JPH02108473A - Shaping method for copper alloy electrode chip for spot welding - Google Patents

Shaping method for copper alloy electrode chip for spot welding

Info

Publication number
JPH02108473A
JPH02108473A JP25892388A JP25892388A JPH02108473A JP H02108473 A JPH02108473 A JP H02108473A JP 25892388 A JP25892388 A JP 25892388A JP 25892388 A JP25892388 A JP 25892388A JP H02108473 A JPH02108473 A JP H02108473A
Authority
JP
Japan
Prior art keywords
tip
shaping
welding
electrode tip
work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25892388A
Other languages
Japanese (ja)
Inventor
Toshiharu Nakajima
敏治 中島
Koichi Hida
飛田 幸一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP25892388A priority Critical patent/JPH02108473A/en
Publication of JPH02108473A publication Critical patent/JPH02108473A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

PURPOSE:To improve welding work efficiency and to prevent weld defects by processing shot blasting and grinding on the electrode chip tip and performing shaping work to remove a fragile layer. CONSTITUTION:A projection (f) of a Cu alloy having high strength and high melting point is formed on the tip 2 of a Cu alloy electrode chip 1. When the annular fragile layer (g) is grown up around the projection (f) in accordance with welding work, shot blasting is processed and partial shaping work to remove the annular fragile layer (g) is performed. When a discoid fragile layer (h) is grown up so as to pass the rear of the projection (f) on the tip 2, grinding work is then performed and overall shaping work to remove the discoid fragile layer (h) with the projection (f) is performed. By this method, welding work efficiency is improved and the weld defects can be prevented.

Description

【発明の詳細な説明】 A0発明の目的 (1)  産業上の利用分野 本発明はスポット溶接用銅合金製電極チップの整形方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION A0 Object of the Invention (1) Industrial Field of Application The present invention relates to a method for shaping a copper alloy electrode tip for spot welding.

(2)従来の技術 従来、この種電極チップの整形作業は、略1゜00打点
毎に先端部全面に研削加工を施すことにより行われてい
る(例えば特開昭62−81279号公報参照)。
(2) Conventional technology Conventionally, shaping work for this type of electrode tip has been carried out by grinding the entire surface of the tip at approximately every 1°00 dots (see, for example, Japanese Patent Laid-Open No. 81279/1983). .

(3)発明が解決しようとする課題 近時、電極チップ整形作業の頻度を減少させる目的で、
亜鉛メツキ鋼板の表面にZnO皮膜層を形成したものが
用いられている。
(3) Problems to be solved by the invention Recently, in order to reduce the frequency of electrode tip shaping work,
A galvanized steel sheet with a ZnO film layer formed on the surface is used.

通常、銅合金製電極チップを用いて前記鋼板をスポット
溶接する場合、1〜50打点の範囲ではナゲツト径が大
きくなる傾向にある。これは電極チップが前記鋼板に比
べて軟らかい上、溶接時の昇温で一層軟化し、同時に加
圧力を受けて先端部が潰され、また潰された部分に脆弱
なCu−Zn合金が含まれているからである。
Normally, when spot welding the steel plate using a copper alloy electrode tip, the nugget diameter tends to increase in the range of 1 to 50 welds. This is because the electrode tip is softer than the steel plate mentioned above, and it becomes even softer as the temperature rises during welding, and at the same time, the tip is crushed by the pressure applied, and the crushed part contains a fragile Cu-Zn alloy. This is because

一方、50打点を過ぎると、電極チップの先端部の略中
央部分に、前記鋼板表面から蒸発したFeが付着するこ
とに起因してCu系合金、即ち、Cu−Zn−Fe合金
よりなる突起が形成されて成長する。この合金は、電極
チップを構成する銅合金に比べて強度が高く、また融点
も高いため、溶接作業時の高温加圧下でも変形しないの
で、ナゲツト径を略一定にする機能を有し、これにより
適正な電流密度を得て安定した溶接を行うことができる
。この場合、前記突起は所定の大きさまで成長すると、
それ以上成長せず、その後は溶接毎に消耗するが、その
消耗量は軟鋼板からのFe。
On the other hand, after 50 points, a protrusion made of a Cu-based alloy, that is, a Cu-Zn-Fe alloy, appears at the approximate center of the tip of the electrode tip due to the adhesion of Fe evaporated from the surface of the steel plate. Form and grow. This alloy has higher strength and a higher melting point than the copper alloy that makes up the electrode tip, so it does not deform even under high temperature pressure during welding work, so it has the ability to keep the nugget diameter approximately constant. It is possible to obtain an appropriate current density and perform stable welding. In this case, when the protrusion grows to a predetermined size,
It does not grow any further, and after that it is consumed every time we weld, but the amount of consumption is Fe from the mild steel plate.

Znの拡散により補われるので、突起の大きさは略一定
となる。
Since this is compensated for by the diffusion of Zn, the size of the protrusions remains approximately constant.

さらに1000打点近くなると、前記突起の周囲に、C
u−Zn合金よりなる環状脆弱層が厚く成長し、その層
が前記鋼板に当接するようになるため、ナゲツト径が大
きくなって電流密度が低下し、溶接不良を発生し易くな
る。
Further, as the number of dots approaches 1000, C
Since the annular brittle layer made of the u-Zn alloy grows thick and comes into contact with the steel plate, the nugget diameter increases, the current density decreases, and welding defects are likely to occur.

そこで、従来は前記のように1000打点毎に整形作業
を行っているが、この手法によると、溶接に好結果をも
たらす前記突起も除去されるため整形後の電極チップを
用いて溶接作業を行った場合、1001〜1050打点
の範囲では前記1〜50打点の範囲と同様にナゲツト径
が大きくなり、したがって溶接開始後整形作業までの全
打点数に対する、適正な溶接に寄与する有効打点数の比
率が低くなって作業能率が悪いという問題がある。
Therefore, conventionally, shaping work is performed every 1000 dots as described above, but according to this method, the protrusions that bring about good results in welding are also removed, so welding work is performed using the shaped electrode tip. In this case, in the range of 1001 to 1050 dots, the nugget diameter increases as in the range of 1 to 50 dots, and therefore the ratio of the effective number of dots contributing to proper welding to the total number of dots from the start of welding to shaping work. There is a problem that the work efficiency is low due to low performance.

また、整形作業毎に先端部全面を研削するので、前記全
打点数当りの研削量が多く、その結果電極チップの消耗
量が増加して不経済となり、その上整形作業時間も長く
なるといった問題もある。
In addition, since the entire surface of the tip is ground for each shaping operation, the amount of grinding per total number of points is large, which results in increased consumption of the electrode tip, which is uneconomical, and furthermore, the shaping operation time becomes longer. There is also.

本発明は前記問題を解決することのできる前記整形方法
を提供することを目的とする。
An object of the present invention is to provide the above-mentioned shaping method that can solve the above-mentioned problems.

B0発明の構成 (1)課題を解決するための手段 本発明は、溶接作業に伴い銅合金製電極チップの先端部
に形成された高強度、且つ高融点のCu系合金よりなる
突起の周囲に、環状脆弱層が成長したとき、前記先端部
にショツトブラスト処理を施して前記環状脆弱層を除去
する部分整形作業を行い、次いで前記先端部に前記突起
の背面を過ぎるよう円盤状脆弱層が成長したとき、前記
先端部に研削加工を施して前記突起と共に前記円盤状脆
弱層を除去する全体整形作業を行うことを特徴とする。
B0 Structure of the Invention (1) Means for Solving the Problems The present invention is directed to a method for solving the problems that occurs around a protrusion made of a high-strength, high-melting-point Cu-based alloy that is formed at the tip of a copper alloy electrode tip during welding work. When the annular fragile layer has grown, a partial shaping operation is performed to remove the annular fragile layer by performing shot blasting on the tip, and then a disk-shaped fragile layer grows at the tip so as to pass over the back surface of the protrusion. When this is done, the tip is subjected to a grinding process to remove the disc-shaped fragile layer together with the protrusion, thereby performing an overall shaping operation.

(2)作 用 部分整形作業では、電極チップの先端部に形成された高
強度、且つ高融点のCu系合金よりなる突起を残置する
ので、整形後の電極チップを用いて溶接作業を行なった
場合、1打点目から適正な溶接が行われる。
(2) Effect In the part shaping work, welding work was performed using the shaped electrode tip because the protrusion made of a high-strength, high-melting-point Cu-based alloy formed at the tip of the electrode tip was left in place. In this case, proper welding is performed from the first welding point.

全体整形作業では、前記突起の背面を過ぎるように成長
した円盤状脆弱層を突起と共に除去するので、前記層の
破断に伴う突起の脱落、したがって溶接不良の発生が回
避される。
In the overall shaping operation, the disc-shaped brittle layer that has grown past the back surface of the protrusion is removed together with the protrusion, thereby avoiding the protrusion from falling off due to breakage of the layer, thereby preventing welding defects from occurring.

部分整形作業後の電極チップを用いて溶接作業を行なっ
た場合、ナゲツト径が大きくなることはないので、溶接
開始後全体整形作業までの全打点数に対する有効打点数
の比率が高くなる。
When welding is performed using the electrode tip after the partial shaping operation, the nugget diameter does not increase, so the ratio of the number of effective dots to the total number of dots from the start of welding to the entire shaping operation becomes high.

即ち、溶接開始から部分整形作業までの打点数をa、部
分整形作業後全体整形作業までの打点数をbとすると、
全打点数a+bに対する有効打点数(a+b)−50の
比率A1が、 a+b となる。
That is, if the number of dots from the start of welding to the partial shaping work is a, and the number of dots from the partial shaping work to the whole shaping work is b,
The ratio A1 of the effective number of hits (a+b)-50 to the total number of hits a+b is a+b.

一方、従来例の場合は、全打点数が本発明における打点
数aと同じであるから、全打点数aに対する有効打点数
a−50の比率A2が、となる。
On the other hand, in the case of the conventional example, since the total number of hits is the same as the number of hits a in the present invention, the ratio A2 of the effective number of hits a-50 to the total number of hits a is as follows.

この場合、a+b>aであるから前記比率の関係はA、
>A、となる。
In this case, since a+b>a, the relationship between the ratios is A,
>A.

(3)実施例 第1図は銅合金製電極チップ1を示し、その電極チップ
1は円錐台形先端部2を有する。
(3) Embodiment FIG. 1 shows an electrode tip 1 made of a copper alloy, and the electrode tip 1 has a truncated conical tip 2.

第2.第3図は、スポット溶接機に装着された上部の電
極チップ1に部分整形を施す第1部分整形装置31を示
し、また第4.第5図は同様にスポット溶接機に装着さ
れた下部の電極チップlに部分整形を施す第2部分整形
装置3tを示す。
Second. FIG. 3 shows a first partial shaping device 31 for partially shaping the upper electrode tip 1 mounted on a spot welding machine, and a fourth partial shaping device 31 for partially shaping the upper electrode tip 1 mounted on a spot welding machine. FIG. 5 similarly shows a second partial shaping device 3t that partially shapes the lower electrode tip l mounted on the spot welding machine.

第2.第3図に示す第1部分整形装置3.において、中
空円筒体4の上部側に存する端板5は、その外端面6よ
り中空円筒体4内に没入する先細りの円錐台形部7を有
し、その円錐台形部7の、外部に臨む外側テーパ面aは
、上部の電極チップ先端部2のテーパ面すに合致するよ
うになっている。円錐台形部7の小径端に開口8が形成
され、その間口8の直径は、上部の電極チップ先端部2
の軸方向略二等分位置の直径に略等しい。したがって上
部の電極チップ先端部2を円錐台形部7に挿入してテー
パ面すを円錐台形部7の外側テーパ面aに合致させると
、その先端部2の、端面Cを含む略半部は開口8より中
空円筒体4内に突出する。
Second. First partial shaping device 3 shown in FIG. , the end plate 5 existing on the upper side of the hollow cylindrical body 4 has a tapered truncated conical part 7 that sinks into the hollow cylindrical body 4 from its outer end surface 6, and the outer side of the truncated conical part 7 facing the outside The tapered surface a matches the tapered surface of the upper electrode tip tip 2. An opening 8 is formed at the small diameter end of the truncated conical part 7, and the diameter of the opening 8 is equal to the diameter of the upper electrode tip tip 2.
It is approximately equal to the diameter of the approximately bisecting position in the axial direction. Therefore, when the upper electrode tip tip 2 is inserted into the truncated conical part 7 and the tapered surface matches the outer tapered surface a of the truncated conical part 7, approximately half of the tip 2 including the end surface C is open. 8 protrudes into the hollow cylindrical body 4.

中空円筒体4の下部側に存する端板9に、円錐台形部7
0開口8と同軸の挿入孔lOが形成され、その挿入孔1
0の内側周縁部に下部の電極チップlを受ける受は部1
1が突設される。その受は部11は、下部の電極チップ
先端部2のテーパ面すと合致する、外部に臨む外側テー
パ面dを有する。
A truncated conical portion 7 is attached to the end plate 9 on the lower side of the hollow cylindrical body 4.
An insertion hole 1O coaxial with the 0 opening 8 is formed, and the insertion hole 1O is coaxial with the insertion hole 10.
The receiver that receives the lower electrode tip l is located on the inner peripheral edge of the part 1.
1 is provided protrudingly. The receiving portion 11 has an outer tapered surface d facing the outside that matches the tapered surface of the lower electrode tip tip 2.

中空円筒体4の周壁12に、同一の構成を有する4本の
ショット吹付ノズル13が円周上等間隔に配設される。
Four shot spray nozzles 13 having the same configuration are arranged on the peripheral wall 12 of the hollow cylindrical body 4 at equal intervals on the circumference.

各ショット吹付ノズル13の先端は円錐台形部7の開口
8に臨んでおり、これにより上部の電極チップ先端部2
の端面C側半部を開口8から突出させたとき、その端面
C側半部全体にショツトブラスト処理を施すことができ
る。
The tip of each shot spray nozzle 13 faces the opening 8 of the truncated conical portion 7, thereby allowing the upper electrode tip tip 2
When the half of the end face C side is made to protrude from the opening 8, the entire half of the end face C side can be subjected to shot blasting.

各ショット吹付ノズル13は、主管部13aとそれに合
流する枝管部13bとよりなり、その主管部13aに圧
縮エア供給用導管14が、また枝管部13bにショット
圧送用導管15がそれぞれ接続される。
Each shot spray nozzle 13 consists of a main pipe part 13a and a branch pipe part 13b that joins the main pipe part 13a, and a compressed air supply pipe 14 is connected to the main pipe part 13a, and a shot pressure feeding pipe 15 is connected to the branch pipe part 13b. Ru.

中空円筒体4の底板9に、各ショット吹付ノズル13に
対応してショット回収孔16が形成され、各ショット回
収孔16に吸引用導管17が接続される。
A shot recovery hole 16 is formed in the bottom plate 9 of the hollow cylindrical body 4 in correspondence with each shot spray nozzle 13, and a suction conduit 17 is connected to each shot recovery hole 16.

第4.第5図に示すように第2部分整形装置32は、下
部の電極チップlにショツトブラスト処理を施すため第
1部分整形装置3Iと路線対称の関係を持つ構成を有す
る。したがって、第2部分整形装置3tにおいて、第1
部分整形装置3.と同一構成部分には同一符号を付す。
4th. As shown in FIG. 5, the second partial shaping device 32 has a configuration that is symmetrical with the first partial shaping device 3I in order to perform shot blasting on the lower electrode tip l. Therefore, in the second partial shaping device 3t, the first
Partial shaping device 3. The same components are given the same reference numerals.

第6〜第9図は、スポット溶接機に装着された上、下部
の電極チップlに全体整形を施す全体整形装置18を示
し、その装置18は研削部19と、その研削部19に動
力を伝達する動力部2oとを備えている。
6 to 9 show an overall shaping device 18 that is attached to a spot welding machine and performs overall shaping on the upper and lower electrode tips l. It is equipped with a power section 2o for transmitting power.

研削部19は次のように構成される。即ち、装置ハウジ
ング21の円筒孔22に一対の軸受筒2s、、23□が
装着され、それら軸受筒231゜23.に円筒形をなす
研削カッタ用ホルダ24が回転自在に嵌合される。その
ホルダ24は第7゜第8図に明示するように円筒体25
と、その両端面に重合結着された一対の環状蓋体26.
.268とよりなる0円筒体25は、その両端に開口す
るテーパ孔2L 、27gと、各テーパ孔27゜278
を横断する長孔2B1.281と、外周面中間部に突設
されたギヤ部29とを有する。各テーパ孔27.,27
tは、電極チップ1における先端部2のテーパ面すと路
間−の傾きを有する。
The grinding section 19 is configured as follows. That is, a pair of bearing sleeves 2s, 23□ are installed in the cylindrical hole 22 of the device housing 21, and the bearing sleeves 231°, 23. A cylindrical grinding cutter holder 24 is rotatably fitted therein. The holder 24 has a cylindrical body 25 as shown in FIGS.
and a pair of annular lids 26. which are polymerized and bonded to both end faces thereof.
.. The cylindrical body 25 consisting of 268 has tapered holes 2L and 27g open at both ends, and each tapered hole 27°278.
It has a long hole 2B1.281 that crosses the 2B1.281, and a gear part 29 that protrudes from the middle part of the outer peripheral surface. Each tapered hole 27. ,27
t has an inclination between the tapered surface of the tip portion 2 of the electrode tip 1 and the path.

研削用カッタ30は、第9図に明示するように、電極チ
ップ1のテーパ面すに倣うように傾斜する一対の第1研
削刃311 と、両研削刃311の端部間に在って電極
チップlの端面Cに倣う水平な一対の第2研削刃31.
を有する。
As clearly shown in FIG. 9, the grinding cutter 30 includes a pair of first grinding blades 311 that are inclined to follow the tapered surface of the electrode tip 1, and a pair of first grinding blades 311 that are located between the ends of the two grinding blades 311 to A pair of horizontal second grinding blades 31 that follow the end surface C of the tip l.
has.

各研削用カッタ30はホルダ24の各長孔281.28
□に装着され、各第1.第2研削刃312.31□は各
長孔28+、28gの開口縁より僅かに突出する。各長
孔2B、、28□からの研削用カッタ30の抜止めは各
蓋体26..26□により行われる。装置ハウジング2
1に、再研削用カッタ30に臨む電極チップ用挿入孔3
21゜32tが形成される。
Each grinding cutter 30 is connected to each elongated hole 281.28 of the holder 24.
□, each first. The second grinding blade 312.31□ slightly protrudes from the opening edge of each long hole 28+, 28g. The grinding cutter 30 is prevented from being removed from each elongated hole 2B, 28□ by each cover body 26. .. Performed by 26□. Device housing 2
1, an electrode tip insertion hole 3 facing the re-grinding cutter 30
21°32t is formed.

動力部20は、図示しない電動モータを有し、その駆動
軸33に取付けられた駆動ギヤ34に中間ギヤ35が噛
合し、その中間ギヤ35にホルダ24のギヤ部29が噛
合する。
The power unit 20 has an electric motor (not shown), and an intermediate gear 35 meshes with a drive gear 34 attached to a drive shaft 33 of the electric motor, and a gear portion 29 of the holder 24 meshes with the intermediate gear 35.

次に、表面にZnO皮膜層を有する亜鉛メツキ鋼板をス
ポット溶接した場合における、電極チップ1の整形作業
について説明する。
Next, a description will be given of the shaping operation of the electrode tip 1 in the case where a galvanized steel plate having a ZnO film layer on the surface is spot welded.

第10図(a)は、溶接開始後50打点までの電極チッ
プ1(図には一方のみ示す)の先端部形状を示す、・こ
の場合、先端部2の端面C近傍は、軟鋼板に比べて軟ら
かい上、溶接時の昇温で一層軟化し、同時に加圧力を受
けて潰されており、その結果ナゲツト径が大きくなる傾
向にある。また潰された部分eには、脆弱なCu−Zn
合金が含まれている。
Figure 10(a) shows the shape of the tip of the electrode tip 1 (only one is shown in the figure) up to 50 dots after the start of welding. In this case, the vicinity of the end surface C of the tip 2 is smaller than that of the mild steel plate. The nugget diameter tends to increase as a result of the nugget diameter being softened further by the temperature rise during welding, and at the same time being crushed by the pressure applied. In addition, in the crushed part e, there is weak Cu-Zn.
Contains alloys.

第10図(ロ)は溶接開始後1000打点までの電極チ
ップ1の先端部形状を示す。50打点を過ぎると、先端
部端面Cの略中央部分に、前記鋼板表面から蒸発したF
e、Znが付着することに起因してCu−Zn−Fe合
金よりなる突起fが形成されて成長する。この合金は、
電極チップlを構成する銅合金に比べて強度が高く、ま
た融点も高いため、溶接作業時の高温加熱下でも変形し
ないので、ナゲツト径を略一定にする機能を有し、これ
により適正な電流密度を得て安定した溶接を行うことか
できる。この場合、突起fは所定の太きさまで成長する
と、それ以上成長せず、その後は溶接毎に消耗するが、
その消耗分は前記鋼板からのFe、Znの拡散により補
われるので、突起fの大きさは略一定となる。
FIG. 10(b) shows the shape of the tip of the electrode tip 1 up to 1000 dots after the start of welding. After the 50th point, F evaporated from the surface of the steel plate is deposited approximately in the center of the end face C of the tip.
Due to the adhesion of e and Zn, protrusions f made of Cu-Zn-Fe alloy are formed and grow. This alloy is
Compared to the copper alloy that makes up the electrode tip, it has a higher strength and a higher melting point, so it does not deform even under high temperature heating during welding work, so it has the ability to keep the nugget diameter approximately constant, which allows it to maintain an appropriate current. It is possible to obtain density and perform stable welding. In this case, once the protrusion f has grown to a predetermined thickness, it will not grow any further and will be consumed with each welding process thereafter.
Since the amount of consumption is compensated for by the diffusion of Fe and Zn from the steel plate, the size of the protrusion f remains approximately constant.

1000打点近くなると、突起fの周囲に、Cu−Zn
合金よりなる環状脆弱層gが厚く成長し、その層gが前
記鋼板に当接するようになるため、ナゲツト径が大きく
なって電流密度が低下し、溶接不良を発生し易くなる。
When the number of dots approaches 1000, Cu-Zn is formed around the protrusion f.
The annular brittle layer g made of the alloy grows thickly and comes into contact with the steel plate, so the nugget diameter increases, the current density decreases, and welding defects are more likely to occur.

そこで、1000打点に達したとき、前記第1゜第2部
分整形装置3..3□を用いて部分整形作業を行う。即
ち、第3図に示すように上部の電極チップlの先端部2
を円錐台形部7に挿入して、その先端部2のテーパ面す
により外側テーパ面aを押圧すると共に先端部2の端面
C側半部を開口8から突出させる。また下部の電極チッ
プ1の先端部2を受は部11に挿入して、その先端部2
のテーパ面すで外側テーパ面dを押圧する。
Therefore, when 1000 points are reached, the first and second partial shaping devices 3. .. 3 Perform partial shaping using □. That is, as shown in FIG. 3, the tip 2 of the upper electrode tip l
is inserted into the truncated conical part 7, and the tapered surface of the tip 2 presses the outer tapered surface a, and the half of the tip 2 on the end surface C side protrudes from the opening 8. Also, insert the tip 2 of the lower electrode tip 1 into the receiving part 11, and
The tapered surface of presses the outer tapered surface d.

そして各ショット吹付ノズル13より上部の電極チップ
先端部2の端面C側半部に、ショットを衝突させるショ
ツトブラスト処理を施し、環状脆弱層gを除去する。こ
の場合、突起fは先端部2と一体化され、また硬度も高
いので、前記ショツトブラスト処理により除去されたり
、変形したりすることはない、一方、突起1表面にCu
−Zn合金が生成されている場合にはその合金はショツ
トブラスト処理によって除去される。
Then, a shot blasting process is applied to the end face C side half of the electrode tip tip 2 above each shot spraying nozzle 13 to remove the annular fragile layer g. In this case, the protrusion f is integrated with the tip 2 and has high hardness, so it will not be removed or deformed by the shot blasting process.
-Zn alloys, if formed, are removed by shot blasting.

これにより第10図(C)に示すように先端部2が部分
整形される。
As a result, the distal end portion 2 is partially shaped as shown in FIG. 10(C).

前記部分整形作業では、先端部2の端面Cに形成された
突起fが残置されるので、整形後の電極チップ1を用い
て溶接作業を行った場合、1001打点目から適正な溶
接を行うことができる。
In the partial shaping work, the protrusion f formed on the end face C of the tip portion 2 remains, so when welding work is performed using the shaped electrode tip 1, proper welding must be performed from the 1001st welding point. Can be done.

次いで溶接作業を続行すると、2000打点近くで前記
同様に環状脆弱層gが成長するので前記同様に部分整形
作業を行う。
Next, when the welding operation is continued, the annular weakened layer g grows in the vicinity of the 2000th welding point as described above, so a partial shaping operation is performed in the same manner as described above.

その後溶接作業を続行すると、3000打点近くで第1
O図(d)に示すように円盤状脆弱層りが突起rの背面
を過ぎるように成長し、突起fが脱落し易くなる。この
脆弱層りは、突起rの外周に在ってCu−Zn合金より
なる外周部mと、突起fの背面側に在ってCu粗大化粒
子よりなる内周部nとより構成されている。
After that, when welding work continued, the first point was reached near 3000 points.
As shown in Figure 0 (d), a disc-shaped brittle layer grows past the back surface of the projection r, making it easier for the projection f to fall off. This brittle layer is composed of an outer periphery m that is located on the outer periphery of the projection r and is made of a Cu-Zn alloy, and an inner periphery n that is located on the back side of the projection f and is made of coarse Cu particles. .

そこで、3000打点に達したとき、全体整形装置18
を用いて全体整形作業を行う。即ち、第6図に示すよう
に上、下部の電極チップlの先端部2を研削部19の再
挿通孔32..32□に挿入し、第1O図(ロ)の線1
1に示すように各テーパ面すを、回転する各第1研削刃
31.により、また第10図(d)の線12に示すよう
に各端面Cを同様に回転する各第2研削刃31!により
それぞれ研削して円盤状脆弱層りおよび突起rを除去す
る。
Therefore, when reaching 3000 points, the overall shaping device 18
Perform the entire plastic surgery using. That is, as shown in FIG. 6, the tips 2 of the upper and lower electrode tips 1 are inserted into the re-insertion holes 32. .. Insert into 32□ and line 1 in Figure 1O (b)
1, each tapered face is rotated by each first grinding blade 31. Accordingly, each of the second grinding blades 31 similarly rotates each end face C as shown by the line 12 in FIG. 10(d)! The disc-shaped brittle layer and the protrusion r are removed by grinding, respectively.

これにより第10図(e)に示すように先端部2が整形
される。
As a result, the tip portion 2 is shaped as shown in FIG. 10(e).

前記全体整形作業では、突起fの背面を過ぎるように成
長した円盤状脆弱層りを除去するので、前記層りの破断
に伴う突起fの脱落、したがって溶接不良を回避するこ
とができる。
In the overall shaping operation, the disc-shaped brittle layer that has grown past the back surface of the projection f is removed, so that it is possible to avoid the projection f from falling off due to breakage of the layer, and therefore to avoid welding defects.

部分整形作業後の電極チップ1を用いて溶接作業を行っ
た場合、ナゲツト径が大きくなることはないので、溶接
開始後全体整形作業までの全打点数に対する有効打点数
の比率が高くなる。
When welding is performed using the electrode tip 1 after the partial shaping operation, the nugget diameter does not increase, so the ratio of the number of effective dots to the total number of dots from the start of welding to the entire shaping operation becomes high.

即ち、溶接開始から2回に亘る部分整形作業までの打点
数が2000打点、部分整形作業後全体整形作業までの
打点数が1000打点であるから、全打点数3000打
点に対する有効打点数3000−50=2950の比率
AIは98%となる。
That is, since the number of dots from the start of welding to the two partial shaping operations is 2000 dots, and the number of dots from the partial shaping operation to the entire shaping operation is 1000 dots, the effective number of dots is 3000-50 for the total number of dots of 3000 dots. =2950, the ratio AI is 98%.

一方、従来例の場合は、全打点数が1000打点である
から、全打点数1000打点に対する有効打点数100
0−50=950の比率Atが95%となる。
On the other hand, in the case of the conventional example, since the total number of RBIs is 1000 RBIs, the effective number of RBIs is 100 for the total number of RBIs of 1000 RBIs.
The ratio At of 0-50=950 is 95%.

したがってA、>A、の関係が成立する。Therefore, the relationship A,>A holds true.

なお、部分整形作業は500打点毎に、また全体整形作
業はナゲツト径によって4000打点後、5000打点
後またはそれ以上の打点数に達した後に行う等適宜であ
る。
The partial shaping work may be performed every 500 dots, and the overall shaping work may be carried out after 4000 dots, 5000 dots, or more dots have been reached depending on the diameter of the nugget.

さらに、本発明は軟鋼板のスポット溶接に用いられた電
極チップの整形にも適用される。この場合には、突起は
Fe−Cu合金よりなり、また環状および円盤状脆弱N
g、hはCu粗大化粒子よりなる。
Furthermore, the present invention is also applied to the shaping of electrode tips used for spot welding mild steel plates. In this case, the protrusion is made of Fe-Cu alloy, and the annular and disc-shaped brittle N
g and h consist of Cu coarse particles.

C0発明の効果 本発明によれば、銅合金製電極チップ先端部の整形に当
り、全体整形作業の前に部分整形作業を行い、この部分
整形作業では溶接に好結果をもたらす高強度、且つ高融
点のCu系合金よりなる突起を残置するので、溶接開始
後全体整形作業までの全打点数に対する、適正な溶接に
寄与する有効打点数の比率を高めて作業能率を向上させ
ることができる。
C0 Effects of the Invention According to the present invention, when shaping the tip of a copper alloy electrode tip, a partial shaping operation is performed before the overall shaping operation, and in this partial shaping operation, a high strength and high Since the protrusions made of a Cu-based alloy with a melting point are left, it is possible to increase the ratio of the number of effective dots that contribute to proper welding to the total number of dots from the start of welding to the overall shaping work, thereby improving work efficiency.

また全体整形作業では、前記突起と共にその背面を過ぎ
るように成長した円盤状脆弱層を除去するので、突起の
脱落に伴う溶接不良を回避することができる。
Further, in the overall shaping operation, the disk-shaped fragile layer that has grown past the back side of the protrusion is removed together with the protrusion, so it is possible to avoid welding defects due to the protrusion falling off.

さらに部分整形作業ではショツトブラスト処理により環
状脆弱層を除去するだけで研削作業を行わず、また全体
整形作業で初めて電極チップ先端部の研削を行うので、
整形作業毎に研削を行う場合に比べて前記全打点数当り
の研削量を減らし、これにより電極チップの消!@量を
減少させて経済性を向上させることができる。その上前
記全打点数当りの整形作業時間も短縮することができる
Furthermore, in partial shaping work, only the annular fragile layer is removed by shot blasting without any grinding work, and the tip of the electrode tip is ground for the first time in the whole shaping process.
Compared to the case where grinding is performed for each shaping operation, the amount of grinding per total number of points is reduced, thereby eliminating the electrode tip! @It is possible to reduce the amount and improve economic efficiency. Moreover, the shaping work time per total number of dots can be shortened.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電極チップの要部正面図、第2.第3図は第1
部分整形装置を示し、第2図は平面図、第3図は第2図
■−■線断面図、第4.第5図は第2部分整形装置を示
し、第4図は平面図、第5図は第4図V−V線断面図、
第6〜第9図は全体整形装置を示し、第6図は装置の要
部縦断正面図、第7図は研削カッタ用ホルダの縦断正面
図で、第8図■−■線断面図に対応し、第8図は要部を
破断した第7図■矢視図、第9図は研削カッタの斜視図
、第10図は溶接作業および整形作業に伴う電極チップ
先端部の形状変化を示す説明図である。 f・・・突起、g・・・環状脆弱層、h・・・円盤状脆
弱層、l・・・電極チップ、2・・・先端部、13・・
・ショット吹付ノズル、30・・・研削用カッタ 第6図 第7図 W ↓ 第9 図 (C) 第10図 (b) (e) (a) 〆dノ
Figure 1 is a front view of the main parts of the electrode chip, Figure 2. Figure 3 is the first
2 is a plan view, FIG. 3 is a sectional view taken along the line ■-■ in FIG. 2, and FIG. 4 is a partial shaping device. FIG. 5 shows the second partial shaping device, FIG. 4 is a plan view, FIG. 5 is a sectional view taken along the line V-V in FIG.
Figures 6 to 9 show the entire shaping device, Figure 6 is a longitudinal sectional front view of the main part of the equipment, and Figure 7 is a vertical sectional front view of the grinding cutter holder, which corresponds to the sectional view taken along the line ■-■ in Figure 8. Fig. 8 is a fragmentary view of Fig. 7 in the direction of the arrow, Fig. 9 is a perspective view of the grinding cutter, and Fig. 10 is an explanation showing changes in the shape of the tip of the electrode tip due to welding and shaping operations. It is a diagram. f...Protrusion, g...Annular fragile layer, h...Disc-shaped weak layer, l...Electrode tip, 2...Tip, 13...
・Shot spray nozzle, 30... Grinding cutter Figure 6 Figure 7 W ↓ Figure 9 (C) Figure 10 (b) (e) (a) 〆dノ

Claims (1)

【特許請求の範囲】[Claims] 溶接作業に伴い銅合金製電極チップの先端部に形成され
た高強度、且つ高融点のCu系合金よりなる突起の周囲
に、環状脆弱層が成長したとき、前記先端部にショット
ブラスト処理を施して前記環状脆弱層を除去する部分整
形作業を行い、次いで前記先端部に前記突起の背面を過
ぎるよう円盤状脆弱層が成長したとき、前記先端部に研
削加工を施して前記突起と共に前記円盤状脆弱層を除去
する全体整形作業を行うことを特徴とするスポット溶接
用銅合金製電極チップの整形方法。
When an annular brittle layer grows around a protrusion made of a high-strength, high-melting-point Cu-based alloy formed at the tip of a copper alloy electrode tip during welding work, shot blasting is applied to the tip. Then, when the disc-shaped fragile layer has grown at the tip so as to pass the back surface of the protrusion, the tip is subjected to a grinding process to remove the annular fragile layer and the disc-shaped brittle layer is removed together with the protrusion. A method for shaping a copper alloy electrode tip for spot welding, which comprises performing an overall shaping operation to remove a weak layer.
JP25892388A 1988-10-14 1988-10-14 Shaping method for copper alloy electrode chip for spot welding Pending JPH02108473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25892388A JPH02108473A (en) 1988-10-14 1988-10-14 Shaping method for copper alloy electrode chip for spot welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25892388A JPH02108473A (en) 1988-10-14 1988-10-14 Shaping method for copper alloy electrode chip for spot welding

Publications (1)

Publication Number Publication Date
JPH02108473A true JPH02108473A (en) 1990-04-20

Family

ID=17326915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25892388A Pending JPH02108473A (en) 1988-10-14 1988-10-14 Shaping method for copper alloy electrode chip for spot welding

Country Status (1)

Country Link
JP (1) JPH02108473A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012071329A (en) * 2010-09-29 2012-04-12 Tne:Kk Resistance welding method of galvanized steel sheet, regeneration method of electrode tip for resistance welding of galvanized steel sheet, and electrode tip for resistance welding of galvanized steel sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012071329A (en) * 2010-09-29 2012-04-12 Tne:Kk Resistance welding method of galvanized steel sheet, regeneration method of electrode tip for resistance welding of galvanized steel sheet, and electrode tip for resistance welding of galvanized steel sheet

Similar Documents

Publication Publication Date Title
US3278720A (en) Method and apparatus for welding metal members
US6972044B2 (en) Battery electrode and manufacturing method and apparatus for the same
JPH02108473A (en) Shaping method for copper alloy electrode chip for spot welding
JP2002224836A (en) Method for welding one side face of thick plates of titanium or titanium-based alloy
JP3158098U (en) Torch cleaner for arc welding
JPH02108474A (en) Shaping method for copper alloy electrode chip for spot welding
JP3111127B2 (en) Groove processing method
JPS62234672A (en) Spatter removing method for welding torch
CN218533291U (en) Welding device for clutch driven disc
CN110948075B (en) Brazing process for stationary blade of turbine of gas turbine
JPH08150483A (en) Method for surface treatment of electrode or nozzle tip of welding machine
JP2000141034A (en) Pre-processing welding method in continuous pipe manufacturing line and its device
JPH09239562A (en) Electrode chip dressing cutter
JPS63207478A (en) Contact tip device for arc welding equipment
JP2003181647A (en) Welding torch and welding device, and welding method using the torch
JPH06225Y2 (en) Curved nozzle for submarine welding wire
JPH08141530A (en) Air washing apparatus
JP3455766B2 (en) Shield gas nozzle
JPH01115525A (en) Treatment at friction pressure contact joint
CN117564408A (en) Double-sided forming welding method for gapless single-sided welding
JPS601897Y2 (en) Upward underwater welding torch
JPH0747475A (en) Contact chip of automatic welding machine
JPS6092077A (en) Welding method of butted part of pipe
JPH0557447A (en) Tig welding method and welding torch thereof
JPS62166903A (en) Center and repairing method thereof