、金属アルミニウムとアンモ
ニアガスより合成された粒径が80n…のA!N超微粒
子を大気に接触させる前に、窒素ガスを充填したグロー
ブボックス中で、それぞれ800℃(実施例1)および
100℃(実施例2)で1時間の熱処理を行った。処理
の終わったAI!N超微粒子中に含まれる酸素量の時間
変化を、漏湯製作所製酸素窒素分析装置EHGA −2
800を用いて測定した。その結果を第1図に示1゜ま
た本実施例によって得られたAβN超微粒子表面は、水
酸基の吸着量が少なく、欠陥が少ないことが、赤外線吸
収スペクトル(FT−IR)による吸収帯から確認でき
た。
Examples 1 and 2 A with a particle size of 80 nm synthesized from metal aluminum and ammonia gas using a high frequency thermal plasma method! Before the N ultrafine particles were brought into contact with the atmosphere, heat treatment was performed for 1 hour at 800° C. (Example 1) and 100° C. (Example 2), respectively, in a glove box filled with nitrogen gas. AI that has finished processing! Changes in the amount of oxygen contained in N ultrafine particles over time were measured using an oxygen nitrogen analyzer EHGA-2 manufactured by Yuryu Seisakusho.
800 was used for measurement. The results are shown in Figure 11. Furthermore, it was confirmed from the absorption band of the infrared absorption spectrum (FT-IR) that the surface of the AβN ultrafine particles obtained in this example had a small adsorption amount of hydroxyl groups and few defects. did it.

比較例1,2 実施例1と同様な方法で、何等の処理も施さなかった場
合(比較例1)、および真空中、80℃で1時間の熱処
理を施した場合(比較例2)の酸素量変化を測定した。
Comparative Examples 1 and 2 Oxygen in the same manner as in Example 1 without any treatment (Comparative Example 1) and in the case of heat treatment at 80°C for 1 hour in vacuum (Comparative Example 2) Changes in volume were measured.

その結果を第1図に併せて示す。The results are also shown in FIG.

[発明の効果] 以上説明したように、本発明の表面処理方法によれば、
含有酸素量が少なく表面安定性に優れたAβN超微粒子
原料を提供することができ、実用的価値が大きい。
[Effects of the Invention] As explained above, according to the surface treatment method of the present invention,
It is possible to provide an AβN ultrafine particle raw material with a small amount of oxygen content and excellent surface stability, which has great practical value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法によって1qられたA!N超微粒
子中の酸素量の時間変化を従来例による場合と比較して
示す図である。
FIG. 1 shows A! 1q obtained by the method of the present invention! FIG. 3 is a diagram illustrating changes over time in the amount of oxygen in N ultrafine particles in comparison with a conventional example.

Claims (1)

【特許請求の範囲】[Claims] (1)高周波熱プラズマ法を用い、金属アルミニウムと
アンモニアガスとを反応させて窒化アルミニウム超微粒
子を合成するに際し、生成した窒化アルミニウム超微粒
子を大気に接触させるに先立って、不活性ガス中もしく
は真空中で、100〜800℃の温度範囲内で熱処理を
行うことを特徴とする窒化アルミニウム超微粒子の表面
処理方法。
(1) When synthesizing aluminum nitride ultrafine particles by reacting metal aluminum and ammonia gas using the high-frequency thermal plasma method, the generated aluminum nitride ultrafine particles are placed in an inert gas or in a vacuum before being brought into contact with the atmosphere. A method for surface treatment of ultrafine aluminum nitride particles, characterized in that heat treatment is performed within a temperature range of 100 to 800°C.
JP25097088A 1988-10-06 1988-10-06 Surface-treatment of ultrafine particle of aluminum nitride Pending JPH02102110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25097088A JPH02102110A (en) 1988-10-06 1988-10-06 Surface-treatment of ultrafine particle of aluminum nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25097088A JPH02102110A (en) 1988-10-06 1988-10-06 Surface-treatment of ultrafine particle of aluminum nitride

Publications (1)

Publication Number Publication Date
JPH02102110A true JPH02102110A (en) 1990-04-13

Family

ID=17215734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25097088A Pending JPH02102110A (en) 1988-10-06 1988-10-06 Surface-treatment of ultrafine particle of aluminum nitride

Country Status (1)

Country Link
JP (1) JPH02102110A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04263615A (en) * 1991-02-18 1992-09-18 Colloid Res:Kk Production of viscous aluminosilicate sol
US5851507A (en) * 1996-09-03 1998-12-22 Nanomaterials Research Corporation Integrated thermal process for the continuous synthesis of nanoscale powders
US6200872B1 (en) * 1997-09-30 2001-03-13 Fujitsu Limited Semiconductor substrate processing method
KR100320130B1 (en) * 1999-03-05 2002-01-10 김덕중 Method of forming AlN layer for aluminum parts
US6387560B1 (en) 1996-09-03 2002-05-14 Nano Products Corporation Nanostructured solid electrolytes and devices

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04263615A (en) * 1991-02-18 1992-09-18 Colloid Res:Kk Production of viscous aluminosilicate sol
US5851507A (en) * 1996-09-03 1998-12-22 Nanomaterials Research Corporation Integrated thermal process for the continuous synthesis of nanoscale powders
US6387560B1 (en) 1996-09-03 2002-05-14 Nano Products Corporation Nanostructured solid electrolytes and devices
US7306822B2 (en) 1996-09-03 2007-12-11 Nanoproducts Corporation Products comprising nano-precision engineered electronic components
US6200872B1 (en) * 1997-09-30 2001-03-13 Fujitsu Limited Semiconductor substrate processing method
KR100320130B1 (en) * 1999-03-05 2002-01-10 김덕중 Method of forming AlN layer for aluminum parts

Similar Documents

Publication Publication Date Title
JPH0134925B2 (en)
JPS6112844B2 (en)
JPH02102110A (en) Surface-treatment of ultrafine particle of aluminum nitride
JPS56100114A (en) Alpha-type silicon nitride of high purity and its manufacture
US4716028A (en) Process for preparation of high-type silicon nitride powder
Shan et al. Surface treatment and hydrolysis kinetics of organic films coated AlN powder
JPH0329023B2 (en)
JPS6278103A (en) Production of aluminum nitride powder
EP0385096B1 (en) Process for producing sinterable crystalline aluminum nitride powder
US9908782B2 (en) Method for synthesis of boron suboxide
JPH01230779A (en) Production of aluminum nitride
JPS6256308A (en) Hexagonal boron nitride powder having excellent sintering characteristic
US4704264A (en) Process for production of silane
KR900004489B1 (en) Process for producing aluminium nitride powder
JPS61201608A (en) Manufacture of high purity aluminum nitride powder
JP2846375B2 (en) Aluminum nitride powder and method for producing the same
JP2831411B2 (en) Method for producing aluminum nitride powder
JP3725686B2 (en) Method for manufacturing aluminum nitride whisker
JPH0455142B2 (en)
JPS6042209A (en) Manufacture of fine isometric silicon nitride powder of high purity
JPH0227778A (en) Manufacture of thermoelectric element
JPH01129972A (en) Formation of silicon oxynitride film
JPS63297207A (en) Production of aluminum nitride powder
EP1421029B1 (en) Silicon carbonitride with spinel structure
JPS60195008A (en) Production of silicon nitride powder